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FOREWORD

It is often said that the problem of the very small cosmological constant is the
greatest mystery in cosmology and in particle physics, and that no one has any
good ideas on how to solve it. The contents of this book make a lie of that
statement. The material in this monograph builds upon a candidate solution to
the problem, often dubbed ‘emergence’. It is a solution so simple and direct that
it can be stated here in this foreword. Visualize the vacuum of particle physics
as if it were a cold quantum liquid in equilibrium. Then its pressure must vanish,
unless it is a droplet – in which case there will be surface corrections scaling as
an inverse power of the droplet size. But vacuum dark pressure scales with the
vacuum dark energy, and thus is measured by the cosmological constant, which
indeed scales as the inverse square of the ‘size’ of the universe. The problem is
‘solved’.

But there is some bad news with the good. Photons, gravitons, and gluons
must be viewed as collective excitations of the purported liquid, with dispersion
laws which at high energies are not expected to be relativistic. The equivalence
principle and gauge invariance are probably inexact. Many other such ramifi-
cations exist, as described in this book. And experimental constraints on such
deviant behavior are extremely strong. Nevertheless, it is in my opinion not out
of the question that the difficulties can eventually be overcome. If they are, it will
mean that many sacrosanct beliefs held by almost all contemporary theoretical
particle physicists and cosmologists will at the least be severely challenged.

This book summarizes the pioneering research of its author, Grisha Volovik,
and provides a splendid guide into this mostly unexplored wilderness of emergent
particle physics and cosmology. So far it is not respectable territory, so there is
danger to the young researcher venturing within –working on it may be detri-
mental to a successful career track. But together with the danger will be high
adventure and, if the ideas turn out to be correct, great rewards. I salute here
those who take the chance and embark upon the adventure. At the very least
they will be rewarded by acquiring a deep understanding of much of the lore of
condensed matter physics. And, with some luck, they will also be rewarded by
uncovering a radically different interpretation of the profound problems involving
the structure of the very large and of the very small.

Stanford Linear Accelerator Center James D. Bjorken
August 2002





PREFACE

Topology is a powerful tool for gaining the most important information on com-
plicated many-body systems in a very economic way. Topological classification of
defects – vortices, domain walls, monopoles – allows us to elucidate which defect
is stable and what will be the result of the fusion of two defects, without resort
to any equations. In many cases there are no simple equations which govern such
processes, while numerical simulations from the first principles – from the Theory
of Everything (provided that such a theory exists) – are highly time consuming
and not conclusive because of lack of generality. A number of different vortices
with an intricate structure of the multi-component order parameter have been
experimentally observed in the superfluid phases of 3He, but the mathematics
which is used to treat them is as simple as the equation 1+1=0. This equation
demonstrates that the collision of two singular vortices gives rise to a continuous
vortex-skyrmion, or that two soliton walls annihilate each other.

Another example is the Fermi surface: it is stable because it is a topological
defect – a quantized vortex in momentum space. Again, without use of the mic-
roscopic theory, only from topology in the momentum space, one can predict
all possible types of behavior of the many-body system at low energy which do
not depend on details of atomic structure. The system is either fully gapped, or
the Fermi surface is developed, or, what has most remarkable consequences, a
singular point in the momentum space evolves – the Fermi point. If a Fermi point
appears, as happens in superfluid 3He-A, at low energies the system is governed
by a quantum field theory describing left-handed and right-handed fermionic
quasiparticles interacting with effective gauge and gravity fields. Practically all
the ingredients of the Standard Model emerge, together with Lorentz invariance
and other physical laws. This suggests that maybe our quantum vacuum belongs
to the same universality class, and if so, the origin of the physical laws could
be understood together with some puzzles such as the cosmological constant
problem.

In this book we discuss the general consequences from topology on the quan-
tum vacuum in quantum liquids and the parallels in particle physics and cosmol-
ogy. This includes topological defects; emergent relativistic quantum field theory
and gravity; chiral anomaly; the low-dimensional world of quasiparticles living in
the core of vortices, domain walls and other ‘branes’; quantum phase transitions;
emergent non-trivial spacetimes; and many more.

Helsinki University of Technology Grigory E. Volovik
November 2002



PREFACE TO THE PAPERBACK EDITION

The paperback edition is a straight reprint of the hardback edition published
in 2003. I did not make an attempt to add new material, or the references
to numerous important papers which appeared in the period 2002-2008: this
would go beyond the scope of a paperback reprint. However, I did include up-
to-date citations to a few key and review papers that have been published in
that period (Adler 2005; Akhmedov and Singleton 2007; Bais 2005; Barcelo et
al. 2005; Creutz 2008; Cross and Brinkman 1977; Deser et al. 1982; Dziarmaga
et al. 2008; Eltsov et al. 2006, 2008; Gurarie and Radzihovsky 2007; Hlubina
2008; Horava 2005; Jackiw 2005; Jackiw and Rossi 1981; Kee and Maki 2007;
Kitaev 2006; Klinkhamer 2006; Klinkhamer and Volovik 2005, 2008; Kolomeisky
et al. 2008; Leurs et al. 2008; Martin et al. 2008; Mel’nikov et al. 2008; Roy and
Kallin 2008; Ruokola and Kopu 2005; Schützhold 2005; Stone and Anduaga 2008;
Volovik 1995c, 1998c, 2003, 2007, 2008; Volovik and Zelnikov 2003; Yamashita
et al. 2006). A number of typographical errors have been corrected, and I thank
the readers who attracted my attention to mistakes in some equations.

Helsinki University of Technology Grigory E. Volovik
October 2008
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1

INTRODUCTION: GUT AND ANTI-GUT

There are fundamental relations between three vast areas of physics: particle
physics, cosmology and condensed matter. These relations constitute a successful
example of the unity of physics. The fundamental links between cosmology and
particle physics, in other words, between macro- and micro-worlds, have been well
established. There is a unified system of laws governing all scales from subatomic
particles to the cosmos and this principle is widely exploited in the description
of the physics of the early Universe (baryogenesis, cosmological nucleosynthesis,
etc.). The connection of these two fields with the third ingredient of modern
physics – condensed matter – is the main goal of the book.

This connection allows us to simulate the least understood features of high-
energy physics and cosmology: the properties of the quantum vacuum (also called
ether, spacetime foam, quantum foam, Planck medium, etc.). In particular, the
vacuum energy estimated using the methods of particle physics is in disagree-
ment with modern cosmological experiments. This is the famous cosmological
constant problem. A major advantage of condensed matter is that it is described
by a quantum field theory in which the properties of the quantum vacuum are
completely known from first principles: they can be computed (at least numer-
ically) and they can be measured experimentally in a variety of quantum con-
densed matter systems, such as quantum liquids, superconductors, superfluids,
ferromagnets, etc.

The analogy between the quantum vacuum in particle physics and in con-
densed matter could give an insight into trans-Planckian physics and thus help
in solving the cosmological constant problem and other outstanding problems
in high-energy physics and cosmology, such as the origin of matter–antimatter
asymmetry, the formation of the cosmological magnetic field, the problem of the
flatness of present Universe, the formation of large-scale structure, the physics
of the event horizon in black holes, etc.

The traditional Grand Unification view of the nature of physical laws is that
the low-energy symmetry of our world is the remnant of a larger symmetry,
which exists at high energy, and is broken when the energy is reduced. According
to this philosophy the higher the energy the higher is the symmetry. At very
high energy there is the Grand Unification Theory (GUT), which unifies strong,
weak and hypercharge interactions into one big group such as the SO(10) group
or its G(224) subgroup of the Pati–Salam model (Sec. 12.2.2). At about 1015

GeV this big symmetry is spontaneously broken (probably with intermediate
stages) into the symmetry group of the Standard Model, which contains three
subgroups corresponding to separate symmetry for each of three interactions:
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Fig. 1.1. Grand Unification and anti-Grand-Unification schemes in the Stan-
dard Model and in superfluid 3He.

U(1)×SU(2)×SU(3). Below about 200 GeV the electroweak symmetry U(1)×
SU(2) is violated, and only the group of electromagnetic and strong interactions,
U(1) × SU(3), survives (see Fig. 1.1 and Sec. 12.2).

The less traditional view is quite the opposite: it is argued that starting from
some energy scale (probably the Planck energy scale) one finds that the higher
the energy the poorer are the symmetries of the physical laws, and finally even the
Lorentz invariance and gauge invariance will be smoothly violated (Froggatt and
Nielsen 1991; Chadha and Nielsen 1983). From this point of view, the relativistic
quantum field theory (RQFT) is an effective theory (Polyakov 1987; Weinberg
1999; Jegerlehner 1998). It is an emergent phenomenon arising as a fixed point in
the low-energy corner of the physical vacuum whose nature is inaccessible from
the effective theory. In the vicinity of the fixed point the system acquires new
symmetries which it did not have at higher energy. It is quite possible that even
such symmetries as Lorentz symmetry and gauge invariance are not fundamental,
but gradually appear when the fixed point is approached. From this viewpoint it
is also possible that Grand Unification schemes make no sense if the unification
occurs at energies where the effective theories are no longer valid.

Both scenarios occur in condensed matter systems. In particular, superfluid
3He-A provides an instructive example. At high temperature the 3He gas and at
lower temperature the normal 3He liquid have all the symmetries that ordinary
condensed matter can have: translational invariance, global U(1) group and two
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global SO(3) symmetries of spin and orbital rotations. When the temperature
decreases further the liquid 3He reaches the superfluid transition temperature Tc

about 1 mK (Fig. 1.1), below which it spontaneously loses each of its symmetries
except for the translational one – it is still liquid. This breaking of symmetry
at low temperature, and thus at low energy, reproduces that in particle physics.
Though the ‘Grand Unification’ group in 3He, U(1) × SO(3) × SO(3), is not
as big as in particle physics, the symmetry breaking is nevertheless the most
important element of the 3He physics at low temperature.

However, this is not the whole story. When the temperature is reduced fur-
ther, the opposite ‘anti-Grand-Unification’ (anti-GUT) scheme starts to work:
in the limit T → 0 the superfluid 3He-A gradually acquires from nothing almost
all the symmetries which we know today in high-energy physics: (an analog of)
Lorentz invariance, local gauge invariance, elements of general covariance, etc. It
appears that such an enhancement of symmetry in the limit of low energy hap-
pens because 3He-A belongs to a special universality class of Fermi systems. For
condensed matter in this class, the chiral (left-handed and right-handed) fermions
and gauge bosons arise as fermionic quasiparticles and bosonic collective modes
together with the corresponding symmetries. Even the left-handedness and right-
handedness are the emergent low-energy properties of quasiparticles.

The quasiparticles and collective bosons perceive the homogeneous ground
state of condensed matter as an empty space – a vacuum – since they do not
scatter on atoms comprising this vacuum state: quasiparticles move in a quantum
liquid or in a crystal without friction just as particles move in empty space.
The inhomogeneous deformations of this analog of the quantum vacuum is seen
by the quasiparticles as the metric field of space in which they live. It is an
analog of the gravitational field. This conceptual similarity between condensed
matter and the quantum vacuum gives some hint on the origin of symmetries
and also allows us to simulate many phenomena in high-energy physics and
cosmology related to the quantum vacuum using quantum liquids, Bose–Einstein
condensates, superconductors and other materials.

We shall exploit here both levels of analogies: GUT and anti-GUT. Each of
the two levels has its own energy and temperature range in 3He. According to
Fig. 1.1, in 3He the GUT scheme works at a higher energy than the anti-GUT
one. However, it is possible that at very low temperatures, after the anti-GUT
scheme gives rise to new symmetries, these symmetries will be spontaneously
broken again according to the GUT scheme.

The GUT scheme shows an important property of the asymmetry of the quan-
tum vacuum arising due to the phenomenon of spontaneous symmetry breaking.
Just as the symmetry is often broken in condensed matter systems when the
temperature is reduced, it is believed that the Universe, when cooling down,
would have undergone a series of symmetry-breaking phase transitions. One of
the most important consequences of such symmetry breaking is the existence
of topological defects in both systems. Cosmic strings, monopoles, domain walls
and solitons, etc., have their counterparts in condensed matter: namely, quan-
tized vortices, hedgehogs, domain walls and solitons, etc., which we shall discuss
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in detail in Part III.
The topological defects formed at early-Universe phase transitions may in

turn have cosmological implications. Reliable observational input in cosmology
to test these ideas is scarce and the ability to perform controlled experiments,
of course, absent. However, such transitions exhibit many generic features which
are also found in symmetry-breaking transitions in condensed matter systems at
low temperatures and thus can be tested in that context (see Part VI).

However, mostly we shall be concerned with the anti-GUT phenomenon of
gradually emerging symmetries. On a microscopic level, the analogs of the quan-
tum vacuum – quantum condensed matter systems, such as 3He and 4He quan-
tum liquids, superconductors and magnets – consist of strongly correlated and/or
strongly interacting quantum elements (atoms, electrons, spins, etc.). Even in its
ground state, such a system is usually rather complicated: its many-body wave
function requires extensive analytic studies and numerical simulations. However,
it appears that such calculations are not necessary if one wishes to study low-
energy phenomena in these systems. When the energy scale is reduced, one can
no longer resolve the motion of isolated elements. The smaller the energy the
better is the system described in terms of its zero modes – the states whose en-
ergy is close to zero. All the particles of the Standard Model have energies which
are extremely small compared to the ‘Planck’ energy scale, that is why one may
guess that all of them originate from the fermionic or bosonic zero modes of the
quantum vacuum. If so, our goal must be to describe and classify the possible
zero modes of quantum vacua.

These zero modes are represented by three major components: (i) the bosonic
collective modes of the quantum vacuum; (ii) the dilute gas of the particle-
like excitations – quasiparticles – which play the role of elementary particles;
(iii) topological defects have their own bosonic and fermionic zero modes. The
dynamics of the zero modes is described within what we now call ‘the effective
theory’.

In superfluid 4He, for example, this effective theory incorporates the collec-
tive motion of the ground state – the superfluid quantum vacuum; the dynamics
of quasiparticles in the background of the moving vacuum – phonons, which form
the normal component of the liquid; and the dynamics of the topological defects
– quantized vortices interacting with the other two subsystems. It appears that
in the low-energy limit the dynamics of phonons is the same as the dynamics of
relativistic particles in the metric field gµν . This effective acoustic metric is dy-
namical and is determined by the superfluid motion of the vacuum of superfluid
4He. For quasiparticles, the essentially Galilean space and time of the world of
the laboratory are combined into an entangled spacetime continuum with prop-
erties determined by what they think of as gravity. In this sense, the two-fluid
hydrodynamics describing the interdependent dynamics of superfluid quantum
vacuum and quasiparticles represents the metric theory of gravity and its inter-
action with matter (Part I). This metric theory is a caricature of the Einstein
gravity, since the metric field does not obey the Einstein equations. But this car-
icature is very useful for investigating many problems of RQFT in curved space
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(Part VII), including the cosmological constant problem and the behavior of the
quantum matter field in the presence of the event horizon. For example, for the
horizon problem it is only important that the effective metric gµν exhibits the
event horizon for (quasi)particles, and it does not matter from which equations,
Einstein or Landau–Khalatnikov, such a metric has been obtained.

An effective theory in condensed matter does not depend on details of mi-
croscopic (atomic) structure of the substance. The type of effective theory is
determined by the symmetry and topology of zero modes of the quantum vacu-
ume, and the role of the underlying microscopic physics is only to choose among
different universality classes of quantum vacua on the basis of the minimum
energy consideration. Once the universality class is determined, the low-energy
properties of the condensed matter system are completely described by the ef-
fective theory, and the information on the underlying microscopic physics is lost.

In Part II we consider universality classes of the fermionic vacua. It is as-
sumed that the quantum vacuum of the Standard Model is also a fermionic
system, while the bosonic modes are the secondary quantities which are the col-
lective modes of this vacuum. The universality classes are determined by the
momentum space topology of fermion zero modes, in other words by the topo-
logical defects in momentum space – the points, lines or surfaces in p-space at
which the energy of quasiparticles becomes zero. There are two major topological
classes of vacua with gapless fermions (the rigorous topological classification of
fermionic vacua has been made by Horava (2005)). Zeros in the energy spectrum
form in 3-dimensional p-space either the Fermi surface or the Fermi points.
The vacua with a Fermi surface are more abundant in condensed matter; the
Fermi points exist in superfluid 3He-A, in the planar and axiplanar phases of
spin-triplet superfluids and in the Standard Model. The effective theory in the
vacua with Fermi points is remarkable. At low energy, the quasiparticles in the
vicinity of the Fermi point – the fermion zero modes – represent chiral fermions;
the collective bosonic modes represent gauge and gravitational fields acting on
the chiral quasiparticles. This emerges together with the ‘laws of physics’, such
as Lorentz invariance and gauge invariance, and together with such notions as
chirality, spin, isotopic spin, etc.

All this reproduces the main features of the Standard Model and general
relativity, and supports the anti-GUT viewpoint that the Standard Model of the
electroweak and strong interactions, and general relativity, are effective theories
describing the low-energy phenomena emerging from the fermion zero modes
of the quantum vacuum. The nature of this Planck medium – the quantum
vacuum – and its physical structure on a ‘microscopic’ trans-Planckian scale
remain unknown, but from topological properties of elementary particles of the
Standard Model one might suspect that the quantum vacuum belongs to the
same universality class as 3He-A. More exactly, to reproduce all the bosons and
fermions of the Standard Model, one needs several Fermi points in momentum
space, related by some discrete symmetries. In this respect the Standard Model
is closer to the so-called planar phase of spin-triplet p-wave superfluidity, which
will be also discussed.
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The conceptual similarity between the systems with Fermi points allows us
to use 3He-A as a laboratory for the simulation and investigation of those phe-
nomena related to the chiral quantum vacuum of the Standard Model, such as
axial (or chiral) anomalies, electroweak baryogenesis, electroweak genesis of pri-
mordial magnetic fields, helical instability of the vacuum, fermionic charge of the
bosonic fields and topological objects, quantization of physical parameters, etc.
(Part IV). As a rule these phenomena are determined by the combined topology:
namely, topology in the combined r- and p-spaces. The exotic terms in the action
describing these effects represent the product of the topological invariants in r-
and p-spaces.

The combined topology in the extended (r,p)-space is also responsible for the
fermion zero modes present within different topological defects (Part V). Because
of the similarity in topology, the world of quasiparticles in the vortex core or in
the core of the domain wall in condensed matter, has a similar emergent physics
as the brane world – the 3+1 world of particles and fields in the core of the
topological membranes (branes) in multi-dimensional spacetime – the modern
development of the Kaluza–Klein theory of extra dimensions.

We hope that condensed matter can show us possible routes from our present
low-energy corner of the effective theory to the ‘microscopic’ physics at Planck-
ian and trans-Planckian energies. The relativistic quantum field theory of the
Standard Model, which we have now, is incomplete due to ultraviolet diver-
gences at small length scales. The ultraviolet divergences in the quantum theory
of gravity are even more crucial, and after 70 years of research quantum gravity
is still far from realization in spite of numerous magnificent achievements (Rov-
elli 2000). This represents a strong indication that gravity, both classical and
quantum, and the Standard Model are not fundamental: both are effective field
theories which are not applicable at small length scales where the ‘microscopic’
physics of a vacuum becomes important, and, according to the anti-GUT sce-
nario, some or all of the known symmetries in nature are violated. The analogy
between the quantum vacuum and condensed matter could give an insight into
this trans-Planckian physics since it provides examples of the physically imposed
deviations from Lorentz and other invariances at higher energy. This is important
in many different areas of high-energy physics and cosmology, including possible
CPT violation and black holes, where the infinite red shift at the horizon opens
a route to trans-Planckian physics.

As we already mentioned, condensed matter teaches us (see e.g. Anderson
1984; Laughlin and Pines 2000) that the low-energy properties of different vacua
(magnets, superfluids, crystals, liquid crystals, superconductors, etc.) are robust,
i.e. they do not depend much on the details of microscopic (atomic) structure of
these substances. The principal role is played by the symmetry and topology of
condensed matter: they determine the soft (low-energy) hydrodynamic variables,
the effective Lagrangian describing the low-energy dynamics, topological defects
and quantization of physical parameters. The microscopic details provide us only
with the ‘fundamental constants’, which enter the effective phenomenological La-
grangian, such as the speed of ‘light’ (say, the speed of sound), superfluid density,



INTRODUCTION: GUT AND ANTI-GUT 7

modulus of elasticity, magnetic susceptibility, etc. Apart from these ‘fundamental
constants’, which can be rescaled, the systems behave similarly in the infrared
limit if they belong to the same universality and symmetry classes, irrespective
of their microscopic origin.

The detailed information on the system is lost in such an acoustic or hy-
drodynamic limit. From the properties of the low-energy collective modes of the
system – acoustic waves in the case of crystals – one cannot reconstruct the
atomic structure of the crystal since all the crystals have similar acoustic waves
described by the same equations of the same effective theory; in crystals it is the
classical theory of elasticity. The classical fields of collective modes can be quan-
tized to obtain quanta of acoustic waves – phonons. This quantum field remains
the effective field which is applicable only in the long-wavelength limit, and does
not give detailed information on the real quantum structure of the underlying
crystal (except for its symmetry class). In other words, one cannot construct the
full quantum theory of real crystals using the quantum theory of elasticity. Such
a theory would always contain divergences on an atomic scale, which cannot be
regularized in a unique way.

It is quite probable that in the same way the quantization of classical gravity,
which is one of the infrared collective modes of the quantum vacuum, will not
add much to our understanding of the ‘microscopic’ structure of the vacuum
(Hu 1996; Padmanabhan 1999; Laughlin and Pines 2000). Indeed, according to
this anti-GUT analogy, properties of our world, such as gravitation, gauge fields,
elementary chiral fermions, etc., all arise in the low-energy corner as low-energy
soft modes of the underlying ‘Planck condensed matter’. At high energy (on
the Planck scale) these modes merge with the continuum of all the high-energy
degrees of freedom of the ‘Planck condensed matter’ and thus can no longer be
separated from each other. Since gravity is not fundamental, but appears as an
effective field in the infrared limit, the only output of its quantization would
be the quanta of the low-energy gravitational waves – gravitons. The deeper
quantization of gravity makes no sense in this philosophy.

The main advantage of the condensed matter analogy is that in principle
we know the condensed matter structure at any relevant scale, including the
interatomic distance, which plays the part of one of the Planck length scales
in the hierarchy of scales. Thus condensed matter can show the limitation of
the effective theories: what quantities can be calculated within the effective field
theory using, say, a renormalization group approach, and what quantities depend
essentially on the details of trans-Planckian physics. For such purposes the real
strongly interacting systems such as 3He and 4He liquids are too complicated for
calculations. It is more instructive to choose the simplest microscopic models,
which in the low-energy corner leads to the vacuum of the proper universality
class. Such a choice of model does not change the ‘relativistic’ physics arising
at low energy, but the model allows all the route from sub-Planckian to trans-
Planckian physics to be visualized. We shall use the well known models of weakly
interacting Bose (Part I) and Fermi (Part II) gases, such as the BCS model with
the proper interaction providing in the low-energy limit the universality class
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with Fermi points.
Using these models, we can see what results for the vacuum energy when it

is calculated within the effective theory and in an exact microscopic theory. The
difference between the two approaches just reflects the huge discrepancy between
the estimation of the cosmological constant in RQFT and its observational limit
which is smaller by about 120 orders. The exact microscopic theory shows that
the equilibrium vacuum ‘is not gravitating’, which immediately follows from the
stability of the vacuum state of the weakly interacting quantum gas. Moreover,
the same stability condition applied to the quantum liquids shows that the energy
of their ground state is exactly zero irrespective of the microscopic structure of
the liquid. This implies that either the energy of our quantum vacuum is zero (in a
full equilibrium), or the vacuum energy is non-gravitating (in a full equilibrium).
This paradigm of the non-gravitating equilibrium vacuum, which is easily derived
in condensed matter when we know the microscopic ‘trans-Planckian’ physics,
can be considered as one of the postulates of the effective phenomenological
theory of general relativity. This principle cannot be derived within the effective
theory. It can follow only from the still unknown fundamental level.

On the other hand, the quantum liquid examples demonstrate that this prin-
ciple does not depend on the details of the fundamental physics. This is actually
our goal: to extract from the well-determined and complete microscopic many-
body systems the general principles which do not depend on details of the system.
Then we may hope that these principles will be applicable to such a microscopic
system as the relativistic quantum vacuum (such an attempt has been recently
made by Klinkhamer and Volovik (2008) who considered the quantum vacuum
as a Lorentz invariant self-sustained medium).

By investigating quantum liquids we can get a hint on what kind of con-
densed matter the ‘Planck matter’ is. The quantum Fermi liquids belonging to
the universality class of Fermi points nicely reproduce the main features of the
Standard Model. But the effective gravity still remains a caricature of the Ein-
stein theory, though it is a much better caricature than the effective gravity in
the Bose liquids. From the model it follows that to bring the effective gravity
closer to Einstein theory, i.e. to reproduce the Einstein–Hilbert action for the gµν

field, one must suppress all the effects of the broken symmetry: the ‘Planck mat-
ter’ must be in the non-superfluid disordered phase without Goldstone bosons,
but with Fermi points in momentum space.

The condensed matter analogy is in some respect similar to string theory,
where the gauge invariance and general covariance are not imposed, and fermions,
gravitons and gauge quanta are the emergent low-energy properties of an under-
lying physical object – the fundamental string. At the moment string theory is
viewed as the most successful attempt to quantize gravity so far. However, as dis-
tinct from string theory which requires higher dimensions, the ‘relativistic’ Weyl
fermions and gauge bosons arise in the underlying non-relativistic condensed
matter in an ordinary 3+1 spacetime, provided that the condensed matter be-
longs to the proper universality class.



Part I

Quantum Bose liquid





2

GRAVITY

Since we are interested in the analog of effective gravity arising in the low-energy
corner of the quantum Bose liquids, let us first recall some information concerning
the original Einstein theory of the gravitational field.

2.1 The Einstein theory of gravity

The Einstein theory of gravitation consists of two main elements:
(1) Gravity is related to a curvature of spacetime in which particles move

along geodesic curves in the absence of non-gravitational forces. The geometry
of spacetime is described by the metric gµν which is the dynamical field of gravity.
The action SM for matter in the presence of a gravitational field is obtained from
the special relativity action for the matter fields by replacing everywhere the flat
Minkowski metric by the dynamical metric gµν and the partial derivative by
the g-covariant derivative. This follows from the principle that the equations
of motion do not depend on the choice of the coordinate system (the so-called
general covariance). This also means that motion in the non-inertial frame can
be described in the same manner as motion in some gravitational field – this
is the equivalence principle. Another consequence of the equivalence principle is
that spacetime geometry is the same for all particles: gravity is universal. Since
the action SM for matter fields depends on gµν , it simultaneously describes the
coupling between gravity and the matter fields (all other fields except gravity).

(2) The dynamics of the gravitational field itself is determined by adding
to SM the action functional SG for gµν , describing the propagation and self-
interaction of the gravitational field:

S = SG + SM . (2.1)

The general covariance requires that SG is a functional of the curvature. In the
original Einstein theory only the first-order curvature term is retained:

SG = − 1

16πG

∫

d4x
√−gR , (2.2)

whereG is the Newton gravitational constant and R is the Ricci scalar curvature.
In the following chapters we shall exploit the analogy with the effective

Lorentz invariance and effective gravity arising in quantum liquids. In these
systems the ‘speed of light’ c – the maximum attainable speed of the low-energy
quasiparticles – is not a fundamental constant, but a material parameter. In or-
der to describe gravity in a manner also applicable to quantum liquids, the action
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should not contain explicitly the material parameters. That is why eqn (2.2) is
written in such a way that it does not contain the speed of light c: it is absorbed
by the Newton constant and by the metric. It is assumed that in flat spacetime,
the Minkowski metric has the form gµν = diag(−1, c−2, c−2, c−2). This form can
be extended for anisotropic superfluids, where the ‘speed of light’ depends on
the direction of propagation, and the metric of the effective ‘Minkowski’ space-
time is gµν = diag(−1, c−2

x , c−2
y , c−2

z ). The dimension of the Newton constant
is now [G]−1 = [E]2/[h̄], where [E] means the dimension of energy. Further,
if the Planck constant h̄ is not written explicitly, we assume that h̄ = 1, and
correspondingly [G]−1 = [E]2.

The Einstein–Hilbert action is thus

SEinstein = − 1

16πG

∫

d4x
√−gR + SM . (2.3)

Variation of this action over the metric field gµν gives the Einstein equations:

δSEinstein

δgµν
=

1

2

√−g
[

− 1

8πG

(

Rµν − 1

2
Rgµν

)

+ TM
µν

]

= 0 , (2.4)

where TM
µν is the energy–momentum tensor of the matter fields.

2.1.1 Covariant conservation law

Using Bianchi identities for the curvature tensor one obtains from eqn (2.4) the
‘covariant’ conservation law for matter:

T µM
ν;µ = 0 or ∂µ

(

T µM
ν

√−g
)

=
1

2

√−gTαβM∂νgαβ . (2.5)

Equation (2.5) is the check for the self-consistency of the Einstein equations,
since the ‘covariant’ conservation law for matter can be obtained directly from
the field equations for matter without invoking the dynamics of the gravitational
field. The only input is that the field equations for matter obey the general
covariance. We shall see later that in the effective gravity arising in the low-
energy corner of quantum liquids, eqn (2.5) does hold for the ‘matter fields’
(i.e. for quasiparticles), though the effective ‘gravity field’ gµν does not obey the
Einstein equations.

2.2 Vacuum energy and cosmological term

2.2.1 Vacuum energy

In particle physics, field quantization allows a zero-point energy, the constant
vacuum energy when all fields are in their ground states. In the absence of
gravity the constant energy can be ignored, since only the difference between
the energies of the field in the excited and ground states is meaningful. If the
vacuum is distorted, as for example in the Casimir effect (Casimir 1948), one
can measure the difference in energies between distorted and original vacua. But
the absolute value of the vacuum energy is unmeasurable.
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On the contrary, in the Einstein theory of gravity the gravitational field reacts
to the total value of the energy–momentum tensor of the matter fields, and thus
the absolute value of the vacuum energy becomes meaningful. If the energy–
momentum tensor of the vacuum is non-zero it must be added to the Einstein
equations. The corresponding contribution to the action is given by the so-called
cosmological term, which was introduced by Einstein (1917):

SΛ = −ρΛ

∫

d4x
√−g , TΛ

µν =
2√−g

δSΛ

δgµν
= ρΛgµν . (2.6)

The energy–momentum tensor of the vacuum shows that the quantity ρΛ
√−g is

the vacuum energy density, while the partial pressure of the vacuum is −ρΛ
√−g.

Thus the equation of state of the vacuum is

PΛ = −ρΛ . (2.7)

The cosmological term modifies the Einstein equations (2.4) adding the energy–
momentum tensor of the vacuum to the right-hand side:

1

8πG

(

Rµν − 1

2
Rgµν

)

= TM
µν + TΛ

µν . (2.8)

At the moment there is no law of nature which forbids the cosmological con-
stant, and what is not forbidden is compulsory. Moreover, the idea that the vac-
uum is full of various fluctuating fields (such as electromagnetic and Dirac fields)
and condensates (such as Higgs fields) is widely accepted. Using the Standard
Model or its extension one can easily estimate the vacuum energy of fluctuating
fields: the positive contribution comes from the zero-point energy (1/2)E(p) of
quantum fluctuations of bosonic fields and the negative one from the occupied
negative energy levels in the Dirac sea. Since the largest contribution comes from
the fluctuations with ultrarelativistic momenta p ≫ mc, where the masses m of
particles can be neglected, the energy spectrum of particles can be considered as
massless, E = cp. Then the energy density of the vacuum is simply

ρΛ

√−g =
1

V

(

νbosons

∑

p

1

2
cp − νfermions

∑

p

cp

)

. (2.9)

Here V is the volume of the system; νbosons is the number of bosonic species and
νfermions is the number of fermionic species in the vacuum. The vacuum energy
is divergent and the natural ultraviolet cut-off is provided by the gravity itself.
The cut-off Planck energy is determined by the Newton constant:

EPlanck =

(

h̄

G

)1/2

. (2.10)

It is on the order of 1019 GeV. If there is no supersymmetry – the symmetry
between the fermions and bosons – the Planck energy-scale cut-off provides the
following estimate for the vacuum energy density:
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ρΛ

√−g ∼ ± 1

c3h̄3E
4
Planck = ± 1

h̄3

√−g E4
Planck . (2.11)

The sign of the vacuum energy is determined by the fermionic and bosonic con-
tent of the quantum field theory.

The vacuum energy was calculated for flat spacetime with the Minkowski
metric in the form gµν = diag(−1, c−2, c−2, c−2), so that

√−g = c−3. The right-
hand side of eqn (2.11) does not depend on the ‘material parameter’ c, and thus
(as we see later) is also applicable to quantum liquids.

2.2.2 Cosmological constant problem

The ‘cosmological constant problem’ refers to a huge disparity between the
naively expected value in eqn (2.11) and the range of actual values. The ex-
perimental observations show that the energy density in our Universe is close to
the critical density ρc, corresponding to a flat Universe. The energy content is
composed of baryonic matter (very few percent), the so-called dark matter which
does not emit or absorb light (about 30%) and vacuum energy (about 70%). Such
a distribution of energy leads to an accelerated expansion of the Universe which
is revealed by recent supernovae Ia observations (Perlmutter et al. 1999; Riess
et al. 2000). The observed value of the vacuum energy ρΛ ∼ 0.7ρc is thus on
the order of 10−123E4

Planck in contradiction with the theoretical estimate in eqn
(2.11). This is probably the largest discrepancy between theory and experiment
in physics.

This huge discrepancy can be cured by supersymmetry, the symmetry be-
tween fermions and bosons. If there is a supersymmetry, the positive contribution
of bosons and negative contribution of fermions exactly cancel each other. How-
ever, it is well known that there is no supersymmetry in our low-energy world.
This means that there must by an energy scale ESuSy below which the super-
symmetry is violated and thus there is no balance between bosons and fermions
in the vacuum energy . This scale is providing the cut-off in eqn (2.9), and the
theoretical estimate of the cosmological constant becomes ρΛ(theor) ∼ E4

SuSy.
Though ESuSy can be much smaller than the Planck scale, the many orders of
magnitude disagreement between theory and reality still persists, and we must
accept the experimental fact that the vacuum energy in eqn (2.9) is not gravi-
tating. This is the most severe problem in the marriage of gravity and quantum
theory (Weinberg 1989), because it is in apparent contradiction with the general
principle of equivalence, according to which the inertial and gravitating masses
coincide.

One possible way to solve this contradiction is to accept that the theoreti-
cal criteria for setting the absolute zero point of energy are unclear within the
effective theory, i.e. the vacuum energy is by no means the energy of vacuum
fluctuations of effective fields in eqn (2.9). Its estimation requires physics be-
yond the Planck scale and thus beyond general relativity. To clarify this issue
we can consider such quantum systems where the elements of the gravitation
are at least partially reproduced, but where the structure of the quantum vac-
uum beyond the ‘Planck scale’ is known. Quantum liquids are the right systems,
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and later we shall show how ‘trans-Planckian physics’ solves the cosmological
constant problems at least in quantum liquids.

2.2.3 Vacuum-induced gravity

Why does the Planck energy in eqn (2.10) serve as the natural cut-off in quantum
field theory? This is based on the important observation made by Sakharov
(1967a) that the second element of the Einstein theory (the action for the gravity
field) can follow from the first element (the action of the matter field in the
presence of gravity). Sakharov showed that vacuum fluctuations of the matter
fields in the presence of the classical background metric field gµν make the metric
field dynamical inducing the curvature term in the action for gµν .

According to Sakharov’s calculations, the magnitude of the induced Newton
constant is determined by the value of the ultraviolet cut-off: G ∼ h̄/E2

cutoff .
Actually G−1 ∼ NE2

cutoff/h̄, where N is the number of (fermionic) matter fields
contributing to the gravitational constant. Thus in Sakharov’s theory of gravity
induced by quantum fluctuations, the causal connection between gravity and the
cut-off is reversed: the physical high-energy cut-off determines the gravitational
constant. Gravity is so small compared to the other forces just because the cut-
off energy is so big. Electromagnetic, weak and strong forces also depend on the
ultraviolet cut-off Ecutoff . But the corresponding coupling ‘constants’ have only a
mild logarithmic dependence on Ecutoff , as compared to the 1/E2

cutoff dependence
of G.

2.2.4 Effective gravity in quantum liquids

Sakharov’s theory does not explain the first element of the Einstein theory: it
shows how the Einstein–Hilbert action for the metric field gµν arises from the
vacuum fluctuations, but it does not indicate how the metric field itself appears.
The latter can be given only by the fundamental theory of the quantum vacuum,
such as string theory where gravity appears as a low-energy mode. Quantum liq-
uids also provide examples of how the metric field naturally emerges as the
low-energy collective mode of the quantum vacuum. The action for this mode
is provided by the dynamics of quantum vacuum in accordance with Sakharov’s
theory, and even the curvature term can be reproduced in some condensed mat-
ter systems in some limiting cases. From this point of view gravity is not the
fundamental force, but is determined by the properties of the quantum vacuum:
gravity is one of the collective modes of the quantum vacuum.

The metric field naturally arises in many condensed matter systems. An
example is the motion of acoustic phonons in a distorted crystal lattice, or in the
background flow field of superfluid condensate. This motion is described by the
effective acoustic metric (see below in Chapter 4). For this ‘relativistic matter
field’ (acoustic phonons with dispersion relation E = cp, where c is the speed of
sound, simulate relativistic particles) the analog of the equivalence principle is
fulfilled. As a result the covariant conservation law in eqn (2.5) does hold for the
acoustic mode, if gµν is replaced by the acoustic metric (Sec. 6.1.2).
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The second element of the Einstein gravity is not easily reproduced in con-
densed matter. In general, the dynamics of the effective metric gµν does not
obey the equivalence principle. In existing quantum liquids, the action for gµν is
induced not only by quantum fluctuations of the ‘relativistic matter fields’, but
also by the high-energy degrees of freedom of the quantum vacuum, which are
‘non-relativistic’. The latter are typically dominating, as a result the effective
action for gµν is non-covariant. Of course, one can find some very special cases
where the Einstein action for the effective metric is dominating, but this is not
the rule in condensed matter.

Nevertheless, despite the incomplete analogy with the Einstein theory, the ef-
fective gravity in quantum liquids can be useful for investigating many problems
that are not very sensitive to whether or not the gravitational field satisfies the
Einstein equations. In particular, these are the problems related to the behav-
ior of the quantum vacuum in the presence of a non-trivial metric field (event
horizon, ergoregion, spinning string, etc.); and also the cosmological constant
problem.



3

MICROSCOPIC PHYSICS OF QUANTUM LIQUIDS

There are two ways to study quantum liquids:
(1) The fully microscopic treatment. This can be realized completely either by

numerical simulations of the many-body problem, or for some special ranges of
the material parameters analytically, for example, in the limit of weak interaction
between the particles.

(2) A phenomenological approach in terms of effective theories. The hier-
archy of the effective theories corresponds to the low-frequency, long-wavelength
dynamics of quantum liquids in different ranges of frequency. Examples of ef-
fective theories: Landau theory of the Fermi liquid; Landau–Khalatnikov two-
fluid hydrodynamics of superfluid 4He; the theory of elasticity in solids; the
Landau–Lifshitz theory of ferro- and antiferromagnetism; the London theory of
superconductivity; the Leggett theory of spin dynamics in superfluid phases of
3He; effective quantum electrodynamics arising in superfluid 3He-A; etc. The last
example indicates that the existing Standard Model of electroweak and strong
interactions, and the Einstein gravity too, are the phenomenological effective
theories of high-energy physics which describe its low-energy edge, while the
microscopic theory of the quantum vacuum is absent.

3.1 Theory of Everything in quantum liquids

3.1.1 Microscopic Hamiltonian

The microscopic Theory of Everything for quantum liquids and solids – ‘a set of
equations capable of describing all phenomena that have been observed’ (Laugh-
lin and Pines 2000) in these quantum systems – is extremely simple. On the
‘fundamental’ level appropriate for quantum liquids and solids, i.e. for all practi-
cal purposes, the 4He or 3He atoms of these quantum systems can be considered
as structureless: the 4He atoms are the structureless bosons and the 3He atoms
are the structureless fermions with spin 1/2. The simplest Theory of Everything
for a collection of a macroscopic number N of interacting 4He or 3He atoms is
contained in the non-relativistic many-body Hamiltonian

H = − h̄2

2m

N
∑

i=1

∂2

∂r2
i

+

N
∑

i=1

N
∑

j=i+1

U(ri − rj) , (3.1)

acting on the many-body wave function Ψ(r1, r2, . . . , ri, . . . , rj , . . .). Here m is
the bare mass of the atom; U(ri − rj) is the pair interaction of the bare atoms i
and j.
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The many-body physics can be described in the second quantized form, where
the Schrödinger many-body Hamiltonian (3.1) becomes the Hamiltonian of the
quantum field theory (Abrikosov et al. 1965):

H−µN =

∫

dxψ†(x)

[

−∇2

2m
− µ

]

ψ(x)+
1

2

∫

dxdyU(x−y)ψ†(x)ψ†(y)ψ(y)ψ(x).

(3.2)
In 4He, the bosonic quantum fields ψ†(x) and ψ(x) are the creation and an-
nihilation operators of the 4He atoms. In 3He, ψ†(x) and ψ(x) are the corre-
sponding fermionic quantum fields and the spin indices must be added. Here
N =

∫

dx ψ†(x)ψ(x) is the operator of the particle number (number of atoms);
µ is the chemical potential – the Lagrange multiplier introduced to take into
account the conservation of the number of atoms. Note that the introduction of
creation and annihilation operators for helium atoms is the formal procedure:
it does not imply that we really can create atoms from the vacuum: this is cer-
tainly highly prohibited since the relevant energies in the liquid are of order 10
K, which is many orders of magnitude smaller than the GeV energy required to
create the atom-antiatom pair from the vacuum.

3.1.2 Particles and quasiparticles

In quantum liquids, the analog of the quantum vacuum – the ground state of the
quantum liquid – has a well-defined number of atoms. Existence of bare particles
(atoms) comprising the quantum vacuum of quantum liquids represents the main
difference from the relativistic quantum field theory (RQFT). In RQFT, particles
and antiparticles which can be created from the quantum vacuum are similar to
quasiparticles in quantum liquids. What is the analog of the bare particles –
‘atoms’ of the quantum vacuum of RQFT – is not clear today. At the moment
we simply do not know the structure of the vacuum, and whether it is possible
to describe it in terms of some discrete elements – bare particles – whose number
is conserved.

In the limit when the number N of bare particles in the vacuum is large,
one might expect that the difference between two quantum field theories, with
and without conservation of particle number, disappears completely. However,
this is not so. We shall see that the mere fact that there is a conservation law
for the number of ‘atoms’ of the vacuum leads to a definite conclusion on the
value of the relevant vacuum energy : it is exactly zero in equilibrium (see also
the recent paper by Klinkhamer and Volovik (2008)). Also, as we shall see below
in Chapter 29, the discreteness of the quantum vacuum can be revealed in the
mesoscopic Casimir effect.

3.1.3 Microscopic and effective symmetries

The Theory of Everything (3.2) has a very restricted number of symmetries:
(i) The Hamiltonian is invariant under translations and SO(3) rotations in 3D
space. (ii) There is a global U(1)N group originating from the conservation of the
number N of atoms: H is invariant under global gauge rotation ψ(x) → eiαψ(x)
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with constant α. The particle number operator serves as the generator of the
gauge rotations: e−iαNψeiαN = ψeiα. (iii) In 3He, the spin–orbit coupling is rel-
atively weak. If it is ignored, then H is also invariant under separate rotations of
spins, SO(3)S (later we shall see that the symmetry violating spin–orbit interac-
tion plays an important role in the physics of fermionic and bosonic zero modes
in all of the superfluid phases of 3He). At low temperature the phase transition
to the superfluid or to the quantum crystal state occurs where some of these
symmetries are broken spontaneously.

In the 3He-A state all of the symmetries of the Hamiltonian, except for the
translational one, are broken. However, when the temperature and energy de-
crease further the symmetry becomes gradually enhanced in agreement with the
anti-Grand-Unification scenario (Froggatt and Nielsen 1991; Chadha and Nielsen
1983). At low energy the quantum liquid or solid is well described in terms of a
dilute system of quasiparticles. These are bosons (phonons) in 4He and fermions
and bosons in 3He, which move in the background of the effective gauge and/or
gravity fields simulated by the dynamics of the collective modes. In particular,
as we shall see below, phonons propagating in the inhomogeneous liquid are de-
scribed by the effective Lagrangian for the scalar field α in the presence of the
effective gravitational field:

Leffective =
1

2

√−ggµν∂µα∂να . (3.3)

Here gµν is the effective acoustic metric provided by the inhomogeneity of the
liquid and by its flow (Unruh 1981, 1995; Stone 2000b and the review by Barcelo
et al 2005).

These quasiparticles serve as the elementary particles of the low-energy effec-
tive quantum field theory. They represent the analog of matter. The type of the
effective quantum field theory – the theory of interacting fermionic and bosonic
quantum fields – depends on the universality class emerging in the low-energy
limit. In normal Fermi liquids, the effective quantum field theory describing dy-
namics of fermion zero modes in the vicinity of the Fermi suface which interact
with the collective bosonic fields is the Landau theory of Fermi liquid. In super-
fluid 3He-A, which belongs to different universality class, the effective quantum
field theory contains chiral ‘relativistic’ fermions, while the collective bosonic
modes interact with these ‘elementary particles’ as gauge fields and gravity. All
these fields emerge together with the Lorentz and gauge invariances and with
elements of the general covariance from the fermionic Theory of Everything in
eqn (3.2). The vacuum of the Standard Model belong to the same universality
class, and the RQFT of the Standard Model is the corresponding effective theory.

The emergent phenomena do not depend much on the details of the Theory
of Everything (Laughlin and Pines 2000) – in our case on the details of the pair
potential U(x−y). Of course, the latter determines the universality class in which
the system finds itself at low energy. But once the universality class is established,
the physics remains robust to deformations of the pair potential. The details of
U(x − y) influence only the ‘fundamental’ parameters of the effective theory
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(‘speed of light’, ‘Planck’ energy cut-off, etc.) but not the general structure of the
theory. Within the effective theory the ‘fundamental’ parameters are considered
as phenomenological.

3.1.4 Fundamental constants of Theory of Everything

The original number of fundamental parameters of the microscopic Theory of
Everything is big: these are all the relevant Fourier components of the pair po-
tential U(r = |x− y|). However, one can properly approximate the shape of the

potential. Typically the Lennard-Jones potential U(r) = ǫ0

(

(r0/r)
12 − (r0/r)

6
)

is used, which simulates the hard-core repulsion of two atoms at small distances
and their van der Waals attraction at large distances. This U(r) contains only
two parameters, the characteristic depth ǫ0 of the potential well and the length
r0 which characterizes both the hard core of the atom and the dimension of the
potential well.

Thus the microscopic Theory of Everything in a quantum liquid can be ex-
pressed in terms of four parameters: h̄, ǫ0, r0 and the mass of the atom m. These
‘fundamental constants’ of the Theory of Everything determine the ‘fundamen-
tal constants’ of the descending effective theory at lower energy. On the other
hand, we know that at least two of them, ǫ0 and r0, can be derived from the
more fundamental Theory of Everything – atomic physics – whose ‘fundamental
constants’ are h̄, electric charge e and the mass of the electron me. In turn, e
and me are determined by the higher-energy Theory of Everything – the Stan-
dard Model etc. Such a hierarchy of ‘fundamental constants’ indicates that the
ultimate set of fundamental constants probably does not exist at all.

The Theory of Everything for liquid 3He or 4He does not contain a small
parameter: the dimensionless quantity, which can be constructed from the four
constants r0

√
mǫ0/h̄, appears to be of order unity for 3He and 4He atoms. As

a result the quantum liquids 3He and 4He are strongly correlated and strongly
interacting systems. The distance between atoms in equilibrium liquids is deter-
mined by the competition of the attraction and the repulsing zero-point oscil-
lations of atoms, and is thus also of order r0. Zero-point oscillations of atoms
prevent solidification: in equilibrium both systems are liquids. Solidification oc-
curs when rather mild external pressure is applied.

Since there is no small parameter, it is a rather difficult task to derive the
effective theory from first principles, though it is possible if one has enough com-
puter time and memory. That is why it is instructive to consider the microscopic
theory for some special model potentials U(r) which contain a small parameter,
but leads to the same universality class of effective theories in the low-energy
limit. This allows us to solve the problem completely or perturbatively. In the
case of the Bose–liquids the proper model is the Bogoliubov model (1947) of
weakly interacting Bose gas; for the superfluid phases of 3He it is the Bardeen–
Cooper–Schrieffer (BCS) model.

Such models are very useful, since they simultaneously cover the low-energy
edge of the effective theory and the Theory of Everything, i.e. high-energy ‘trans-
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Planckian’ physics. In particular, this allows us to check the validity of different
regularization schemes elaborated within the effective theory.

3.2 Weakly interacting Bose gas

3.2.1 Model Hamiltonian

In the Bogoliubov theory of the weakly interacting Bose gas the pair potential in
eqn (3.2) is weak. As a result, in the vacuum state most particles are in the Bose–
Einstein condensate, i.e. in the state with momentum p = 0. The vacuum with
Bose condensate is characterized by the scalar order paramater – the non-zero
vacuum expectation value (vev) of the particle annihilation operator at p = 0:

〈ap=0〉 =
√

N0e
iΦ ,

〈

a†p=0

〉

=
√

N0e
−iΦ. (3.4)

Here N0 < N is the particle number in the Bose condensate, and Φ is the phase
of the condensate. The vacuum state is not invariant under U(1)N global gauge
rotations, and thus the vacuum states are degenerate: vacua with different Φ are
distinguishable but have the same energy. Further we choose a particular vacuum
state with Φ = 0. Since the number of particles in the condensate is large, one
can treat operators ap=0 and a†p=0 as classical fields, merely replacing them by
their vev in the Hamiltonian.

If there is no interaction between the particles (an ideal Bose gas), the vac-
uum is completely represented by the Bose condensate particles, N0 = N . The
interaction pushes some fraction of particles from the p = 0 state. If the interac-
tion is small, the fraction of the non-condensate particles in the vacuum is also
small, and they have small momenta p. As a result, only the zero Fourier compo-
nent of the pair potential is relevant, and the potential can be approximated by
a δ-function, U(r) = Uδ(r). The Theory of Everything in eqn (3.2) then acquires
the following form:

H− µN = −µN0 +
N2

0U

2V
(3.5)

+
∑

p 6=0

(

p2

2m
− µ

)

a†pap (3.6)

+
N0U

2V

∑

p 6=0

(

2a†pap + 2a†−pa−p + apa−p + a†pa
†
−p

)

. (3.7)

We ignore quantum fluctuations of the operator a0 considering it as a c-number:
N0 = a†0a0 = a0a

†
0 = a†0a

†
0 = a0a0. Note that the last two terms in eqn (3.7)

do not conserve particle number: this is the manifestation of the broken U(1)N

symmetry in the vacuum.
Minimization of the main part of the energy in eqn (3.5) over N0 gives

UN0/V = µ and one obtains

H− µN = − µ2

2U
V +

∑

p 6=0

Hp , (3.8)
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Hp =
1

2

(

p2

2m
+ µ

)

(

a†pap + a†−pa−p

)

+
µ

2

(

apa−p + a†pa
†
−p

)

. (3.9)

3.2.2 Pseudorotation – Bogoliubov transformation

At each p the Hamiltonian Hp can be diagonalized using the following consid-
eration. Three operators

L3 =
1

2
(a†pap + a†−pa−p +1) , L1 + iL2 = a†pa

†
−p , L1 − iL2 = apa−p (3.10)

form the group of pseudorotations, SU(1, 1) (the group which conserves the form
x2

1 + x2
2 − x2

3), with the commutation relations:

[L3,L1] = iL2 , [L2,L3] = iL1 , [L1,L2] = −iL3 . (3.11)

The Hamiltonian in eqn (3.9) can be written in terms of these operators in the
following general form:

Hp = gi(p)Li + g0(p) . (3.12)

In more complicated cases, when the spin or other internal degrees of freedom are
important, the corresponding Hamiltonian Hp is expressed in terms of generators
of a higher symmetry group. For example, the SO(5) group naturally arises for
triplet Cooper pairing (see e.g. Murakami et al. (1999)).

In the particular case under discussion and for non-zero phase Φ of the con-
densate, one has

g1 = µ cos(2Φ) , g2 = µ sin(2Φ) , g3 =
p2

2m
+ µ , g0 = −1

2

(

p2

2m
+ µ

)

. (3.13)

The diagonalization of this Hamiltonian is achieved first by phase rotation by
angle 2Φ around axis x3 to obtain g1 = µ and g2 = 0, and then by the Lorentz
transformation – pseudorotation around axis x2:

L3 = L̃3chχ+ L̃1shχ , L1 = L̃1chχ+ L̃3shχ , thχ =
µ

p2

2m + µ
. (3.14)

This corresponds to Bogoliubov transformation and gives the diagonal Hamilto-
nian as a set of uncoupled harmonic oscillators:

Hp = L̃3

√

(

p2

2m
+ µ

)2

− µ2 − 1

2

(

p2

2m
+ µ

)

(3.15)

=
1

2
E(p)

(

ã†pãp + ã†−pã−p

)

+
1

2

(

E(p) −
(

p2

2m
+ µ

))

, (3.16)

E(p) =

√

(

p2

2m
+ µ

)2

− µ2 =

√

p2c2 +
p4

4m2
, c2 =

µ

m
. (3.17)

Here ãp and E(p) are the annihilation operator of quasiparticles and the quasi-
particle energy spectrum respectively.

The above procedure makes sense if the interaction between the original
atoms is repulsive, i.e. U > 0 and thus µ > 0, otherwise c2 < 0 and the gas will
collapse to form a condensed state such as a liquid, or explode.
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3.2.3 Low-energy relativistic quasiparticles

The total Hamiltonian now represents the ground state – the vacuum determined
as ãp |vac 〉 = 0 – and the system of quasiparticles above the ground state

H− µN = 〈H − µN〉vac +
∑

p

E(p)ã†pãp . (3.18)

The Hamiltonian (3.18) has important properties. First, it conserves the num-
ber of quasiparticles (this conservation law is, however, approximate: the higher-
order terms do not conserve quasiparticle number).

Second, though the vacuum state contains many particles (atoms), a quasi-
particle cannot be scattered on them. Quasiparticles do not feel the homogeneous
vacuum, it is an empty space for them; in other words, it is impossible to scat-
ter a quasiparticle on quantum fluctuations. A quasiparticle can be scattered by
inhomogeneity of the vacuum, such as a flow field of the vacuum, or by other
quasiparticles. However, the lower the energy or the temperature T of the sys-
tem, the more dilute is the gas of thermal quasiparticles and thus the weaker is
the average interaction between them.

This description in terms of the vacuum state and dilute system of quasipar-
ticles is generic for quantum liquids and is valid even if the interaction of the
initial bare particles is strong. The phenomenological effective theory in terms
of vacuum state and quasiparticles was developed by Landau for both Bose and
Fermi liquids. Quasiparticles (not the bare particles) play the role of elementary
particles in such effective quantum field theories.

In a weakly interacting Bose gas in eqn (3.17), the spectrum of quasiparticles
at low energy (i.e. at p≪ mc) becomes that of the massless relativistic particle,
E = cp. The maximum attainable speed here coincides with the speed of sound
c2 = N(dµ/dN)/m. This can be obtained from the leading term in energy: one
has N = −d(E − µN)/dµ = µV/U and c2 = N(dµ/dN)/m = µ/m. These
quasiparticles are thus phonons, quanta of sound waves.

The same quasiparticle spectrum occurs in the real superfluid liquid 4He,
where the interaction between the bare particles is strong and also in the very dif-
ferent spin system which experiences the Bose condensation of magnons (Volovik
2008). This shows that the low-energy properties of the system do not depend
much on the microscopic (trans-Planckian) physics. The latter determines only
the ‘fundamental constant’ of the effective theory – the speed of sound c. One can
say that weakly interacting Bose gas and strongly interacting superfluid liquid
4He belong to the same universality class, and thus have the same low-energy
properties. One cannot distinguish between the two systems if one investigates
only the low-energy effects well below the corresponding ‘Planck energy scale’,
since they are described by the same effective theory.

3.2.4 Vacuum energy of weakly interacting Bose gas

In systems with conservation of the particle number two kinds of vacuum energy
can be determined: the vacuum energy 〈H − µN〉vac – the thermodynamic po-
tential expressed in terms of the chemical potential µ; and the vacuum energy
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〈H〉vac – the thermodynamic potential expressed in terms of particle number N .
For the weakly interacting Bose gas these vacuum energies come from eqns (3.8),
(3.15) and (3.16):

〈H − µN〉vac = − µ2

2U
V +

1

2

∑

p

(

E(p) − p2

2m
−mc2 +

m3c4

p2

)

, (3.19)

and

〈H〉vac = Evac(N) =
1

2
Nmc2 +

1

2

∑

p

(

E(p) − p2

2m
−mc2 +

m3c4

p2

)

. (3.20)

The last term in both equations m3c4/p2 is added to take into account the
perturbative correction to the matrix element U ; as a result the sum becomes
finite.

Let us compare these equations to the naive estimation of the vacuum energy
(2.9) in RQFT. First of all, the effective theory is unable to resolve between
two kinds of vacuum energy . Second, none of these two vacuum energies is
determined by the zero-point motion of the ‘relativistic’ phonon field. Of course,
eqn (3.19) and eqn (3.20) contain the term 1

2

∑

pE(p), which at low energy is
1
2

∑

p cp, and this can be considered as zero-point energy of relativistic field. But
it represents only a part of the vacuum energy , and its separate treatment is
meaningless.

This divergent ‘zero-point energy’ is balanced by three counterterms in eqn
(3.20) coming from the microscopic physics, that is why they explicitly contain
the microscopic parameter – the mass m of the atom. These counterterms cannot
be properly constructed within the effective theory, which is not aware of the
existence of the microscopic parameter. Actually the theory of weakly interacting
Bose gas can be considered as one of the regularization schemes, which naturally
arise in the microscopic physics. After such ‘regularization’, the contribution of
the ‘zero-point energy’ in eqn (3.20) becomes finite

1

2

∑

p reg

E(p) =
1

2

∑

p

E(p) − 1

2

∑

p

(

p2

2m
+mc2 − m3c4

p2

)

=
8

15π2
Nmc2

m3c3

nh̄3 ,

(3.21)
where n = N/V is the particle density in the vacuum. Thus the total vacuum
energy in terms of N is

Evac(N) ≡
∫

d3rǫ(n) , (3.22)

ǫ(n) =
1

2
mc2

(

n+
16

15π2

m3c3

h̄3

)

=
1

2
Un2 +

8

15π2h̄3m
3/2U5/2n5/2 . (3.23)

Here, we introduce the vacuum energy density ǫ(n) as a function of particle
density n (note that the ‘speed of light’ c(n) also depends on n). This energy
was first calculated by Lee and Yang (1957).
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In this model, the ‘zero-point energy’, even after ‘regularization’ (the second
terms in eqn (3.23)), is much smaller than the leading contribution to the vacuum
energy, which comes from the interaction (the first term in eqn (3.23)).

3.2.5 Fundamental constants and Planck scales

In Sec. 3.1.4 we found that the reasonable Theory of Everything for liquid 4He is
described by four ‘fundamental’ constants. The Theory of Everything for weakly
interacting Bose gas also contains four ‘fundamental’ constants. They can be cho-
sen as h̄, m, c and n. In this theory there is a small parameter, which regulates
the perturbation theory in the above procedure of derivation of the low-energy
properties of the system. This is mca0/h̄ ≪ 1, where a0 is the interatomic dis-
tance related to the particle density n: a0 ∼ n−1/3.

In this choice of units, however, the ‘speed of light’ c is actually computed
in terms of more fundamental units, h̄, m, U and n, which characterize the
microscopic physics: c =

√

Un/m. That is why according to the Weinberg (1983)
criterion it is not fundamental (see also the discussion by Duff et al. (2002) and
Okun (2002) and the review paper on fundamental constants by Uzan (2003)).
However, the ‘speed of light’ c becomes the fundamental constant of the effective
theory arising in the low-energy corner. A small speed of sound reflects the
smallness of the pair interaction U . In the microscopic ‘fundamental’ units the
small parameter is a0

√

mU/a3
0/h̄≪ 1.

Even among these microscopic ‘fundamental’ units, some constants are more
‘fundamental’ than others. For instance, in the set h̄, m, U and n, the most
fundamental is h̄, since quantum mechanics is fundamental in the high-energy
atomic world and does not change in the low-energy world. The least fundamental
is the particle density n, which is a dynamical variable rather than a constant.
Both c and n are local quantities rather than global ones.

The ‘fundamentalness’ of constants depends on the energy scale. Using four
‘fundamental’ constants one can construct two energy parameters, which play
the role of the Planck energy scales:

EPlanck 1 = mc2 , EPlanck 2 =
h̄c

a0
, (3.24)

with EPlanck 1 ≪ EPlanck 2 in the Bose gas.
Below the first Planck scale E ≪ EPlanck 1, the energy spectrum of quasipar-

ticles in eqn (3.17) is linear, E = cp, and the effective ‘relativistic’ quantum field
theory arises in the low-energy corner with c being the fundamental constant.
This Planck scale not only marks the border where the ‘Lorentz’ symmetry is
violated, but also provides the natural cut-off for the ‘zero-point energy’ in eqn
(3.21), which can be written as

1

2

∑

p reg

E(p) =
8

15π2h̄3

√−gE4
Planck 1 . (3.25)

Here g = −1/c6 is the determinant of the acoustic ‘Minkowski’ metric gµν =
diag(−1, c−2, c−2, c−2). This contribution to the vacuum energy has the same
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structure as the cosmological term in eqn (2.11), with the factor 8/15π2 provided
by the microscopic theory. The Planck mass corresponding to the first Planck
scale EPlanck 1 is the mass m of Bose particles – ‘atoms’ of the vacuum.

The second Planck scale EPlanck 2 marks the border where the discreteness
of the vacuum becomes important: the microscopic parameter which enters this
scale is the number density of particles and thus the distance between the par-
ticles in the vacuum. This scale corresponds to the Debye temperature in solids.
In the model of weakly interacting particles one has EPlanck 1 ≪ EPlanck 2; this
shows that the distance between the particles in the vacuum is so small that
quantum effects are stronger than interactions. This is the limit of strong corre-
lations and weak interactions. Because of that, the leading term in the vacuum
energy density is

1

2
Un2 =

1

2h̄3

√−gE3
Planck 2EPlanck 1 . (3.26)

It is much larger than the ‘conventional’ cosmological term in eqn (3.25). This
example clearly shows that the naive estimate of the vacuum energy in eqn (2.9),
as the zero-point energy of relativistic bosonic fields or as the energy of the Dirac
sea in the case of fermionic fields, can be wrong.

3.2.6 Vacuum pressure and cosmological constant

The pressure in the vacuum state is the variation of the vacuum energy over the
vacuum volume at a given number of particles:

P = −d 〈H〉vac
dV

= −d(V ǫ(N/V ))

dV
= −ǫ(n) + n

dǫ

dn
= − 1

V
〈H − µN〉vac . (3.27)

In the last equation we used the fact that the quantity dǫ/dn is the chemical
potential µ of the system, which can be obtained from the equilibrium condition
for the vacuum state at T = 0. The equilibrium state of the liquid at T =
0 (equilibrium vacuum) corresponds to the minimum of the energy functional
∫

d3rǫ(n) as a function of n at a given number N =
∫

d3rn of bare atoms. This
corresponds to the extremum of the following thermodynamic potential

∫

d3rǫ̃(n) ≡
∫

d3r(ǫ(n) − µn) = 〈H − µN〉vac , (3.28)

where the chemical potential µ plays the role of the Lagrange multiplier. In
equilibrium one has

dǫ̃

dn
= 0 or

dǫ

dn
= µ . (3.29)

It is important that it is the thermodynamic potential ǫ̃ which provides the
action for effective fields arising in the quantum liquids at low energy includ-
ing the effective gravity. That is why ǫ̃ is responsible also for the ‘cosmological
constant’. According to eqn (3.27) the pressure of the vacuum is minus ǫ̃:

Pvac = −ǫ̃vac eq . (3.30)
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The thermodynamic relation between the energy ǫ̃ and pressure in the ground
state of the quantum liquid is the same as the equation of state for the vacuum
in RQFT obtained from the Einstein cosmological term in eqn (2.7). Such an
equation of state is actually valid for any homogeneous vacuum at T = 0.

The pressure in the vacuum state of the weakly interacting Bose gas is given
by

P =
U

2
n2 +

4m3/2U5/2

5π2h̄3 n5/2 =
1

2h̄3

√−g
(

E3
Planck 2EPlanck 1 +

8

5π2
E4

Planck 1

)

.

(3.31)
This pressure is positive, which implies that weakly interacting Bose gas can
exist only under external positive pressure. However, if one uses the effective
theory for estimation of the vacuum energy as the ‘zero-point energy’ of the
phonon field, one obtains from eqn (3.25) the negative vacuum pressure. This
demonstrates the counterintuitive property of the quantum vacuum: using the
effective theory one cannot even predict the sign of the vacuum pressure.

3.3 From Bose gas to Bose liquid

3.3.1 Gas-like vs liquid-like vacuum

In a real liquid, such as liquid 4He, the interaction between the bare particles
(atoms) is not small. It is a strongly correlated and strongly interacting system,
where the two Planck scales are of the same order, mc2 ∼ h̄c/a0. The interaction
energy and the the energy of the zero-point motion of atoms (which is only
partly represented by the zero-point motion of the phonon field) are of the same
order in equilibrium. Each of them depends on the particle density n, and it
appears that one can find a value of n at which the two contributions to the
vacuum pressure compensate each other. This means that the system can be in
equilibrium at zero external pressure, P = 0, i.e. it can exist as a completely
autonomous isolated system without any interaction with the environment. An
example of such a self-sustained system is a droplet of quantum liquid in empty
space. The 4He atoms in such a droplet do not fly apart as happens for gases,
but are held together forming the state with a finite mean particle density n.
This density n is fixed by the attractive interatomic interaction and repulsive
zero-point oscillations of atoms.

To ensure that atoms do not evaporate from the droplet to the surrounding
empty space, the chemical potential, counted from the energy of an isolated 4He
atom, must be negative. This is not the case for the weakly interacting Bose gas,
where µ is positive, but it is the case in real 4He where µ ∼ −7.2 K [547, 121]
(Woo 1976; Dobbs 2000).

Thus there are two principal factors distinguishing liquid 4He (or liquid 3He)
from the weakly interacting gases. Liquid 4He and 3He can be in equilibrium at
zero pressure, and their chemical potentials at T = 0 are negative.
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3.3.2 Model liquid state

Using our intuitive understanding of the liquid state, let us try to construct
a simple model of the quantum liquid. The model energy density describing
a stable isolated liquid at T = 0 must satisfy the following conditions: (i) it
must be attractive (negative) at small n and repulsive (positive) at large n to
provide equilibrium density of liquid; (ii) the chemical potential must be negative
to prevent evaporation; (iii) the liquid must be locally stable, i.e. either the
eigenfrequencies of collective modes must be real, or their imaginary part must
be negative. All these conditions can be satisfied if we modify eqn (3.23) for
a weakly interacting gas in the following way. Let us change the sign of the
first term describing interaction and leave the second term coming from vacuum
fluctuations intact, assuming that it is valid even at high density of particles. Due
to the attractive interaction at low density the Bose gas collapses forming the
liquid state. Of course, this is a rather artificial construction, but it qualitatively
describes the liquid state. So we have the following model:

ǫ(n) = −1

2
αn2 +

2

5
βn5/2 , (3.32)

where α > 0 and β > 0 are fitting parameters. In principle, one can use the
exponents of n as other fitting parameters.

Now we can use the equilibrium condition to obtain the equilibrium particle
density n0(µ) as a function of the chemical potential:

dǫ

dn
= µ → − αn0 + βn

3/2
0 = µ . (3.33)

From the equation of state one finds the pressure as a function of the equilibrium
density:

P (n0) = −ǫ̃(n0) = µn0(µ) − ǫ(n0(µ)) = −1

2
αn2

0 +
3

5
βn

5/2
0 . (3.34)

The two contributions to the vacuum pressure cancel each other for the following
value of the particle density:

n0(P = 0) =

(

5α

6β

)2

. (3.35)

A droplet of the liquid with such a density will be in complete equilibrium in
empty space if µ < 0 and c2 > 0. These conditions are satisfied since the chemical
potential and speed of sound are

µ(P = 0) = −1

6
n0α , (3.36)

mc2 =

(

dP

dn0

)

P=0

=

(

n
d2ǫ

dn2

)

P=0

=
1

4
n0α =

3

2
|µ| . (3.37)

Equation ǫ̃(n0) = −P = 0 means that the vacuum energy density which is
relevant for effective theories is zero in the equilibrium state at T = 0. This
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corresponds to zero cosmological constant in effective gravity (see Sec. 3.3.4
below).

3.3.3 Real liquid state

The parameters of liquid 4He at P = 0 have been calculated using the exact
microscopic Theory of Everything (3.2) with the realistic pair potential (Woo
1976; Dobbs 2000). The many-body ground state wave function of 4He atoms has
been constructed at P = 0 (and thus with zero vacuum energy ǫ̃ = ǫ−µn = 0). It
gave the following values for the equilibrium particle density, chemical potential
and speed of sound:

n0(P = 0) ∼ 2 · 1022 cm−3 , µ(P = 0) =
ǫ(P = 0)

n0(P = 0)
∼ −7 K ,

c ∼ 2.5 · 104 cm s−1 , (3.38)

in good agreement with experimental values.
The values of the two Planck energy scales in eqn (3.24) are thus

EPlanck 1 = mc2 ∼ 30 K , EPlanck 2 =
h̄c

a0
∼ 5 K . (3.39)

Let us compare the partial pressures in the vacuum of the Bose gas (3.31)
and in that of the liquid state (3.34). The quantum zero-point energy of atomic
motion produces a positive vacuum pressure both in the weakly interacting Bose
gas and in the liquid. The contributions to the vacuum pressure from the inter-
action of bare particles have opposite signs in the two systems: interaction leads
to a positive vacuum pressure in the Bose gas and to a negative vacuum pressure
in the liquid.

As a results, the liquid has a self-sustained equilibrium state which is ob-
tained from the competition of two effects: attractive interaction of bare atoms
(corresponding to the negative vacuum pressure in eqn (3.34)) and their zero-
point motion which leads to repulsion (corresponding to the positive vacuum
pressure in eqn (3.34)). Because of the balance of the two effects in equilibrium,
the two Planck scales in eqn (3.39) are of the same order of magnitude.

This example of the quantum vacuum in a liquid shows that even the sign of
the energy of the zero-point motion in the vacuum contradicts the naive treat-
ment of the vacuum energy in effective theory, eqn (2.9).

3.3.4 Vanishing of cosmological constant in liquid 4He

In the equilibrium vacuum state of the liquid, which occurs when there is no in-
teraction with the environment (e.g. for a free droplet of liquid 4He), the pressure
P = 0. Thus the relevant vacuum energy density ǫ̃ ≡ V −1 〈H − µN〉vac = −P
in eqn (3.30) is also zero: ǫ̃ = 0. This can now be compared to the cosmological
term in RQFT, eqn (3.30). Vanishing of both the energy density and the pres-
sure of the vacuum, PΛ = −ρΛ = 0, means that, if the effective gravity arises
in the liquid, the cosmological constant would be identically zero without any
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fine tuning. The only condition for this vanishing is that the liquid must be in
complete equilibrium at T = 0 and isolated from the environment.

Note that no supersymmetry is needed for exact cancellation. The symmetry
between the fermions and bosons is simply impossible in 4He, since there are no
fermionic fields in this Bose liquid.

This scenario of vanishing vacuum energy survives even if the vacuum under-
goes a phase transition. According to conventional wisdom, the phase transition,
say to the broken-symmetry vacuum state, is accompanied by a change of the
vacuum energy , which must decrease in a phase transition. This is what usually
follows from the Ginzburg–Landau description of phase transitions. However,
if the liquid is isolated from the environment, its chemical potential µ will be
automatically adjusted to preserve the zero external pressure and thus the zero
energy ǫ̃ of the vacuum. Thus the relevant vacuum energy is zero above the tran-
sition and (after some transient period) below the transition, meaning that T = 0
phase transitions do not disturb the zero value of the cosmological constant. We
shall see this in the example of phase transitions between two superfluid states
at T = 0 in Sec. 29.2.

The vacuum energy vanishes in liquid-like vacua only. For gas-like states,
the chemical potential is positive, µ > 0, and thus these states cannot exist
without an external pressure. That is why one might expect that the solution
of the cosmological constant problem can be provided by the mere assumption
that the vacuum of RQFT is self-sustained, i.e. it is liquid-like rather than the
gas-like, see recent papers by Klinkhamer and Volovik (2008). However, as we
shall see later, the gas-like states suggest their own solution of the cosmological
constant problem. One finds that, though the vacuum energy is not zero in the
gas-like vacuum, in the effective gravity arising there the vacuum energy is not
gravitating if the vacuum is in equilibrium. It follows from the local stability of
the vacuum state (see Sec. 7.3.6).

Thus in both cases it is the principle of vacuum stability which leads to the
(almost) complete cancellation of the cosmological constant in condensed matter.
It is possible that the same argument of vacuum stability can be applied to the
‘cosmological fluid’ – the quantum vacuum of the Standard Model. If so, then
this generates the principle of non-gravitating vacuum, irrespective of what are
the internal variables of this fluid. According to Brout (2001) the role of the vari-
able n in a quantum liquid can be played by the inflaton field – the field which
causes inflation (the Lorentz invariant vacuum analogs of the variable n were
suggested by Klinkhamer and Volovik (2008)). Another important lesson from
the quantum liquid is that the naive estimate of the vacuum energy density from
the zero-point fluctuations of the effective bosonic or fermionic modes in eqn
(2.9) never gives the correct magnitude or even sign. The effective theory sug-
gesting such an estimate is valid only in the sub-Planckian region of energies, in
other words for fermionic and bosonic zero modes, and knows nothing about the
microscopic trans-Planckian degrees of freedom. In quantum liquids, we found
that it is meaningless to consider separately such a zero-point energy of effective
fields. This contribution to the vacuum energy is ambiguous, being dependent
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on the regularization scheme. However, irrespective of how the contribution of
low-energy degrees of freedom to the cosmological constant is estimated, because
of the vacuum stability it will be exactly cancelled by the high-energy degrees
without any fine tuning. Moreover, the microscopic many-body wave function
used for calculations of the physical parameters of liquid 4He (Woo 1976; Dobbs
2000) contains, in principle, all the information on the quantum vacuum of the
system. It automatically includes the quantum fluctuations of the low-energy
phononic degrees of freedom, which are usually considered within the effective
theory in eqn (2.9). That is why separate consideration of the zero-point energy
of the effective fields can lead at best to the double counting of the contribution
of fermion zero modes to the vacuum energy.



4

EFFECTIVE THEORY OF SUPERFLUIDITY

4.1 Superfluid vacuum and quasiparticles

4.1.1 Two-fluid model as effective theory of gravity

Here we discuss how the effective theory incorporates the low-energy dynamics
of the superfluid vacuum and the dynamics of the system of quasiparticles in
Bose liquids. The effective theory – two-fluid hydrodynamics – was developed
by Landau and Khalatnikov (see the book by Khalatnikov (1965)). According
to the general ideas of Landau a weakly excited state of the quantum system
can be considered as a small number of elementary excitations. Applying this to
the quantum liquid 4He, the dense system of strongly interacting 4He atoms can
be represented in the low-energy corner by a dilute system of weakly interacting
quasiparticles (phonons and rotons). In addition, the state without excitation
– the ground state, or vacuum – has its own degrees of freedom: it can experi-
ence the coherent collective motion. The superfluid vacuum can move without
friction with a superfluid velocity generated by the gradient of the condensate
phase vs = (h̄/m)∇Φ. The two-fluid hydrodynamics incorporates the dynamics
of the superfluid vacuum, the dynamics of quasiparticles which form the so-called
normal component of the liquid, and their interaction.

We can compare this to the Einstein theory of gravity, which incorporates
the dynamics of both the gravitational and matter fields, and their interaction.
We find that in superfluids, the inhomogeneity of the flow of the superfluid
vacuum serves as the effective metric field acting on quasiparticles representing
the matter field. Thus the two-fluid hydrodynamics serves as an example of the
effective field theory which incorporates both the gravitational field (collective
motion of the superfluid background) and the matter (quasiparticle excitations).
Though this effective gravity is different from the Einstein gravity (the equations
for the effective metric gµν are different), such effective gravity is useful for the
simulation of many phenomena related to quantum field theory in curved space.

4.1.2 Galilean transformation for particles

We have already seen that it is necessary to distinguish between the bare particles
and quasiparticles. The particles are the elementary objects of the system on a
microscopic ‘trans-Planckian’ level, these are the atoms of the underlying liquid
(3He or 4He atoms). The many-body system of the interacting atoms forms the
quantum vacuum – the ground state. The non-dissipative collective motion of
the superfluid vacuum with zero entropy is determined by the conservation laws
experienced by the atoms and by their quantum coherence in the superfluid state.
The quasiparticles are the particle-like excitations above this vacuum state, and



SUPERFLUID VACUUM AND QUASIPARTICLES 33

serve as elementary particles in the effective theory. The bosonic excitations in
superfluid 4He and fermionic and bosonic excitations in superfluid 3He represent
matter in our analogy. In superfluids they form the viscous normal component
responsible for the thermal and kinetic low-energy properties of superfluids.

The liquids considered here are non-relativistic: under laboratory conditions
their velocity is much less than the speed of light. That is why they obey the
Galilean transformation law with great precision. Under the Galilean transfor-
mation to a coordinate system moving with a velocity u, the superfluid velocity
– the velocity of the quantum vacuum – transforms as vs → vs + u.

The transformational properties of bare particles comprising the vacuum and
quasiparticles (matter) are essentially different. Let us start with bare particles,
say 4He atoms. If p and E(p) are the momentum and energy of the bare particle
(atom with mass m) measured in the system moving with velocity u, then from
the Galilean invariance it follows that its momentum and energy measured by
the observer at rest are correspondingly p +mu and E(p +mu) = E(p) + p ·
u + (1/2)mu2. This transformation law contains the mass m of the bare atom.

However, where the quasiparticles are concerned, one cannot expect that such
a characteristic of the microscopic world as the bare mass m enters the transfor-
mation law for quasiparticles. Quasiparticles in effective low-energy theory have
no information on the trans-Planckian world of atoms comprising the vacuum
state. All the information on the quantum vacuum which a low-energy quasi-
particle has, is encoded in the effective metric gµν . Since the mass m must drop
out, one may expect that the transformation law for quasiparticles is modified
putting m = 0. Thus the momentum of the quasiparticle must be invariant under
the Galilean transformation p → p, while the quasiparticle energy must simply
be Doppler shifted: E(p) → E(p) + p · u. Further, using the simplest system –
the system of non-interacting atoms – we shall check that this is the correct law.

4.1.3 Superfluid-comoving frame and frame dragging

Such a transformation law allows us to write the energy of a quasiparticle when
the superfluid vacuum is moving.

Let us first note that at any point r of the moving superfluid vacuum (or in
any other liquid) one can find the preferred reference frame. It is the local frame in
which the superfluid vacuum (liquid) is at rest, i.e. where vs = 0. In its motion,
the superfluid vacuum drags this frame with it. We call this local frame the
superfluid-comoving frame. This frame is important, because it determines the
invariant characteristics of the liquid: the physical properties of the superfluid
vacuum do not depend on its local velocity if they are measured in this local
frame. This concerns the quasiparticle energy spectrum too: in the superfluid-
comoving frame it does not depend on vs.

Let p and E(p) be the vs-independent quasiparticle momentum and energy
measured in the frame comoving with the superfluid. If the superfluid vacuum
itself moves with velocity vs with respect to some frame of the environment (say,
the laboratory frame) then according to the modified Galilean transformation
its momentum and energy in this frame will be
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p̃ = p , Ẽ(p) = E(p) + p · vs . (4.1)

4.1.4 Galilean transformation for quasiparticles

The difference in the transformation properties of bare particles and quasiparti-
cles comes from their different status. While the momentum and energy of bare
particles are determined in ‘empty’ spacetime, the momentum and energy of
quasiparticles are counted from that of the quantum vacuum. This difference is
essential even in case when the quasiparticles have the same energy spectrum as
bare particles. The latter happens for example in the weakly interacting Bose
gas: according to eqn (3.17) E(p) approaches the spectrum of bare particles,
E(p) → p2/2m, in the limit of large momentum p≫ mc. At first glance the dif-
ference between particles and quasiparticles completely disappears in this limit.
Why then are their transformation properties so different?

To explain the difference we consider an even more confusing case – an ideal
Bose gas of non-interacting bare particles, i.e. c = 0. Now quasiparticles have
exactly the same spectrum as particles: E(p) = p2/2m. Let us start with the
ground state of the ideal Bose gas in the superfluid-comoving reference frame. In
this frame all N particles comprising the Bose condensate have zero momentum
and zero energy. If the Bose condensate moves with velocity vs with respect to
the laboratory frame, then its momentum and energy measured in that frame
are correspondingly

〈P〉vac = Nmvs , (4.2)

〈H〉vac = N
mv2

s

2
. (4.3)

Now let us consider the excited state, which is the vacuum state + one quasi-
particle with momentum p. In the superfluid-comoving reference frame it is the
state in which N − 1 particles have zero momenta, while one particle has the
momentum p. The momentum and energy of such a state are correspondingly
〈P〉vac+1qp = p and 〈H〉vac+1qp = E(p) = p2/2m. In the laboratory frame the
momentum and energy of such a state are obtained by the Galilean transforma-
tion

〈P〉vac+1qp = (N − 1)mvs + (p +mvs) = 〈P〉vac + p , (4.4)

〈H〉vac+1qp = (N − 1)
mv2

s

2
+

(p +mvs)
2

2m
= 〈H〉vac + E(p) + p · vs . (4.5)

The right-hand sides of eqns (4.4) and (4.5) reproduce eqn (4.1) for a quasi-
particle spectrum in a moving vacuum. They show that, since the energy and
the momentum of quasiparticles are counted from that of the quantum vacuum,
the transformation properties of quasiparticles are different from the Galilean
transformation law. The part of the Galilean transformation which contains the
mass of the atom is absorbed by the quantum vacuum.

The right-hand sides of eqns (4.4) and (4.5) have universal character and
remain valid for the interacting system as well (provided, of course, that the
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quasiparticle energy spectrum E(p) in the superfluid-comoving frame remains
well determined, i.e. provided that quasiparticles still exist).

4.1.5 Broken Galilean invariance. Momentum vs pseudomomentum

The modified Galilean transformation law for quasiparticles is a consequence of
the fact that the mere presence of the underlying liquid (the superfluid vacuum)
breaks the Galilean invariance for quasiparticles. The Galilean invariance is a
true symmetry for the total system only, i.e. for the quantum vacuum + quasi-
particles. But it is not a true symmetry for ‘matter’ only, i.e. for the subsystem of
quasiparticles. Thus in superfluid 4He two symmetries are broken: the superfluid
vacuum breaks the global U(1) symmetry and the Galilean invariance.

On the other hand, the homogeneous quantum vacuum does not violate the
translational invariance. As a result there are two different types of translational
invariance as discussed by Stone (2000b, 2002): (i) The energy of a box which
contains the whole system – the superfluid vacuum and quasiparticles – does
not depend on the position of the box in the empty space. This is the original
symmery of the empty space. (ii) One can shift the quasiparticle system with
respect to the quantum vacuum, and if the box is big enough the energy of the
whole system also does not change.

In case (i) we used the fact that empty space is translationally invariant.
This is the translational invariance for particles comprising the vacuum, i.e. the
symmetry of the Theory of Everything in eqn (3.1) with respect to the shift of all
particles, ri → ri + a. The corresponding conserved quantity is the momentum.
Thus the bare particles in empty space are characterized by the momentum.

The operation (ii) is a symmetry operation provided the superfluid vacuum
is homogeneous, and thus infinite. In this case the quasiparticles do not see the
superfluid vacuum: for them the homogeneous vacuum is an empty space. As
distinct from (i) the translational symmetry (ii) is approximate, since it does
not follow from the Theory of Everything in eqn (3.1). It becomes exact only
in the limit of infinite volume; in the case of the finite volume, by moving a
quasiparticle we will finally drag the whole box. The symmetry of quasiparticles
under translations with respect to the effectively empty space gives rise to an-
other conserved quantity called the pseudomomentum (Stone 2000b, 2002). The
pseudomomentum characterizes excitations of the superfluid vacuum – quasipar-
ticles. The difference between momentum and pseudomomentum is the reason for
the different Galilean–transformation properties of particles and quasiparticles.

The Galilean invariance is a symmetry of the underlying microscopic physics
of atoms in empty space. It is broken and fails to work for quasiparticles. Instead,
it produces the transformation law in eqn (4.1), in which the microscopic quantity
– the massm of bare particles – drops out. This is an example of how the memory
of the microscopic physics is erased in the low-energy corner. Furthermore, when
the low-energy corner is approached and the effective field theory emerges, these
modified transformations gradually become part of the more general coordinate
transformations appropriate for the Einstein theory of gravity.

The difference between momentum in empty space and pseudomomentum in
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the quantum vacuum poses the question. What do we measure when we mea-
sure the momentum of the elementary particle such as electron: momentum or
pseudomomentum?

4.2 Dynamics of superfluid vacuum

4.2.1 Effective action

In the simplest superfluid, such as bosonic superfluid 4He, the coherent motion
of the superfluid vacuum is characterized by two soft collective (hydrodynamic)
variables: the mean particle number density n(r, t) of atoms comprising the liq-
uid, and the condensate phase Φ of atoms in the superfluid vacuum. The super-
fluid velocity vs(r, t) – the velocity of the coherent motion of superfluid vacuum
– is determined by the gradient of the phase: vs = (h̄/m)∇Φ, where m is the
bare mass of the particle – the mass of the 4He atom. The simple hand-waving
argument why it is so comes from the observation that if the whole system moves
with constant velocity vs, the phase Φ of each atom is shifted by p · r/h̄, where
the momentum p = mvs.

The flow of such superfluid vacuum is curl-free: ∇× vs = 0. This is not the
rule however. There can be quantized vortices – topologically singular lines at
which the phase Φ is not determined. Also, we shall see in Sec. 9.1.4 that in some
other superfluids, e.g. in 3He-A, the macroscopic coherence is more complicated:
it is not determined by the phase alone. As a result the flow of superfluid vacuum
is not potential: it can have a continuous vorticity, ∇× vs 6= 0.

The particle number density n(r, t) and the condensate phase Φ(r, t) are
canonically conjugated variables (like angular momentum and angle). This ob-
servation dictates the effective action for the vacuum motion at T = 0:

SG =

∫

d4x

(

h̄nΦ̇ +
1

2
mnv2

s + ǫ(n)

)

, vs =
h̄

m
∇Φ . (4.6)

The last two terms represent the energy density of the liquid: the kinetic energy
of superflow and the vacuum energy density as a function of particle density, ǫ(n).
The factor in front of the kinetic energy of the flow of the vacuum is dictated by
the Galilean invariance.

Since the variables vs(r, t) and n(r, t) provide the effective metric for quasi-
particle motion, the above effective action is the superfluid analog of the Ein-
stein action for the metric in eqn (2.2). The effective action in eqn (4.6) does
not depend much on the microscopic physics. The contribution of the Theory
of Everything is very mild: it only determines the function ǫ(n) (after extensive
numerical simulation). The structure of the effective theory is robust to details of
the interaction between the original particles, unless the interaction is so strong
that the system undergoes a quantum phase transition to another universality
class: it can become a crystal, a quantum liquid without superfluidity, a super-
fluid crystal, etc.



NORMAL COMPONENT – ‘MATTER’ 37

4.2.2 Continuity and London equations

The variation of the effective action over Φ and n gives the closed system of the
phenomenological equations which govern the dynamics of the quantum vacuum
at T = 0. These are the continuity equation, which manifests the conservation
law for the particle number in the liquid:

∂n

∂t
+ ∇ · (nvs) = 0 , (4.7)

where J = nvs is the particle current; and the London equation:

h̄Φ̇ +
1

2
mv2

s +
∂ǫ

∂n
= 0 . (4.8)

Taking the derivative of both sides of eqn (4.8) one obtains the more familiar
Euler equation for an ideal irrotational liquid:

∂vs

∂t
= −∇

(

1

2
v2

s +
1

m

∂ǫ

∂n

)

. (4.9)

From eqn (4.8) it follows that the value of the effective action (4.6) calculated
at its extremum is

SG(extremum) =

∫

d4x

(

−n ∂ǫ
∂n

+ ǫ(n)

)

=

∫

d4x ǫ̃(n) = −
∫

d4x P , (4.10)

where P is the pressure in the liquid. The action in equilibrium coincides with
the thermodynamic potential of a grand canonical ensemble, which again shows
that ǫ̃ = ǫ(n) − µn is the relevant vacuum energy density responsible for the
cosmological constant in quantum liquids.

If the liquid is in complete equilibrium at T = 0 in the absence of any
contact with the environment, i.e. at zero external pressure, and if the liquid
is homogeneous, one finds that the value of the effective action is exactly zero.
This supports our conclusion that the cosmological constant in the equilibrium
quantum vacuum in the absence of inhomogeneity and matter fields is exactly
zero without any fine tuning.

4.3 Normal component – ‘matter’

4.3.1 Effective metric for matter field

The structure of the quasiparticle spectrum in superfluid 4He becomes more and
more universal the lower the energy. In the low-energy limit one obtains the linear
spectrum, E(p, n) → c(n)p, which characterizes the phonon modes – quanta of
sound waves. Their spectrum depends only on the ‘fundamental constant’, the
speed of ‘light’ c(n) obeying c2(n) = (n/m)(d2ǫ/dn2). All other information on
the microscopic atomic nature of the liquid is lost. Since phonons have long
wave-length and low frequency, their dynamics is within the responsibility of the
effective theory. The effective theory is unable to describe the high-energy part
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of the spectrum – the rotons – which can be determined in a fully microscopic
theory only.

The action for sound wave perturbations of the vacuum, propagating above
the smoothly varying superfluid background, can be obtained from the action
(4.6) by decomposition of the vacuum variables, the condensate phase Φ and
the particle density n, into the smooth and fluctuating parts: Φ → Φ + (m/h̄)α,
n→ n+ ñ, vs → vs +∇α (Unruh 1981, 1995; Visser 1998; Stone 2000a; Barcelo
et al 2005). Substituting this into the action (4.6) one finds that the linear terms
in perturbations, α and ñ, are canceled due to the equations of motion for the
vacuum fields, and one has

S = SG + SM , (4.11)

where the action for the ‘matter’ field is

SM =
m

2

∫

d4x n

(

(∇α)2 − (α̇+ (vs · ∇)α)2

c2

)

(4.12)

+

∫

d4x
mc2

2n

(

ñ− nm

h̄c2
(α̇+ vs · ∇α)

)2

. (4.13)

Variation of this action over ñ eliminates the second term, eqn (4.13). The re-
maining action in eqn (4.12) can be written in terms of the effective metric
induced by the smooth velocity and density fields of the vacuum:

SM =
1

2

∫

d4x
√−ggµν∂µα∂να . (4.14)

The effective Riemann metric experienced by the sound wave, the so-called acous-
tic metric, is simulated by the smooth parts describing the vacuum fields (here
and below vs, n and c mean the smooth parts of the velocity, density and ‘speed
of light’, respectively). The contravariant components of the acoustic metrics are

g00 = − 1

mnc
, g0i = − 1

mnc
vi
s , g

ij =
1

mnc
(c2δij − vi

sv
j
s ) . (4.15)

The non-diagonal elements of this acoustic metric are provided by the superfluid
velocity.

The inverse (covariant) metric is

g00 = −nm
c

(c2 − v2
s ) , gij =

mn

c
δij , g0i = −gijv

j
s ,

√−g =
m2n2

c
. (4.16)

It gives rise to the effective spacetime experienced by the sound waves. This pro-
vides a typical example of how an enhanced symmetry and an effective Lorentzian
metric appear in condensed matter in the low-energy corner. In this particular
example the matter is represented by the fluctuations of the ‘gravity field’ itself,
i.e. phonons play the role of gravitons, and the matter consists of gravitons only.
In the more complicated quantum liquids, such as 3He-A, the relevant matter
fields are fermions and gauge bosons.
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The second quantization of the Lagrangian for the matter field gives the
energy spectrum of sound wave quanta – phonons – determined by the effective
metric:

gµνpµpν = 0 . (4.17)

Omitting the conformal factor 1/(mnc) in eqn (4.15) one obtains

−(Ẽ − p · vs)
2 + c2p2 = 0 . (4.18)

This gives the following quasiparticle energy in the laboratory frame:

Ẽ(p, r) = E(p, n(r)) + p · vs(r) . (4.19)

This is in accordance with eqn (4.1), which states that due to the modified
Galilean invariance, the quasiparticle energy in the laboratory frame can be
obtained by the Doppler shift from the invariant quasiparticle energy E(p, n(r))
in the superfluid-comoving frame, i.e. in the frame locally comoving with the
superfluid vacuum.

4.3.2 External and inner observers

The action (4.14) for the matter field obeys Lorentz invariance and actually gen-
eral covariance: invariance under general coordinate transformations. Of course,
the ‘gravitational’ part (4.6) of the action, which governs the dynamics of the
gµν-field, lacks general covariance. But if the gravitational field is established (it
does not matter from which equations), the motion of a quasiparticle in the ef-
fective metric field is determined by the same relativistic equations as the motion
of a particle in a real gravitational field. That is why many effects experienced
by a particle (and by low-energy degrees of quantum vacuum) in the non-trivial
metric field can be reproduced using the inhomogeneous quantum liquid.

Since there are particles and quasiparticles, there are two observers, ‘exter-
nal’ and ‘inner’, who belong to different worlds. An ‘external’ observer is made
of particles and belongs to the microscopic world. This is, for example, the ex-
perimentalist who lives in the ‘trans-Planckian’ Galilean world of atoms. The
world is Galilean because typically all the relevant velocities related to the quan-
tum liquids are non-relativistic and thus the quantum liquid itself obeys Galilean
physics. The atoms of the liquid and an external observer live in absolute Galilean
space.

An ‘inner’ observer is made of low-energy quasiparticles and lives in the
effective ‘relativistic’ world. For the inner observer the liquid in its ground state is
an empty space. This observer views the smooth inhomogeneity of the underlying
liquid as the effective spacetime in which free quasiparticles move along geodesics.
This spacetime, determined by the acoustic metric, does not reflect the real
absolute space and absolute time of the world of atoms. In measurements here,
the inner observer uses clocks and rods also made of the ‘relativistic’ low-energy
quasiparticles. This observer can synchronize such clocks using the sound signals,
and define distances by an acoustic radar procedure (Liberati et al. 2002). The
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clocks and rods are ‘flexible’, being determined by the local acoustic metric, as
distinct from ‘rigid’ clocks and rods used by an external observer.

Let us suppose that both observers are at the same point r of space and both
are at rest in the laboratory frame. Do they see the world in the same way?
Let two events at this point r occur at moments t1 and t2. What is the time
interval between the events from the point of view of the two observers? For the
external observer the time between two events is simply ∆t = t2 − t1. For the
inner observer this is not so simple: the observer’s watches are sensitive to the
flow velocity of the superfluid vacuum. The time between two events (the proper
time) is ∆τ = ∆t

√−g00 ∝ ∆t
√

1 − v2
s /c

2. The closer the velocity to the speed
of sound/light, the slower are the clocks. When the velocity exceeds c, the inner
observer cannot be at rest in the laboratory frame, and will be dragged by the
vacuum flow.

4.3.3 Is the speed of light a fundamental constant?

When an external observer measures the propagation of ‘light’ (sound, or other
massless low-energy quasiparticles), he or she finds that the speed of light is
coordinate-dependent. Moreover, it is anisotropic: for instance, it depends on
the direction of propagation with respect to the flow of the superfluid vacuum.
On the contrary, the inner observer always finds that the ‘speed of light’ (the

maximum attainable speed for low-energy quasiparticles) is an invariant quantity.
This observer does not know that this invariance is the result of the flexibility
of the clocks and rods made of quasiparticles: the physical Lorentz–Fitzgerald
contraction of length of such a rod and the physical Lorentz slowing down of
such a clock (the time dilation) conspire to produce an effective special rela-
tivity emerging in the low-energy corner. These physical effects experienced by
low-energy instruments do not allow the inner observer to measure the ‘ether
drift’, i.e. the motion of the superfluid vacuum: the Michelson–Morley-type mea-
surements of the speed of massless quasiparticles in moving ‘ether’ would give
a negative result. The low-energy rods and clocks also follow the anisotropy of
the vacuum and thus cannot record this anisotropy. As a result, all the inner ob-
servers would agree that the speed of light is the fundamental constant. Living
in the low-energy corner, they are unable to believe that in the broader world
the external observer finds that, say, in 3He-A the ‘speed of light’ varies from
about 3 cm s−1 to 100 m s−1 depending on the direction of propagation.

The invariance of the speed of sound in inhomogeneous, anisotropic and mov-
ing liquid as measured by a local inner observer is very similar to the invariance
of the speed of light in special and general relativity. In the same manner, the
invariance of the speed holds only if the measurement is purely local. If the
measurement is extended to distances at which the gradients of c and vs (the
gravitational field) become important, the measured speed of light differs from
its local value. It is called the ‘coordinate speed of light’ in general relativity.
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4.3.4 ‘Einstein equations’

The action in eqn (4.11) with the action for the matter field in eqn (4.14) is the
analog of the Einstein action for the gravity field gµν expressed in terms of n
and Φ, and for the matter field α. Variation of this ‘Einstein action’ over vacuum
variables n and Φ gives the analog of the Einstein equations:

0 =
δS

δΦ
=
δSG

δΦ
+
δSM

δgµν

δgµν

δΦ
→

−m (ṅ+ ∇(nvs)) −
1

2
∇
(

∂gµν

∂vs
TM

µν

√−g
)

= 0 , (4.20)

0 =
δS

δn
=
δSG

δn
+
δSM

δgµν

δgµν

δn
→

Φ̇ +
1

2
mv2

s +
dǫ

dn
+

1

2

∂gµν

∂n
TM

µν

√−g = 0 . (4.21)

Here the energy–momentum tensor of matter is

TM
µν =

2√−g
δSmatter

δgµν
= ∂µα∂να− 1

2
gµνg

γβ∂γα∂βα . (4.22)

This energy-momentum tensor obeys the covariant conservation law T µM
ν;µ = 0.

As distinct from the general relativity the covariant conservation does not follow
from the ‘Einstein equations’ (4.20) and (4.21) because of the lack of covariance.
It follows from the covariant equation for the matter field obtained by variation
of the action over the matter variable α:

δS

δα
= 0 → ∂ν

(√−ggµν∂µα
)

= 0 . (4.23)

For perturbations propagating in the background of a conventional fluid the
covariant conservation law has been derived by Stone (2000b).
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TWO-FLUID HYDRODYNAMICS

5.1 Two-fluid hydrodynamics from Einstein equations

At non-zero, but small temperature the ‘matter’ consists of quanta of the α-
field – phonons (or gravitons) – which form a dilute gas. In superfluids, this gas
of quasiparticles represents the so-called normal component of the liquid. This
component bears all the entropy of the liquid. In a local equilibrium, the normal
component is characterized by temperature T and its velocity vn. The two-fluid
hydrodynamics is the system of equations describing the motion of the superfluid
vacuum and normal component in terms of four collective variables n, vs (or Φ),
T and vn.

It is not an easy problem to write the action for matter in terms of T and vn,
simply because the action for collective variables is not necessarily well-defined.
That is why, in the same way as in general relativity, we shall use the ‘Einstein
equations’ (4.20) and (4.21) directly without invoking the ‘Einstein action’. Since
these equations do not automatically produce the covariant conservation law
(2.5), they must be supplemented by the equation T µM

ν;µ = 0, which is actually
the equation for the matter field expressed in terms of the collective variables T
and vn.

5.2 Energy–momentum tensor for ‘matter’

5.2.1 Metric in incompressible superfluid

To complete the derivation of the two-fluid hydrodynamics in the ‘relativistic’
regime, we must express the tensor TM

µν in terms of collective variables. For
simplicity we consider an incompressible liquid, where the particle density n is
constant, and the gravity is simulated by the superfluid velocity only. Since we
ignore the spacetime dependence of the density n and thus of the speed of sound
c, the constant factor mnc can be removed from the effective acoustic metric in
eqns (4.15–4.16). Keeping in mind that later we shall deal with the anisotropic
superfluid 3He-A, we generalize the effective metric to incorporate the anisotropy.
Omitting the conformal factor one has

g00 = −1 , g0i = −vi
s , g

ij = gij
SCF − vi

sv
j
s , (5.1)

g00 = −1 + gijv
i
sv

j
s , gijg

jk
SCF = δk

i , g0i = −gijv
j
s ,

√−g =
(

det gij
SCF

)−1/2

. (5.2)
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Here gik
SCF is the effective 3D space metric in the superfluid-comoving frame

(SCF), which determines the general form of the energy spectrum of quasiparti-
cles in the superfluid-comoving frame:

E2(p) = pipkg
ik
SCF . (5.3)

An inverse matrix (gik
SCF)−1 gives the effective covariant spatial metric gik in the

laboratory frame.
In the isotropic superfluid 4He one has

gik
SCF = c2δik , gik = c−2δik ,

√−g =
1

c3
, (5.4)

while in the anisotropic 3He-A one has

gik
SCF = c2‖ l̂

il̂k + c2⊥

(

δik − l̂il̂k
)

, gik =
1

c2‖
l̂il̂k +

1

c2⊥

(

δik − l̂il̂k
)

,
√−g =

1

c‖c
2
⊥

,

(5.5)

where l̂ is the direction of the axis of uniaxial anisotropy.
In anisotropic superfluids the ‘speed of light’ – the maximum attainable ve-

locity of quasiparticles – depends on the direction of propagation. In 3He-A it
varies between the speed c⊥ ∼ 3 cm s−1 for quasiparticles propagating in a
direction transverse to l̂ and the speed c‖ ∼ 60 m s−1 along l̂.

5.2.2 Covariant and contravariant components of 4-momentum

Let us write down covariant and contravariant components of the 4-momentum
of quasiparticles – the massless ‘relativistic’ particles, whose spectrum in the
superfluid-comoving frame is given by eqn (5.3):

pµ = (p0, pi) , p0 = −Ẽ(p) = −E(p) − p · vs , (5.6)

p0 = g0µpµ = E(p) , pi = giµpµ . (5.7)

We also introduce the 4-vector of the group velocity of quasiparticles, vµ
G = pµ/E,

and vGµ = pµ/E:

vµ
G = (1, vi

G) , vi
G =

∂Ẽ

∂pi
=
∂E

∂pi
+ vi

s , vGµ = gµνv
ν
G , (5.8)

vGi = gij
∂E

∂pj
, vG0 = −1 − vGiv

i
s , v

µ
GvGµ = −1 + gij

∂E

∂pi

∂E

∂pj
= 0 . (5.9)

The group velocity is a null vector as well as a 4-momentum: vµ
GvGµ = pµp

µ = 0.

The physical meaning of the covariant and contravariant vectors is fairly ev-
ident: p0 = E(p) and −p0 = E(p) + p · vs represent the invariant quasiparticle
energy in the superfluid-comoving frame and the Doppler-shifted quasiparticle
energy in the laboratory frame, respectively. The energy E is an invariant quan-
tity, since, being determined in the superfluid-comoving frame, it is velocity
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independent. That is why it plays the role of invariant mass under the Galilean
transformation from the superfluid-comoving to laboratory frame.

Similarly vi
G is the group velocity of quasiparticles in the laboratory frame,

while vGi represents the phase velocity in the superfluid-comoving frame. Covari-
ant momentum pi is the canonical momentum of a quasiparticle, and its quantum
mechanical operator expression is Pi = −ih̄∂i. The contravariant momentum
pi = Evi

G is the energy (mass) E times the group velocity in the laboratory
frame.

5.2.3 Energy–momentum tensor of ‘matter’

Introducing the distribution function f(p) of quasiparticles, one can represent
the energy–momentum tensor of ‘matter’ in a general relativistic form (Fischer
and Volovik 2001; Stone 2000b, 2002)

√−gT µ
ν =

∫

d3p

(2πh̄)3
fvµ

Gpν . (5.10)

Here we omit the index M in the energy–momentum tensor everywhere except
for the momentum of quasiparticles. Let us write down some components of the
energy–momentum tensor which have a definite physical meaning:

√−gT 00 =

∫

fE energy density in superfluid-comoving frame, (5.11)

−√−gT 0
0 =

∫

fẼ energy density in laboratory frame, (5.12)

−√−gT i
0 =

∫

fẼvi
G energy flux in laboratory frame, (5.13)

√−gT 0
i =

∫

fpi = PM
i momentum density in either frame, (5.14)

√−gT k
i =

∫

fpiv
k
G momentum flux in laboratory frame. (5.15)

Here
∫

means
∫

d3p/(2πh̄)3.

5.2.4 Particle current and quasiparticle momentum

Let us insert the energy–momentum tensor in the first of two Einstein equations,
eqn (4.20). Using

1

2

∂gµν

∂vk
s

Tµν = −
(

T0k + vk
s Tik

)

=
(

g00T0k + g0iTik

)

= T 0
k =

1√−gP
M
k , (5.16)

one finds that quasiparticles modify the conservation law for the particle number
– the continuity equation (4.7):

m
∂n

∂t
+ ∇ · P = 0 , P = mnvs + PM , PM(r) =

∫

d3p

(2πh̄)3
f(p, r)p . (5.17)

Thus in the effective theory there are two contributions to the particle current.
The term nvs is the particle current transferred coherently by the collective
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motion of the superfluid vacuum with the superfluid velocity vs. In equilibrium
at T = 0 this is the only particle current. In the microscopic Galilean world,
the momentum P of the liquid coincides with the mass current, which in the
monoatomic liquid is the particle current multiplied by the mass m of the atom:
P = mJ. That is why, if quasiparticles are excited above the ground state, their
momenta p contribute to the mass current and thus to the particle current,
giving rise to the second term in eqn (5.17).

Since the momentum of quasiparticles is invariant under the Galilean trans-
formation, the total density of the particle current,

J =
P

m
= nvs +

PM

m
, (5.18)

transforms in a proper way: J → J + nu.

5.3 Local thermal equilibrium

5.3.1 Distribution function

In a local thermal equilibrium the distribution of quasiparticles is characterized
by the collective variables – the local temperature T and the local velocity of the
quasiparticle gas vn, which is called the normal component velocity:

fT (p, r) =

(

exp
Ẽ(p, r) − p · vn(r)

T (r)
± 1

)−1

, (5.19)

where the + sign is for the fermionic quasiparticles in Fermi superfluids and the
minus sign is for the bosonic quasiparticles in Bose superfluids; index T means
thermal equilibrium.

After the energy–momentum tensor of ‘matter’ is expressed through T and
vn, one finally obtains the closed system of six equations of the two-fluid hydro-
dynamics for six hydrodynamic variables: n, Φ, T , vi

n. These are two ‘Einstein
equations’ (4.20) and (4.21), and four equations of the covariant conservation
law (2.5).

Since Ẽ(p)−p ·vn = E(p)−p ·(vn −vs), the distribution of quasiparticles in
local equilibrium is determined by the Galilean invariant quantity vn − vs ≡ w,
which is the normal component velocity measured in the frame comoving with the
superfluid vacuum (superfluid-comoving frame), called the counterflow velocity.

5.3.2 Normal and superfluid densities

In the limit where the counterflow velocity w = vn−vs is small, the quasiparticle
(‘matter’) contribution to the liquid momentum and thus to the particle current
is proportional to the counterflow velocity:

PM
i = mnnik(vnk − vsk) , nnik = −

∑

p

pipk

m

∂fT
∂E

, (5.20)

where the tensor nnik is the so-called normal density (or density of the normal
component). In this linear in velocities regime, the total current in eqn (5.18) can
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be represented as the sum of the currents carried by the normal and superfluid
velocities

Pi = mJi = mnsikvsk +mnnikvnk , (5.21)

where tensor nsik = nδik − nnik is the so-called superfluid density.
In the isotropic superfluids 4He and 3He-B, where the quasiparticle spectrum

in the superfluid-comoving frame in eqn (4.19) is isotropic, E(p) = E(p), the
normal density is an isotropic tensor, nnik = nnδik. In superfluid 3He-A the
normal density is a uniaxial tensor which reflects a uniaxial anisotropy of the
quasiparticle spectrum (5.5). At T = 0 the quasiparticles are frozen out and one
has nnik(T = 0) = 0 and nsik(T = 0) = nδik in all monoatomic superfluids.
Further we shall see that this is valid only in the linear regime.

5.3.3 Energy–momentum tensor

Substituting the distribution function (5.19) into the energy–momentum tensor
of the quasiparticle system (matter), one obtains that it is determined by the
generic thermodynamic potential density (the pressure) defined in the superfluid-
comoving frame

Ω = ∓T
∑

s

∫

d3p

(2πh̄)3
ln(1 ∓ f) , (5.22)

with the upper sign for fermions and the lower sign for bosons. For bosonic
quasiparticles one has

Ω =
π2

90h̄3T
4
eff

√−g , Teff =
T√

1 − w2
, (5.23)

where the renormalized effective temperature Teff absorbs all the dependence on
the effective metric and on two velocities (normal and superfluid) of the liquid.
Here

w2 = gikw
iwk , (5.24)

where w = vn−vs is the counterflow velocity. If the normal component (matter)
is made of phonons with the isotropic energy spectrum E = cp, one has w2 =
w2/c2.

In the laboratory frame the energy–momentum tensor of the ‘matter’ in lo-
cal equilibrium has a form which is standard for a gas of massless relativistic
particles. It is expressed through the 4-velocity of the ‘matter’

T µν = (ε+ Ω)uµuν + Ωgµν , ε = −Ω + T
∂Ω

∂T
= 3Ω , T µ

µ = 0 . (5.25)

The 4-velocity of the ‘matter’, uα or uα = gαβu
β, satisfies the normalization

equation uαu
α = −1. It is expressed in terms of the superfluid and normal

component velocities as

u0 =
1√

1 − w2
, ui =

vi
n√

1 − w2
, ui =

gikw
k

√
1 − w2

, u0 = −1 + gikw
ivk

s√
1 − w2

. (5.26)
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As before for the group velocity of quasiparticles, the contravariant and covariant
components, ui and ui, are related to the velocity of the normal component of
the liquid in the laboratory and superfluid-comoving frames respectively.

5.3.4 Temperature 4-vector

The distribution of quasiparticles in local equilibrium in eqn (5.19) can be ex-
pressed via the temperature 4-vector βµ and thus via the effective temperature
Teff introduced in eqn (5.23):

fT =
1

1 ± exp[−βµpµ]
, βµ =

uµ

Teff
=

(

1

T
,
vn

T

)

, gµνβ
µβν = −T−2

eff .

(5.27)

5.3.5 When is the local equilibrium impossible?

According to eqn (5.23) the local equilibrium in superfluids exists only if w < 1.
At w > 1 there is no local stability of the liquid. For the isotropic superfluids,
this means that the local equilibrium exists when |w| < c, i.e. the counterflow
velocity – the relative velocity between the normal and superfluid components –
should not exceed the ‘maximum attainable speed’ c for quasiparticles.

However, each of two velocities separately, vs and vn, can exceed c. The
quantity c is the maximum attainable velocity for quasiparticles moving with
respect to the vacuum, but the motion of the vacuum itself is not restricted by
c. This is why the event horizon may occur in superfluids: when vs exceeds c in
some region of liquid and quasiparticles are not able to escape from this region.

Later we shall see that for Fermi superfluids the local thermal equilibrium is
in principle possible even for w > 1, if one takes into account the corrections to
the ‘relativistic’ energy spectrum of quasiparticles at high energy. This will be
discussed later in Sec. 32.4 when the phenomena related to event horizons will
be considered.

Extending the discussion in Sec. 4.3.3 on the possible fundamentality of the
speed of light, we note that the ‘speed of light’ does not enter explicitly the
criterion w = 1 for the violation of the local equilibrium condition. This is
because none of eqns (5.23–5.26) contains c: it is absorbed by the metric field.
Moreover, we know that in anisotropic superfluids there is no unique ‘speed of
light’: as follows from eqn (5.5) the ‘speed of light’ depends on the direction
of propagation. Since the ‘speed of light’ is not a fundamental quantity, but is
determined by the material parameters of the liquid, it cannot enter explicitly
into any physical result or equation written in covariant form.

As follows from Sec. 2.1, general relativity satisfies this requirement: all the
equations of general relativity can be written in such a way that they do not
contain c explicitly. Written in such a form, these equations can be applied to
the effective low-energy theory arising in anisotropic 3He-A, where there is no
unique speed of light. This concerns the equations of quantum electrodynamics
too; we shall discuss this later in Chapter 9 where the effective electrodynamics
emerging in 3He-A is considered.
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5.4 Global thermodynamic equilibrium

The global thermal equilibrium is the thermodynamic state in which no dissipa-
tion occurs. The global equilibrium requires the following conditions: (i) There is
a reference frame of environment in which the system does not depend on time,
i.e. superfluid velocity field, textures, boundaries, etc., are stationary. This is
typically the laboratory frame. But if the walls of container are very far the role
of the environment can be played by texture (the texture-comoving frame). (ii)
In the environment frame the velocity of the normal component must be zero,
vn = 0. (iii) The temperature T is constant everywhere throughout the system.

For a relativistic system, the true equilibrium with vanishing entropy produc-
tion is established if the 4-temperature βµ is a so-called time-like Killing vector.
A Killing vector is a 4-vector along which the metric does not change. For in-
stance, if the metric is time independent, then the 4-vector Kµ = (1, 0, 0, 0) is a
Killing vector, since Kα∂αgµν = 0. In general, a Killing vector must satisfy the
following equations:

Kα∂αgµν + (gµα∂ν + gνα∂µ)Kα = 0 or Kµ;ν +Kν;µ = 0 . (5.28)

A time-like Killing vector satisfies in addition the condition gµνβ
µβν < 0, so

that according to eqn (5.27) the effective temperature Teff is well-defined.
Let us apply these equations to βµ in the environment frame, where the metric

is stationary. The µ = ν = 0 component of this equation gives β0;0 = βi∂ig00 = 0.
To satisfy this condition in the general case, where g00 depends on the space
coordinates, one must require that βi = 0, i.e. vn = 0 in the environment frame.
Similarly the other components of eqn (5.28) are satisfied when 1/T = β0 =
constant. Thus the global equilibrium conditions for superfluids can be obtained
from the requirement that βµ is a time-like Killing vector determined using the
‘acoustic’ metric gµν .

5.4.1 Tolman’s law

From the equilibrium conditions T = constant and vn = 0 it follows that in
global equilibrium, the effective temperature in eqn (5.23) is space dependent
according to

Teff(r) =
T

√

1 − v2
s (r)

=
T

√

−g00(r)
. (5.29)

Here v2
s = gikv

i
sv

k
s in general and v2

s = v2
s /c

2 for the isotropic superfluid vacuum.
According to eqn (5.27) the effective temperature Teff corresponds to the

proper temperature in general relativity, as measured by a local observer lo-
cated at point r. Here it is an apparent temperature as measured by a local
inner observer, who ‘lives’ in a superfluid vacuum and uses sound for commu-
nication as we use light signals. Equation (5.29) is exactly Tolman’s (1934) law
in general relativity, which shows how the locally measured temperature (Teff)
changes in the gravity field in a global equilibrium. The role of the constant
Tolman temperature – the integration constant in the Tolman’s law – is played
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by the temperature T of the liquid measured by an external observer living in
the Galilean world of the laboratory. This is real thermodynamic temperature
since it is constant throughout the entire liquid.

Note that Ω is the pressure created by quasiparticles (‘matter’). In superfluids
this pressure is supplemented by the pressure of the superfluid component – the
vacuum pressure discussed in Sec. 3.2.6, so that the total pressure in equilibrium
is

P = Pvac + Pmatter = Pvac +
π2

90h̄3T
4
eff

√−g . (5.30)

For the liquid in the absence of an interaction with the environment, the total
pressure of the liquid should be zero in equilibrium. This implies that in the pres-
ence of ‘matter’, the negative vacuum pressure emerges which compensates the
positive pressure of matter. In the non-equilibrium situation this compensation
is not complete, but the two pressures are of the same order of magnitude. Per-
haps this can provide the natural solution of the second cosmological constant
problem: why the vacuum energy is on the order of the energy density of matter.
A detailed discussion of the cosmological constant problems will be presented in
Sec. 29.4.

Finally let us mention that if the quantum liquid has several soft modes a,

each described by its own effective Lorentzian metric g
(a)
µν , the total ‘matter’

pressure of the liquid is

Pmatter =
π2T 4

90h̄3

∑

a

γa

√

−g(a)

(

g
(a)
00

)2 , (5.31)

where γa are dimensionless quantities depending on spin and the statistics of
massless modes: γ = 1 for a massless scalar field; γ = 2 for the analog of electro-
magnetic waves emerging in 3He-A; and γ = (7/4)NF for NF chiral fermionic
quasiparticles also emerging in 3He-A. In the absence of counterflow the sum
becomes

∑

a γa/c
3
a, where ca are speeds of corresponding ‘relativistic’ quasipar-

ticles.

5.4.2 Global equilibrium and event horizon

According to Tolman’s law in eqn (5.29) the global thermal equilibrium is pos-
sible if vs < 1, i.e. the superfluid velocity in the environment frame does not
exceed the speed of ‘light’. Within the discussed relativistic domain, the global
thermal equilibrium is not possible in the presence of the ergosurface where g00
crosses zero. In the ergoregion beyond the ergosurface g00 > 0 (i.e. vs > 1) and
thus βµ becomes space-like, gµνβ

µβν > 0, so that the effective relativistic tem-
perature Teff in eqn (5.27) is not determined. When the ergosurface, where
vs(r) = 1, is approached the effective relativistic temperature increases leading
to the increasing energy of thermally excited quasiparticles.

At some moment the linear ‘relativistic’ approximation becomes invalid, and
the non-linear non-relativistic corrections to the energy spectrum become impor-
tant. This shows that the ergosurface or horizon is the place where Planckian
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physics is invoked. In principle, Planckian physics can modify the relativistic
criterion for the global thermodynamic stability in such a way that it can be
satisfied even beyond the horizon. This can occur in the case of the superluminal
dispersion of the quasiparticle energy spectrum, i.e. if the high-energy quasipar-
ticles are propagating with velocity higher than the maximum attainable velocity
c of the relativistic low-energy quasiparticles. Though in the low-energy relativis-
tic world βµ becomes space-like beyond the horizon, it remains time-like on the
fundamental level. We shall discuss this in Chapter 32.

In conclusion of this section, the normal part of superfluid 4He fully repro-
duces the dynamics of relativistic matter in the presence of a gravity field.
Though the corresponding ‘Einstein equations’ for ‘gravity’ itself are not co-
variant, by using the proper superflow fields we can simulate many phenomena
related to the classical and quantum behavior of matter in curved spacetime,
including black-hole physics.



6

ADVANTAGES AND DRAWBACKS OF EFFECTIVE THEORY

6.1 Non-locality in effective theory

6.1.1 Conservation and covariant conservation

As is known from general relativity, the equation T µ
ν;µ = 0 or

∂µ

(

T µ
ν

√−g
)

=

√−g
2

Tαβ∂νgαβ (6.1)

does not represent any conservation in a strict sense, since the covariant deriva-
tive is not a total derivative (Landau and Lifshitz 1975). In superfluid 4He it
acquires the form

∂µ

(

T µ
ν

√−g
)

=

∫

d3p

(2πh̄)3
f∂νẼ = PM

i ∂νv
i
s +

∫

d3p

(2πh̄)3
f |p|∂νc . (6.2)

This does not mean that energy and momentum are not conserved in super-
fluids. One can check that the momentum and the energy of the whole system
(superfluid vacuum + quasiparticles)

∫

d3r

(

mnvs +

∫

d3p

(2πh̄)3
pf

)

,

∫

d3r

(

m

2
nv2

s + ǫ(n) +

∫

d3p

(2πh̄)3
Ẽf

)

,

(6.3)
are conserved. For example, for the density of the total momentum of the liquid
one has the conservation law

∂t(Pi) + ∇kΠik = 0 , Pi = mnvsi + PM
i , (6.4)

with the following stress tensor:

Πik = Pivsk +vsiP
M
k +δik

(

n

(

∂ǫ

∂n
+

∫

d3p

(2πh̄)3
f
∂E

∂n

)

− ǫ

)

+

∫

d3p

(2πh̄)3
pkf

∂E

∂pi
.

(6.5)
Equation (6.4) together with the corresponding equation for the density of the
total energy can be written in the form

∂µ

(

T µ
ν(vacuum) +

√−gT µ
ν(matter)

)

= 0 . (6.6)

This is the true conservation law for the energy and momentum, while the
covariant conservation law (6.1) or (6.2) simply demostrates that the energy and
momentum are not conserved for the quasiparticle subsystem alone: there is an
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energy and momentum exchange between the vacuum and ‘matter’. The right-
hand sides of eqn (6.2) or (6.1) represent the ‘gravitational’ force acting on the
‘matter’ from the inhomogeneity of the superfluid vacuum, which simulates the
gravity field.

6.1.2 Covariance vs conservation

Equation (6.6) represents the true conservation law but it is evidently non-
covariant. The energy–momentum tensor for the vacuum field which represents
gravity is also non-covariant, since the effective gravitational field obeys hydro-
dynamic equations rather than Einstein equations. However, even for the fully
covariant dynamics of gravity in Einstein theory the corresponding quantity –
the energy–momentum tensor for the gravitational field – cannot be presented in
the covariant form. This is the famous problem of the energy–momentum tensor
in general relativity. One must sacrifice either covariance of the theory, or the
true conservation law. In general relativity usually the covariance is sacrificed
and one introduces the non-covariant energy–momentum pseudotensor for the
gravitational field (Landau and Lifshitz 1975).

From the condensed matter point of view, the inconsistency between the co-
variance and the conservation law for the energy and momentum, is an aspect
of the much larger problem of the non-locality of effective theories. Inconsis-
tency between the effective and exact symmetries is one particular example of
non-locality. In general relativity the symmetry under translations, which is re-
sponsible for the conservation laws for energy and momentum, is inconsistent
with the symmetry under general coordinate transformations. From this point of
view, this is a clear indication that the Einstein gravity is really an effective the-
ory, with exact translational invariance at the fundamental level and emerging
general covariance in the low-energy limit. In the effective theories of condensed
matter such paradoxes come from the fact that the description of the many-body
system in terms of a few collective fields is always approximate. In many cases
the fully local effective theory cannot be constructed, since there is still some
exchange with the microscopic degrees of freedom, which is not covered by local
theory.

Let us consider some simple examples of condensed matter, where the para-
doxes related to the non-locality of the effective theory emerge.

6.1.3 Paradoxes of effective theory

There are many examples of apparent inconsistencies in the effective theories of
condensed matter: in various condensed matter systems the low-energy dynamics
cannot be described by a well-defined local action expressed in terms of the
collective variables; the momentum density determined as a variation of the
hydrodynamic energy over vs does not coincide with the canonical momentum
in most condensed matter systems; in the case of an axial (chiral) anomaly, which
is also reproduced in condensed matter (Chapter 18), the classical conservation
of the baryonic charge is incompatible with quantum mechanics; etc. All such
paradoxes are naturally built into the effective theory; they necessarily arise when
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the fully microscopic description is reduced by coarse graining to a restricted
number of collective degrees of freedom.

The paradoxes of the effective theory disappear completely at the funda-
mental atomic level, sometimes together with the effective symmetries of the
low-energy physics. In a fully microscopic description where all the degrees of
freedom are taken into account, the dynamics of atoms is fully determined either
by the well-defined microscopic Lagrangian which respects all the symmetries of
atomic physics, or by the canonical Hamiltonian formalism for pairs of canoni-
cally conjugated variables, the coordinates and momenta of atoms. This micro-
scopic ‘Theory of Everything’ does not contain the above paradoxes. But the
other side of the coin is that the ‘Theory of Everything’ fails to describe the low-
energy physics just because of the enormous number of degrees of freedom. In
such cases the low-energy physics cannot be derived from first principles with-
out extensive numerical simulations, while the effective theory operating with
the restricted number of soft variables can incorporate the most important phe-
nomena of the low-energy physics, which sometimes are too exotic (the quantum
Hall effect (QHE) is an example) to be predicted by ‘The Theory of Everything’
(Laughlin and Pines 2000).

Thus we must choose between the uncomfortable life of microscopic physics
without paradoxes, and the comfortable life of the effective theory with its un-
avoidable paradoxes. Probably this refers to quantum mechanics too.

Let us discuss two examples of the effective theory: the Euler equations for
a perfect liquid and the dynamics of ferromagnets.

6.1.4 No canonical Lagrangian for classical hydrodynamics

Let us consider the hydrodynamics of a normal liquid. We suppose that there is
no superfluid transition up to a very low temperature, so that the liquid is fully
normal, nn = n. In the limit T → 0, the hydrodynamics of the liquid is described
by two variables: the mass density ρ = mn and the velocity vn, which is now the
velocity of the whole liquid (we denote it by v as in conventional hydrodynamics).
As distinct from the superfluid velocity vs in superfluid 4He, the velocity v is
not curl-free: ∇ × v 6= 0. The direct consequence of that is that even the non-
dissipative hydrodynamic equations, the Euler and continuity equations, cannot
be derived from a local action expressed through the hydrodynamic variables n
and v only. Such action does not exist: the original Lagrange principle is violated
in the effective theory after coarse graining.

The only completely local theory of hydrodynamics is presented by the Hamil-
tonian formalism. In this approach, the hydrodynamic equations are obtained
from the Hamiltonian using the Poisson brackets:

∂tρ = {H, ρ} , ∂tv = {H,v} . (6.7)

The Poisson brackets between the hydrodynamic variables are universal, are de-
termined by the symmetry of the system and do not depend on the Hamiltonian
(see the review paper by Dzyaloshinskii and Volovick 1980). In the case of the
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hydrodynamics of a normal liquid these are (see the book by Khalatnikov (1965)
and Novikov 1982)

{ρ(r1), ρ(r2)} = 0 , (6.8)

{v(r1), ρ(r2)} = ∇δ(r1 − r2) , (6.9)

{vi(r1), vj(r2)} = −1

ρ
eijk(∇× v)kδ(r1 − r2) . (6.10)

The Hamiltonian is simply the energy of the liquid expressed in terms of hydro-
dynamic variables (compare with eqn (4.6)):

H =

∫

d3x

(

1

2
ρv2 + ǫ(ρ)

)

. (6.11)

Then the Hamilton equations (6.7) become continuity and Euler equations:

∂ρ

∂t
+ ∇ · (ρv) = 0 ,

∂v

∂t
+ (v · ∇)v + ∇ ∂ǫ

∂ρ
= 0 . (6.12)

The hydrodynamic variables do not form pairs of canonically conjugated
variables, and thus there is no well-defined Lagrangian which can be expressed
in terms of well-defined variables. The action can be introduced, say, in terms of
the non-local Clebsch variables which are not applicable for description of the
general class of the flow field – the flow with non-zero fluid helicity

∫

d3xv·(∇×v).
The absence of the local action for the soft collective variables in many condensed
matter systems (Novikov 1982; Dzyaloshinskii and Volovick 1980) is one of the
consequences of the reduction of the degrees of freedom in effective field theory,
as compared to a fully microscopic description where the Lagrangian exists at the
fundamental level. When the high-energy microscopic degrees are integrated out,
the non-locality of the remaining coarse-grained action is a typical phenomenon,
which shows up in many faces.

6.1.5 Novikov–Wess–Zumino action for ferromagnets

In ferromagnets, the magnetization vector M has three components. The odd
number of variables cannot produce pairs of canonically conjugated variables,
and as a result the action for M cannot be written as an integral over spacetime
(r, t) of any local integrand. But as in Sec. 6.1.4, instead of the Lagrangian one
can use the Hamiltonian description introducing the Poisson brackets,

{Mi(r1),Mj(r2)} = −eijkMk(r1)δ(r1 − r2) . (6.13)

M2 = M · M commutes with all three variables, thus the magnitude of
magnetization is a constant of motion (if the dissipation is neglected). In slow
hydrodynamic motion M equals its equilibrium value, so that the true slow
(hydrodynamic) variable is the unit vector m̂ = M/M . Since the 2D manifold of
a unit vector m̂ – the sphere S2 – is compact, this variable also cannot produce
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a well-defined canonical pair. Of course, one can introduce spherical coordinates
(θ, φ) of unit vector m̂, and find that cos θ and φ do form a canonical pair. But
these variables are not well defined: the azimuthal angle φ is ill defined at the
poles of the unit sphere of the m̂-vector, i.e. at θ = 0 and θ = π.

There is another way to treat the problem: one introduces the non-local and
actually multi-valued action in terms of well-defined variables (Novikov 1982).
Such an action is given by the Novikov–Wess–Zumino term, which contains an
extra coordinate τ . For ferromagnets this term is (Volovik 1986b, 1987)

SNWZ =

∫

dDx dt dτ M m̂ · (∂tm̂ × ∂τm̂) , (6.14)

which must be added to the free energy F of the ferromagnet. The integral here
is over the D+1+1 disk (r, t, τ), whose boundary is the physical D+1 spacetime
(r, t). Though the action is written in a fictitious D+1+1 space, its variation
is a total derivative and thus depends on the physical field M(r, t) defined in
physical spacetime:

δSNWZ =

∫

dDx dt M m̂ · (∂tm̂ × δm) . (6.15)

As a result the variation of the Novikov–Wess–Zumino term together with the
free energy F gives rise to the Landau–Lifshitz equation describing the dynamics
of the magnetization:

M m̂ × ∂tm̂ =
δF

δm̂
− m̂

(

m̂ · δF
δm̂

)

. (6.16)

The same equation is obtained from the Poisson brackets (6.13) if F is considered
as the Hamiltonian.

Since a well-defined action is absent, the energy–momentum tensor is also
ill defined in ferromagnets. This is the result of momentum exchange with the
microscopic degrees of freedom (see Volovik 1987). As distinct from the conven-
tional dissipation of the collective motion to the microscopic degrees of freedom,
which leads to the production of entropy, this exchange can be reversible. Later
in Sec. 18.3.1 we shall discuss a similar reversible momentum exchange between
the moving texture (collective motion) and the system of quasiparticles. This
exchange, which is described by the same equations as the phenomenon of ax-
ial anomaly and also by the Wess–Zumino term in action, leads to a reversible
non-dissipative force acting on the moving texture (the spectral-flow or Kopnin
force).

According to the condensed matter analogy, the presence of a non-local
Novikov–Wess–Zumino term in RQFT would indicate that such theory is ef-
fective. Probably the same happens in gravity: the absence of the covariant
energy–momentum tensor simply reflects the existence of underlying ‘micro-
scopic’ degrees of freedom, which are responsible for non-locality of the energy
and momentum of the ‘collective’ gravitational field.
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6.2 Effective vs microscopic theory

6.2.1 Does quantum gravity exist?

Gravity is the low-frequency (and actually the classical) output of all the quan-
tum degrees of freedom of the ‘Planck condensed matter’. The condensed matter
analogy supports the extreme point of view expressed by Hu (1996) that one
should not quantize gravity again. One can quantize gravitons but one should
not use the low-energy quantization for the construction of Feynman loop dia-
grams containing integration over high momenta. In particular, the effective field
theory (RQFT) is not appropriate for the calculation of the vacuum energy and
thus of the cosmological constant.

General relativity in the quantum vacuum as well as quantum hydrodynamics
in quantum liquids are not renormalizable theories. In both of them the effective
theory can be used only at a tree level. The use of the effective theory at a loop
level is (with rare exceptions when one can isolate the infrared contribution)
forbidden, since it gives rise to catastrophic ultraviolet divergence whose treat-
ment is well beyond the effective theory. The effective theory is the product of
the more fundamental microscopic (or ‘trans-Planckian’) physics. It is important
that it is already the final product which (if the infrared edge is not problematic)
does not require further renormalization within the effective theory.

If gravity emerges in the low-energy corner as a low-energy soft mode (zero
mode) of the underlying quantum Planck matter, then it would indicate that
quantum gravity simply does not exist. If there are low-energy modes which
can be identified with gravity, it does not mean that these modes will survive
at high energy. Most probably they will merge with the continuum of all other
high-energy degrees of freedom of the Planck condensed matter (corresponding
to the motion of separate atoms of the liquid in the case of 4He and 3He) and
thus can no longer be identified as gravitational modes. What is allowed in
effective theory is to quantize the low-energy modes to produce phonons from
sound waves and gravitons from gravitational waves. The deeper quantum theory
of gravity makes no sense in this philosophy. Our knowledge of the physics of
phonons/gravitons does not allow us to make predictions on the microscopic
(atomic/Planck) structure of the bosonic or fermionic vacuum.

6.2.2 What effective theory can and cannot do

The vacuum energy density in the effective theory (2.11) is of fourth order in the
cut-off energy. Such a huge dependence on the cut-off indicates that the vacuum
energy is not within the responsibility of the effective theory, and microscopic
physics is required. We have already seen that, regardless of the real ‘microscopic’
structure of the vacuum, the mere existence of the ‘microscopic’ physics ensures
that the energy of the equilibrium vacuum is not gravitating. If we nevertheless
want to use the effective theory, we must take it for granted that the diverging
energy of quantum fluctuations of the effective fields and thus the cosmological
term must be regularized to zero in a full and fully homogeneous equilibrium.
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This certainly does not exclude the Casimir effect, which appears if the vac-
uum is not homogeneous. The long-wavelength perturbations of the vacuum can
be described in terms of the change in the zero-point oscillations of the collec-
tive modes, since they do not disturb the high-energy degrees (see Chapter 29).
The smooth deviations from the homogeneous equilibrium vacuum, due to, say,
boundary conditions, are within the responsibility of the low-energy domain.
These deviations can be successfully described by the effective field theory, and
thus their energy can gravitate.

The Einstein action in Sakharov’s (1967a) theory, obtained by integration
over the fermionic and/or bosonic vacuum fields in the gravitational background,
is quadratically divergent:

LEinstein = − 1

16πG

√−gR , G−1 ∼ E2
Planck . (6.17)

Such dependence on the cut-off also indicates that the Einstein action is not
within the responsibility of the effective theory used in derivation. Within the
effective theory we cannot even resolve between two possible formulation of the
Einstein action: one is eqn (6.17), while the other one is

LEinstein = − 1

16π

√−gRgµνΘµΘν , (6.18)

where Θµ is the cut-off 4-momentum. Each of the two expressions has its plus
and minus points. The familiar eqn (6.17) is covariant but does not but obey the
global scale invariance – the invariance under multiplication of gµν by a constant
factor. The latter symmetry is present in eqn (6.18), but the general covariance
is lost because of the cut-off which introduces a preferred reference frame. This
is a typical contradiction between the symmetries in effective theories, which we
discussed in Sec. 6.1.

The effective action for the gravity field must also contain the higher-order
derivative terms, which are quadratic in the Riemann tensor,

√−g(q1RµναβR
µναβ + q2RµνR

µν + q3R2) ln

(

gµνΘµΘν

R

)

. (6.19)

The parameters qi depend on the matter content of the effective field theory. If
the ‘matter’ consists of scalar fields, phonons or spin waves, the integration over
these collective modes gives q1 = −q2 = (2/5)q3 = 1/(180 · 32π2) (see e.g. Frolov
and Fursaev 1998) These terms are non-analytic: they depend logarithmically
on both the ultraviolet and infrared cut-off. As a result their calculation in the
framework of the infrared effective theory is justified. This is the reason why
they obey (with logarithmic accuracy) all the symmetries of the effective theory
including the general covariance and the invariance under rescaling of the metric.
That is why these terms are the most appropriate for the self-consistent effective
theory of gravity. However, they are small compared to the regular terms in
Einstein action.
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This is the general rule that the logarithmically diverging terms in the action
play a special role, since they can always be obtained within the effective theory.
As we shall see below, the logarithmic terms arise in the effective action for
the effective gauge fields, which appear in superfluid 3He-A in the low-energy
corner (Sec. 9.2.2). With the logarithmic accuracy they dominate over the non-
renormalizable terms. These logarithmic terms in superfluid 3He-A were obtained
first in microscopic calculations; however, it appeared that their physics can be
completely determined by the low-energy tail and thus they can be calculated
within the effective theory. This is well known in particle physics as dimensionless
running coupling constants exhibiting either the zero-charge effect or asymptotic
freedom.

The non-analytic terms (6.19) coming from infrared physics must exist even
in superfluid 4He. But being of higher order in gradient, they are always small
compared to the leading hydrodynamic terms coming from Planckian physics,
and thus they almost always play no role in the dynamics of superfluids.

6.3 Superfluidity and universality

The concept of superfluidity was introduced by Kapitza (1938). Below a critical
temperature, which was known as the λ-point, Tλ ∼ 2.2 K, from the peculiar
shape of its specific heat anomaly, liquid 4He transforms to a new state, He-II
(Kamerlingh Onnes 1911b). According to Kapitza, this new phase of liquid 4He,
which he called superfluid, and the superconducting state of metals, which had
also been discovered by Kamerlingh Onnes (1911a), are analogous phenomena:
the vanishing ohmic resistance in the motion of conduction electrons in super-
conductors and the frictionless motion of atoms in superfluid He-II.

It is now believed that most systems displaying free motion of particles well
below some characteristic degeneracy temperature transform to the superfluid or
superconducting state. However, the concept of inviscid motion was so alien to us
accustomed to the world at 300 K that it took 30 years for the low-temperature
physicists of the first half of the past century to accept the new concept. The
paradox created by the complete absence of viscosity in some experiments and the
conflicting evidence from seemingly normal dissipative flow in other experiments
was not a simple problem to resolve.

An important step in understanding the nature of the superfluid state was
taken by F. London (1938) who associated it with the properties of an ideal Bose
gas close to its ground state, following the theory which had been worked out by
Einstein (1924, 1925). Einstein had found that in a gas of non-interacting bosons
an unusual kind of condensation occurs below some characteristic critical tem-
perature: the atoms condense in configurational space to their common ground
state, i.e. a macroscopic fraction of the atoms occupies the same quantum state,
which is the state of minimum energy. It is interesting that in the spirit of that
time London considered He-II not as a liquid but as ‘liquid crystal’, a crystal
with such a strong zero-point motion caused by quantum uncertainty that atoms
are no more fixed at the lattice sites but nearly freely move in the periodic po-
tential produced by other atoms. In modern terminology, the substance which
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exhibits both periodicity and superfluidity, is called a supersolid. Now we know
that periodicity does not happen in He-II. But the kind of ‘liquid-crystal’ be-
havior occurs in solid 4He, and even superfluidity in such a quantum crystal is
under discussion.

Although the bridge from a simple non-interacting Bose gas to an interact-
ing system like liquid He-II was not developed at that time, nevertheless this
association provided the cornerstone on which Tisza (1938, 1940) built his fa-
mous picture of two-fluid motion. According to the two-fluid hypothesis, He-II
consists of intermixed normal and superfluid components. Kapitza’s experiment
on the superflow in a narrow channel demonstrated that the normal component
was locked by its viscous interactions to the bounding surfaces, while the su-
perfluid component moved freely and was responsible for the observed absence
of viscosity. Tisza interpreted the superfluid component as consisting of atoms
condensed in the ground state. The normal component in turn corresponds to
particles in excited states and is assumed to behave like a rarefied gas of normal
viscous He-I above the λ-point. Qualitatively this picture provides a good work-
ing understanding of the properties of a superfluid. Tisza himself demonstrated
this by supplying an explanation for the fountain effect and by predicting the
existence of thermal waves, known today as second sound by the name coined
by Landau a few years later. Second-sound motion was ultimately demonstrated
by Kapitza’s student V. P. Peshkov (1944).

The rigorous physical basis for the two-fluid concept was developed by Lan-
dau (1941) who derived the complete and self-consistent set of equations of two-
fluid hydrodynamics – the effective theory of bosonic zero modes which we now
use. Landau did not use the intriguing connection with the Bose–Einstein con-
densate, since He-II in reality is a complicated system of strongly interacting
particles, and based his argument instead on the character of the low-energy
spectrum of the excitations of the system, quasiparticles. According to Landau,
He-II corresponds to a flowing vacuum state, similar to a cosmic ether, in which
quasiparticles – bosomic zero modes of quantum vacuum – move. The quanta
of these collective modes of the vacuum form a rarefied gas which is responsi-
ble for the thermal and viscous effects ascribed to the presence of the normal
component. The motion of the quasiparticle gas produces the normal–superfluid
counterflow, the relative motion of the normal component (velocity vn) with
respect to the vacuum (velocity vs).

The microscopic analysis by Bogoliubov in his model of a weakly interacting
Bose gas, which was discussed in Sec. 3.2, fully supported Landau’s idea. Ac-
cording to Bogoliubov, in the interacting system the number of particles in the
condensate N0, i.e. those with momenta p = 0, is less than the total number
of particles N even at T = 0. Nevertheless, at T = 0 the normal component is
absent: the vacuum – the state without quasiparticles – is made of all N par-
ticles of the liquid. The superfluid vacuum is thus more complicated than its
predecessor – the Bose–Einstein condensate. It is the coherent ground state of
N atoms which includes the atoms with p = 0 as well as those with p 6= 0.
The number density N0/V of atoms with p = 0 does not enter the two-fluid
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Fig. 6.1. Schematic illustration of phonon–roton spectrum.

hydrodynamics; instead the total number density n = N/V is the variable in
this effective theory. In modern language, in the interacting system the number
N0 of atoms in the Bose–Einstein condensate is effectively renormalized to the
total number N of particles in the coherent many-body state of the superfluid
vacuum, thus supporting the Landau picture.

Landau’s prediction for the spectrum of quasiparticles as corresponding to
the sound wave spectrum was also confirmed in the model. In modern language,
Landau established the universality class of Bose liquids whose behavior does
not depend on the details of the interaction.

Two important hypotheses were introduced by Landau to justify the super-
fluidity of the quantum vacuum:

(1) The non-viscous flow of the vacuum should be potential (irrotational).
Landau (1941) suggested that in liquid 4He the rotational degrees of freedom
have higher energy levels than the levels of potential motion, and these rota-
tional levels are separated from the vacuum state by the energy gap which was
estimated as ∼ h̄2/ma2

0, where a0 is the interatomic distance. The corresponding
quanta of rotational motion were initially named rotons. Later it was found that
the quasiparticle energy spectrum, which starts at small p as a phonon spectrum,
has a local minimum at finite p (Fig. 6.1). The name roton was assigned to a
quasiparticle close to the local minimum, but this quasiparticle has nothing to do
with rotational degrees of freedom. Later, after the works of Onsager (1949) and
Feynman (1955), it was understood that rotational degrees of freedom were re-
lated to quantized vortices. The lowest energy level related to rotational motion
is provided by a vortex ring of minimum possible size whose energy ∼ h̄2/ma2

0

is in agreement with Landau’s suggestion.
(2) The excitation spectrum E(p) of the quasiparticles, rotons and quanta of

sound – phonons – places an upper limit on the smooth irrotational flow of the
vacuum. The so-called Landau critical velocity is vLandau = (E(p)/p)min (see
Chapter 26). If the relative velocity |vs − vn| of the motion of the vacuum with
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respect to the excitations or boundaries is less than vLandau, then superflow is
dissipationless because the vacuum cannot transfer momentum p to the excita-
tions. If |vs − vn| > vLandau, new excitations can be created from the vacuum,
such that the momentum of superfluid motion is dissipated in the momenta p of
the newly created excitations, and friction arises.

At low temperature, the effective theory of two-fluid hydrodynamics rests
on a general principle, namely that the properties of an interacting system are
determined in the low-energy limit by the spectrum of low-energy excitations –
zero modes. Later Landau (1956) applied the same principle also to liquid 3He,
which at the temperatures where it can be described in terms of quasiparticles
is still in a normal (non-superfluid) state. 3He atoms obey Fermi–Dirac statistics
and have a single-particle-like spectrum of essentially different character from the
phonons and rotons in 4He-II. The result is known as the Landau theory of Fermi
liquids, which is one of the most successful cornerstones of condensed matter
theory. Thus a new universality class of quantum vacua and its effective theory
have been established. Below, in Sec. 8.1, we shall see that Fermi liquids belong
to the most powerful universality class of quantum vacua, were the fermion zero
modes form the Fermi surface being protected by the topology in the momentum
space.

Alongside Tisza’s idea (1940) of the Bose–Einstein condensate and Landau’s
idea (1941) of superfluid vacuum, the physical origin of two-fluid motion was
suggested by Kapitza (1941). Later it was recognized that both Tisza and Landau
had added important pieces to the description of superfluidity in He-II, while
Kapitza’s suggestion was long considered as an oddity. However, the discovery of
anisotropic superfluidity in liquid 3He-A by Osheroff et al. (1972) has completely
absolved Kapitza’s hypothesis: it now appears to be quite to the point, while the
Tisza and Landau theories were to be modified.

Kapitza (1941) postulated on the basis of his ingenious new experiments that
only a thin surface layer of liquid He-II coating the solid walls was superfluid
while bulk He-II behaved like a normal fluid. However, although the superfluid
4He film is very mobile and responsible for many striking phenomena, super-
fluidity is clearly not only restricted to the surface film in He-II, as Kapitza
himself later recognized. Nevertheless, this idea is close to the actual situation
in superfluid 3He-A: experiments demonstrate (see the book by Vollhardt and
Wölfle (1990)): that bulk superflow of 3He-A is unstable, while near the surface
of the channel the superflow is stabilized due to boundary conditions on the or-
der parameter. Moreover, the origin of superfluidity in 3He is different from that
in He-II, but actually is the same as superconductivity in metals: it results from
the formation of coherent Cooper pairs instead of the London–Tisza scenario of
the Bose–Einstein condensation of bosons to a common ground state. Also it
turns out, as we shall see, that the superflow of 3He-A is not irrotational, i.e. it
is not restricted to the simple potential flow of isotropic superfluids (for which
~∇×vs = 0, as is the case for 4He-II). In other words, as distinct from superfluid
4He, in 3He-A there is no energy gap between rotational and irrotational mo-
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tions. This is the reason why the bulk 3He-A behaves as normal fluid (see Fig.
17.9). Also the Landau critical velocity vLandau is vanishingly small in 3He-A
because of the gapless fermionic energy spectrum (see Sec. 26.1.1). Thus none
of the conditions representing the signatures of superfluidity in Landau’s sense
are strictly valid in 3He-A. This superfluid opened another important universal-
ity class of Fermi systems with gapless excitations protected by the topology in
momentum space (Sec. 8.2).



Part II

Quantum fermionic liquids





7

MICROSCOPIC PHYSICS

7.1 Introduction

Now we proceed to the Fermi systems, where the low-energy effective theory
involves both bosonic and fermionic fields. First we consider the simplest models
where different types of fermionic quasiparticle spectra arise. Then we show that
the types of fermionic spectra considered are generic. They are determined by
universality classes according to the momentum space topology of the fermionic
systems.

Above the transition temperature Tc to the superconducting or superfluid
state, the overwhelming majority of systems consisting of fermionic particles
(electrons in metals, neutrons in neutron stars, 3He atoms in 3He liquid, etc.)
form a so-called Fermi liquid (Fig. 7.1). As was pointed out by Landau, the Fermi
liquids share the properties of their simplest representative – weakly interacting
Fermi gas: the low-energy physics of the interacting particles in a Fermi liquid
is equivalent to the physics of a gas of quasiparticles moving in collective Bose
fields produced by all other particles. We shall see below in Chapter 8 that
this reduction from Fermi liquid to Fermi gas is possible because they belong
to the same universality class determined by momentum space topology. The
topology is robust to details and, in particular, to the strength of the interaction
between the particles, which distinguishes Fermi liquids from the Fermi gases.
We shall see that it is the momentum space topology which distributes Fermi
systems into different universality classes. Fermi liquids belong to one of these
universality classes, which is of most importance in condensed matter. This class
is characterized by the so-called Fermi surface – the topologically stable surface
in momentum space (Sec. 8.1).

The class of fermionic vacua with a Fermi surface is most powerful, since
it is described by the lowest-order homotopy group π1, called the fundamental
group (Sec. 8.1). The overwhelming majority of mobile fermionic systems have a
Fermi surface. The other important class of fermionic vacua (which contains the
vacuum of the Standard Model and 3He-A) is described by the higher (and thus
weaker) group – the third hompotopy group π3 (Sec. 8.2.3). If the vacuum of
the Standard Model is sufficiently perturbed, e.g. by the appearance of an event
horizon, which introduces Planckian physics near and beyond the horizon, the
Fermi surface almost necessarily appears (see Sec. 32.4).

In this Chapter we discuss the BCS theory of the weakly interacting Fermi
gas in the same manner as the weakly interacting Bose gas in Sec. 3.2, and
demonstrate how different universality classes arise in the low-energy corner.
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Fig. 7.1. 3He phase diagram demonstrating all three major universality classes
of those fermionic vacua which are translationally invariant. Normal liquid
3He represents the class where the quasiparticle spectrum is gapless on the
Fermi surface. 3He-B belongs to the class with trivial topology in momentum
space: the quasiparticle spectrum is fully gapped. 3He-A has topologically
stable Fermi points in momentum space, where fermionic quasiparticles have
zero energy.

7.2 BCS theory

7.2.1 Fermi gas

Let us start with an ideal (non-interacting) non-relativistic Fermi gas of, say,
electrons in metals or 3He atoms. In this simplest case of an isotropic system,
the energy spectrum of particles is

E(p) =
p2

2m
− µ , (7.1)

where µ, as before, is the chemical potential for particles, and it is assumed that
µ > 0. For µ > 0 there is a Fermi surface which bounds the volume in momentum
space where the energy is negative, E(p) < 0, and where the particle states are
all occupied at T = 0. For an isotropic system the Fermi surface is a sphere of
radius pF =

√
2mµ. At low T all the low-energy properties of the Fermi gas

come from the particles in the vicinity of the Fermi surface, where the energy
spectrum is linearized: E(p) ≈ vF (p − pF ), where vF = ∂pE|p=pF

is the Fermi
velocity. Fermi particles have spin 1/2 and thus there are actually two Fermi
surfaces, one for particles with spin up and another for particles with spin down.

Later in Sec. 8.1 we shall see that the Fermi surface is a topologically stable
singularity of the Green function in momentum space. Due to its topological
stability, the Fermi surface survives in non-ideal Fermi gases and even in Fermi
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liquids, where the interaction between particles is strong, unless a total non-
perturbative reconstruction of quantum vacuum occurs and the system transfers
to another universality class.

In particular, such reconstruction takes place when Cooper pairing occurs
between the particles, and the superfluid or superconducting state arises. Later
we shall be mostly interested in such superfluid phases, where the Cooper pairing
occurs between the particles within the same Fermi surface, i.e. which have the
same spin projection. For such cases of so-called equal spin pairing (ESP) we can
forget about the spin degrees of freedom and consider only single spin projection,
say, spin up. In other words, our fermions are ‘spinless’ but obey Fermi–Dirac
statistics. Thus in our original ‘Theory of Everything’ there is no spin–statistic
theorem at the ‘fundamental’ level; this theorem will appear in the low-energy
corner together with Lorentz invariance and the corresponding relativistic spin.

7.2.2 Model Hamiltonian

To make life easier we assume a special type of the BSC model with the interac-
tion leading to pairing in a p-wave state consistent with the equal spin pairing:

H− µN =
∑

p

(

p2

2m
− µ

)

a†pap − λ

V





∑

p′

p′a†−p′a
†
p′



 ·
(

∑

p

papa−p

)

. (7.2)

Here λ is the small parameter of interaction. In the superfluid state the quantity
∑

p papa−p acquires a non-zero vacuum expectation value (vev),
〈

∑

p papa−p

〉

vac
.

This vev is not identically zero because both p and apa−p are odd under parity
transformation: Pp = −p and P(apa−p) = a−pap = −apa−p. The minus sign
in the last equation is due to the Fermi statistics. The odd factor p in vev allows
the equal spin pairing (ESP) pairing within the same Fermi surface.

This vev is similar to the vev of the operator of annihilation of the Bose
particle with zero momentum in eqn (3.4). In our case the two Fermi particles
involved also form a Bose particle – the Cooper pair – with the total momentum
also equal to zero. However, in the case of p-wave pairing the order parameter is
not a complex scalar as in eqn (3.4) but a complex vector:

2λ

V

〈

∑

p

papa−p

〉

vac

= e1 + ie2 . (7.3)

Here e1 and e2 are real vectors.
Equilibrium values of these vectors are determined by minimization of the

vacuum energy. However, symmetry considerations are enough to find the pos-
sible structure of the order parameter: there are two structures that are always
the extrema of the energy functional. In the first case the two vectors, e1 and
e2, are perpendicular to each other and have the same magnitude:

e1 · e2 = 0 , |e1| = |e2| . (7.4)
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Such a structure of the orbital part of the order parameter occurs in superfluid
3He-A (Sec. 7.4.6), 3He-A1 (Sec. 7.4.8) and in the planar phase (Sec. 7.4.9). In
all these cases |e1| = |e2| = ∆0/pF , where ∆0 is the amplitude of the gap. The
three phases differ by their spin structure, which we do not discuss here in the
model of spinless fermions.

In the second case the two vectors are parallel to each other, e1 ‖ e2, and the
order parameter (7.3)

e1 + ie2 = e eiΦ , (7.5)

is factorized into the real vector e along the common direction and the phase
factor Φ. The orbital part of the order parameter in the polar phase of the
spin-triplet superfluid in Sec. 7.4.10 has the same structure.

For the moment we shall not specify the two vectors, and consider the general
case of arbitrary e1 and e2. In the limit of weak interaction λ→ 0, the quantum
fluctuations of the order parameter – deviations of the operator

∑

p papa−p from
its vev – are small. Neglecting the term quadratic in deviations from vev, one
obtains the following Hamiltonian:

H− µN =
V

4λ

(

e2
1 + e2

2

)

+
∑

p

Hp , (7.6)

Hp =

(

p2

2m
− µ

)

a†pap + a†−pa−p

2
+ p · e1 − ie2

2
a−pap + p · e1 + ie2

2
a†pa

†
−p .

(7.7)

7.2.3 Bogoliubov rotation

For each p the Hamiltonian Hp can be diagonalized using the operators Li

L3 =
1

2
(a†pap + a†−pa−p− 1) , L1 − iL2 = a†pa

†
−p , L1 + iL2 = apa−p . (7.8)

As distinct from the Bose case in eqn (3.11) these operators are equivalent to
the generators of the group SO(3) of conventional rotations with commutation
relations appropriate for the angular momentum: [Li,Lj ] = ieijkLk. In terms of
Li one has

Hp = gi(p)Li + g0(p) , (7.9)

with

g1 = p · e1 , g
2 = p · e2 , g

3 =
p2

2m
− µ , g0 =

1

2

(

p2

2m
− µ

)

. (7.10)

The Hamiltonian is diagonalized by two SO(3) rotations. First we rotate by
the angle tan−1(p · e2/p · e1) around the x3 axis. This is the U(1) global gauge
rotation which transforms g1 →

√

(p · e2)2 + (p · e1)2, g
2 → 0. Then we rotate
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by the angle tan−1(
√

(p · e2)2 + (p · e1)2/(
p2

2m − µ)) around the x2 axis; this is
the Bogoliubov transformation. As a result one obtains the diagonal Hamiltonian

Hp = E(p)L̃3 +
1

2

(

p2

2m
− µ

)

=
1

2
E(p)

(

ã†pãp + ã†−pã−p

)

+
1

2

(

p2

2m
− µ

)

− 1

2
E(p) . (7.11)

Here ãp is the annihilation operator of fermionic quasiparticles (the so-called
Bogoliubov quasiparticles), whose energy spectrum E(p) is

E(p) =

√

(

p2

2m
− µ

)2

+ (p · e1)
2

+ (p · e2)
2
. (7.12)

The total Hamiltonian (7.6) represents the energy of the vacuum (the state
without quasiparticles) and that of fermionic quasiparticles in the background
of the vacuum:

H− µN = 〈H − µN〉vac +
∑

p

E(p)ã†pãp , (7.13)

where the vacuum energy is

〈H − µN〉vac =
V

4λ

(

e2
1 + e2

2

)

− 1

2

∑

p

E(p) +
1

2

∑

p

(

p2

2m
− µ

)

. (7.14)

7.2.4 Stable point nodes and emergent ‘relativistic’ quasiparticles

The equilibrium state of the vacuum will be later determined by minimization
of the vacuum energy eqn (7.14) over vectors e1 and e2, but it is instructive
to consider first the general vacuum state with arbitrary vectors e1 and e2. In
general, if we disregard for a moment the very exceptional, degenerate case of
the order parameter when these vectors are exactly parallel to each other, the
quasiparticle energy spectrum in eqn (7.12) has two points p(a) (a = 1, 2) in
momentum space where the energy is zero:

p(a) = qapF l̂ , l̂ =
e1 × e2

|e1 × e2|
, qa = ±1 . (7.15)

Here, as before pF =
√

2mµ, is the Fermi momentum of an ideal Fermi gas. Close
to each of these two points, which we refer to as Fermi points in analogy with
the Fermi surface, the energy spectrum becomes

E2
a(p) ≈ (e1 · (p − qaA))

2
+ (e2 · (p − qaA))

2
+ (e3 · (p − qaA))

2
, (7.16)

e3 =
pF

m
l̂ , A = pF l̂ . (7.17)

This corresponds to the energy spectrum of two massless ‘relativistic’ particles
with electric charges qa = ±1 in the background of an electromagnetic field with
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the vector potential A = pF l̂, in the space with the anisotropic contravariant
metric tensor gµν :

gik = ei
1e

k
1 + ei

2e
k
2 + ei

3e
k
3 , g

00 = −1 , g0i = 0 . (7.18)

Thus for the typical vacuum state the quasiparticle energy spectrum becomes
relativistic and massless in the low-energy corner. This is an emergent property
which follows solely from the existence of the Fermi points. In turn, according
to eqn (7.15), the existence of the Fermi points is robust to any deformation of
the order parameter vectors e1 and e2 of the vacuum, excluding the exceptional
case when e1 ‖ e2 and the metric gµν becomes degenerate. This illustrates the
topological stability of Fermi points, which we shall discuss later. Because of this
stability, emergent relativity is really a generic phenomenon in the universality
class of Fermi systems to which this model belongs – systems with topologically
stable Fermi points in momentum space (Sec. 8.2).

7.2.5 Nodal lines are not generic

In the exceptional case of e1 ‖ e2 in eqn (7.5) which corresponds to the so-
called polar state discussed in Sec. 7.4.9, the energy spectrum is zero on the line
(p = pF , p ⊥ e) in 3D momentum space. The fact that the line of zeros occurs
only as an exception to the rule shows that nodal lines are topologically unstable.
Under general deformations of the order parameter the nodal lines disappear. In
our simplified model where the spin degrees of freedom are suppressed, the line
of zeros disappears leaving behind the pairs of Fermi points. But in a more
general case there is an alternative destiny for a nodal line: zeros can disappear
completely so that the system becomes fully gapped.

7.3 Vacuum energy of weakly interacting Fermi gas

7.3.1 Vacuum in equilibrium

An equilibrium value of the order parameter is obtained by minimization of the
vacuum energy in eqn (7.14) over e1 and e2

V

λ
e1,2 −

∑

p

∂E(p)

∂e1,2
= 0 . (7.19)

Excluding the volume V of the system one obtains two non-linear equations for
vectors e1 and e2:

e1,2 = λ

∫

d3p

(2πh̄)3
p(p · e1,2)

E(p)
. (7.20)

Substituting eqn (7.20) into eqn (7.14) one obtains that the minimum of the
vacuum energy (i.e. the energy of the equilibrium vacuum) has the form:

〈H − µN〉eq vac =
1

2

∑

p

[

−E(p) +

(

p2

2m
− µ

)

+
(p · e1)

2
+ (p · e2)

2

2E(p)

]

.

(7.21)
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Compare this with eqn (3.19) for the vacuum energy of the weakly interact-
ing Bose gas and with eqn (2.9) for vacuum energy in RQFT. The first term
− 1

2

∑

pE(p) can be recognized as the energy of the Dirac vacuum for fermionic
quasiparticles. It has the sign opposite to that of the corresponding term in the
vacuum energy of Bose gas, which contains zero-point energy of bosonic fields.
This Dirac-vacuum term is natural from the point of view of the effective theory,
where the quasiparticles (not the bare particles) are the physical objects.

The somewhat unusual factor 1/2 is the result of the specific properties of
Bogoliubov quasiparticles. The Bogoliubov quasiparticle represents the hybrid
of the bare particle and bare hole; as a result the quasiparticle equals its anti-
quasiparticle as in the case of Majorana fermions. That is why the naive summa-
tion of the negative energies in the Dirac vacuum leads to the double counting,
which is just compensated by the factor 1/2 in eqn (7.21). We shall consider this
in more detail in the next chapter.

As in the case of the Bose gas, the other two terms in eqn (7.21) represent
the counterterms that make the total vacuum energy convergent. They are nat-
urally provided by the microscopic physics of bare particles. In other words, the
trans-Planckian physics determines the regularization scheme, which depends on
the details of the trans-Planckian physics. Within the effective theory there are
many regularization schemes, which may correspond to different trans-Planckian
physics. There is no principle which allows us to choose between these schemes
unless we know the microscopic theory.

The counterterms in eqn (7.21) can be regrouped to reflect different Planck
energy scales. The natural ‘regularization’ is achieved by consideration of the
difference between the energy of weakly interacting gas and that of an ideal
Fermi gas with λ = 0. This effectively removes the largest contribution to the
vacuum energy. The energy of the ideal Fermi gas is

〈H − µN〉vac λ=0 =
1

2

∑

p

[

−
∣

∣

∣

∣

p2

2m
− µ

∣

∣

∣

∣

+

(

p2

2m
− µ

)]

= −V p5
F

30mπ2h̄3 . (7.22)

The rest part of the vacuum energy is considerably smaller:

〈H − µN〉eq vac − 〈H − µN〉vac λ=0

= −1

4

∑

p

[

E(p) −
∣

∣

∣

p2

2m − µ
∣

∣

∣

]2

E(p)
= −V p3

Fm

24π2h̄3 (e2
1 + e2

2) , (7.23)

since the order parameter contains the small coupling constant λ.

7.3.2 Axial vacuum

It is easy to check that the order parameter structure, which realizes the vacuum
state with the lowest energy, has the form of eqn (7.4):

2λ

V

〈

∑

p

papa−p

〉

eq vac

= (e1 + ie2)eq = c⊥(m̂ + in̂) , (7.24)
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m̂2 = n̂2 = 1 , m̂ · n̂ = 0. (7.25)

The condition on the order parameter in equilibrium in eqn (7.25) still allows
some freedom: the SO(3) rotations of the pair of unit vectors m̂ and n̂ do not
change the vacuum energy. Thus the vacuum is degenerate. We choose for sim-
plicity one particular vacuum state with m̂ = x̂ and n̂ = ŷ, so that the energy
spectrum of quasiparticles becomes

E(p) =

√

(

p2

2m
− µ

)2

+ c2⊥(p × l̂)2 =

√

(

p2

2m
− µ

)2

+ c2⊥(p2
x + p2

y) . (7.26)

It is axisymmetric and has uniaxial anisotropy along the axis l̂ = m̂ × n̂, which
according to eqn (7.15) shows the direction to the Fermi points in momentum
space. This demonstrates that the vacuum itself is axisymmetric and has uniaxial
anisotropy along l̂. We shall see later that l̂ also marks the direction of the angular
momentum of Cooper pairs, and thus is an axial vector. Such a vacuum state is
called axial. The corresponding superconducting states in condensed matter are
called chiral superconductors.

The parameter c⊥ is the maximum attainable speed of low-energy quasipar-
ticles propagating transverse to l̂, since in the low-energy limit (i.e. close to point
nodes) the energy spectrum becomes

E2
a(p) ≈ c2‖(pz − qapF )2 + c2⊥(p2

x + p2
y) , c‖ =

pF

m
≡ vF =

√

2µ

m
. (7.27)

The Fermi velocity vF represents the maximum attainable speed of low-energy
quasiparticles propagating along l̂.

The difference in vacuum energies between the weakly interacting and non-
interacting Fermi gas in eqn (7.23) is also completely determined by c⊥:

〈H − µN〉eq vac − 〈H − µN〉vac λ=0 = −V p3
Fm

12π2h̄3 c
2
⊥ . (7.28)

The value of the parameter c⊥ is determined from eqn (7.20):

1 = λ

∫

d3p

(2πh̄)3
p2

x + p2
y

2E(p)
. (7.29)

The integral on the rhs is logarithmically divergent and one must introduce the
physical ultraviolet cut-off at which our model becomes inapplicable. This cut-
off influences only the value of c⊥ = (Ecutoff/pF ) exp(− 1

mnλ). Once the value of
c⊥ is established, we can forget its origin (except that it is small compared to
vF ) and consider it as a phemomenological parameter of the effective theory. For
superfluid 3He-A the ratio c2⊥/v

2
F is about 10−5.

Since the order parameter magnitude c⊥ is relatively small, its influence on
the relation between the particle number density n and the Fermi momentum
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pF is also small. That is why for the system with single spin projection one has
n ≈ p3

F /6π
2h̄3. Actually |n− p3

F /6π
2h̄3|/n ∼ c2⊥/c

2
‖ ≪ 1. As a result eqn (7.28)

becomes

〈H − µN〉eq vac − 〈H − µN〉vac λ=0 ≈ −1

2
Nmc2⊥ , (7.30)

where N = nV .

7.3.3 Fundamental constants and Planck scales

As in the case of the weakly interacting Bose gas, the Theory of Everything for
weakly interacting Fermi gas contains four ‘fundamental’ constants. They can
be chosen as h̄, m, c⊥ and n (or pF , which is related to n). The small factor,
which determines the relative smallness of the superfluid energy with respect to
the energy of an ideal Fermi gas in eqn (7.22), is again mc⊥a0/h̄ ≪ 1, where
a0 ∼ h̄/pF ∼ n−1/3 is the interparticle distance in the Fermi gas vacuum state.

Because of the anisotropy of the energy spectrum there are three important
energy scales – the ‘Planck’ scales:

EPlanck 1 = mc2⊥ , EPlanck 2 = c⊥pF ∼ h̄c⊥
a0

, EPlanck 3 = mc2‖ =
p2

F

m
, (7.31)

with EPlanck 1 ≪ EPlanck 2 ≪ EPlanck 3.
Below the first Planck scale E ≪ EPlanck 1 = mc2⊥, the energy spectrum of

quasiparticles has the relativistic form in eqn (7.16) (or in eqn (7.27)), and the
effective ‘relativistic’ quantum field theory arises in the low-energy corner with
c⊥ and c‖ being the fundamental constants. This Planck scale marks the border
where ‘Lorentz’ symmetry is violated.

The second Planck scale EPlanck 2 is responsible for superfluidity. Below this
scale one can distinguish the superfluid state of the Fermi gas from its normal
state. The temperature of the superfluid phase transition Tc ∼ EPlanck 2. It
provides the natural cut-off for the contribution of the Dirac vacuum to the
vacuum energy, and thus determines the part of the vacuum energy in eqn (7.28),
which is the difference between the energies of normal and superfluid states:

〈H − µN〉eq vac − 〈H − µN〉vac λ=0 = − 1

12π2
V
√−gE4

Planck 2 . (7.32)

Here g = −c−2
‖ c−4

⊥ is the determinant of the effective metric for quasiparticles

gµν = diag(−1, c−2
⊥ , c−2

⊥ , c−2
‖ ).

This can be compared to the analog contribution to the vacuum energy in
the Bose gas in eqn (3.25). Both contributions are proportional to the square
root of the determinant of the effective Lorentzian metric, which arises in the
low-energy corner, and thus they represent the Einstein cosmological term. Both
contributions agree with the point of view of an inner observer, who knows only
the low-energy excitations and believes that the vacuum energy comes from the
Dirac vacuum of fermions and from the zero-point energy of bosons. They have
correspondingly negative and positive signs as in eqn (2.11) for the cosmological



74 MICROSCOPIC PHYSICS

term. The cut-off is explicitly provided by the Planck energy scale. However, an
external observer knows that in addition there are larger contributions to the
vacuum energy coming from the physics at the higher Planck energy scale. In
our case this is the energy of the Fermi gas in eqn (7.22) which is determined by
the largest Planck energy scale EPlanck 3.

7.3.4 Vanishing of vacuum energy in liquid 3He

In the Fermi system under consideration, both contributions to the vacuum
energy density ǫ̃ are negative:

ǫ̃ = − 1

12π2h̄3

√−gE4
Planck 2 −

1

30π2h̄3

√−gE3
Planck 3EPlanck 2 . (7.33)

Thus the weakly interacting Fermi gas can exist only under external positive
pressure P = −ǫ̃. However, when the interaction between the bare particles
(atoms) increases, the quantum effects become less important.

In liquids the quantum effects and interaction are of the same order. When
those high-energy degrees of freedom are considered that mostly contribute to
the construction of the vacuum state, one finds that the symmetry breaking
(superfluidity) and even the difference in quantum statistics of 3He and of 4He
atoms have a minor effect (see Fig. 3-6 in the book by Anderson 1984). For
the main contribution to the vacuum energy the difference between the strongly
interacting Bose system of 4He atoms and the strongly interacting Fermi system
of 3He atoms is not very big. Both systems represent quantum liquids which
can exist without an external pressure. The chemical potential of liquid 3He, if
counted from the energy of an isolated 3He atom, is also negative (µ ∼ −2.47 K
(Woo 1976; Dobbs 2000), i.e. the superfluid 3He is a liquid-like (not a gas-like)
substance. Thus in both systems the equilibrium value of the vacuum energy is
exactly zero, 〈H − µN〉eq vac = ǫ̃V = 0, if there are no external forces acting
on the liquid. On the other hand, the inner observer believes that the vacuum
energy essentially depends on the fermionic and bosonic content of the effective
theory.

7.3.5 Vacuum energy in non-equilibrium

We know that, if the system is liquid and thus can exist in the absence of an
environment, its vacuum energy density ǫ̃vac is zero in complete equilibrium.
What is the value of the vacuum energy , and thus of the ‘cosmological’ term, if
the order parameter (and thus the vacuum) is out of equilibrium? To understand
this we first note that the BCS theory is applicable to the real liquid too. Though
the particle–particle interaction in the liquid is strong, the effective interaction
which leads to the Cooper pairing and thus to superfluidity can be relatively
weak. This is just what occurs in liquid 3He, which is manifested by a relatively
small value of the order parameter: c2⊥/v

2
F ∼ 10−5. Thus we can apply the BCS

scheme discussed above to the liquids.
We must take a step back and consider the superfluid part of the vacuum

energy, eqn (7.14), before the complete minimization over the order parameter.
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For simplicity we fix the vector structure of the order parameter as in equilibrium,
and vary only its amplitude c⊥. Then, taking into account that in the isolated
liquid the vacuum energy density ǫ̃ must be zero when c⊥ equals its equilibrium
value c⊥0, one arrives at a rather simple expression for the vacuum energy density
in terms of c⊥:

ǫ̃vac(c⊥) = m∗n

[

c2⊥ ln
c2⊥
c2⊥0

+ c2⊥0 − c2⊥

]

. (7.34)

Equation (7.34) contains four ‘fundamental’ parameters of different degrees of
fundamentality: h̄, which is really fundamental; pF and vF , which are funda-
mental at the Fermi liquid level (here m∗ = pF /vF and n = p3

F /6π
2h̄2); and

the equilibrium value of the transverse ‘speed of light’ c⊥0, which is fundamental
for the effective RQFT at low energy. Let us stress again that this equation is
applicable to real liquids; the only requirement is that pF c⊥ is small compared
to the energy scales relevant for the liquid state, in particular pF c⊥ ≪ pF vF .

7.3.6 Vacuum energy and cosmological term in bi-metric gravity

Equation (7.34) can be rewritten in terms of the effective metric in equilib-
rium gµν(0) = diag(−1, c−2

⊥0, c
−2
⊥0, c

−2
‖ ), and the effective dynamical metric gµν =

diag(−1, c−2
⊥ , c−2

⊥ , c−2
‖ ):

ǫ̃vac(g) = ρΛ

√−g0
[√−g0√−g ln

√−g0√−g −
√−g0√−g + 1

]

, ρΛ =
(pF c⊥0)

4

6π2h̄3 . (7.35)

Close to equilibrium the vacuum energy density is quadratic in deviation from
equilibrium:

ǫ̃vac(g) ≈
ρΛ

2
√−g0

(√−g −√−g0
)2

. (7.36)

Let us play with the result (7.35) obtained for a quantum liquid, considering
it as a guess for the vacuum energy in the effective theory of gravity. Then the
energy–momentum tensor of the vacuum – the cosmological term which enters
the Einstein equation (2.8) – is obtained by variation of eqn (7.35) over gµν :

TΛ
µν = ρΛgµν

g0
g

ln

√−g0√−g . (7.37)

Thus in a quantum liquid the vacuum energy (7.35) and the cosmological term
(7.37) have a different dependence on the metric field. But both of them are
zero in equilibrium, where g = g0. Moreover, the reasons for the vanishing of the
cosmological term and for the vanishing of the vacuum energy are also different.

The zero value of the cosmological term in eqn (7.37) in equilibrium, which
indicates that in eqiuilibrium the vacuum is not gravitating, is a consequence
of the local stability of the vacuum. The latter implies that the correction to
the vacuum energy due to non-equilibrium is the positively definite quadratic
form of the deviations from equilibrium, such as eqn (7.36). This condition of
local stability of the vacuum is valid for any system, i.e. not only for liquids but
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for weakly interacting gases too. The cosmological term is the variation of the
vacuum energy over the metric, that is why it is linear in the deviation from
equilibrium, and must be zero in equilibrium.

As for the vacuum energy itself it is zero if, in addition, the equilibrium
vacuum is ‘isolated from the environment’. This is valid for the quantum liquid
but not for a gas-like substance such as the weakly interacting Fermi gas.

In both equations, (7.35) and (7.37), the overall factor – the ‘bare’ cosmolog-
ical constant ρΛ – has the naturally expected Planck scale value of order E4

Planck.
Thus, in spite of a huge value for the bare cosmological constant, one obtains
that the equilibrium quantum vacuum is not gravitating. The cosmological term
and in the case of the liquid even the vacuum energy itself are zero in equilibrium
without any fine tuning.

The price for this solution of the cosmological constant problem is that we now
have the analog of the bi-metric theory of gravity: the metric gµν(0) characterizes
the equilibrium vacuum, while the metric gµν is responsible for the dynamical
gravitational field acting on quasiparticles. Actually the metric gµν(0) is also
dynamical though at a deeper fundamental level: it depends on the characteristics
of the underlying liquid, such as the density n of atoms.

7.4 Spin-triplet superfluids

7.4.1 Order parameter

In Sec. 7.2 we considered the equal spin pairing (ESP) of particles, i.e. the pairing
of atoms/electrons having the same spin projection. We discussed only single spin
projection, and thus the particles were effectively spinless. Now we turn to the
spin structure of the Cooper pairs in 3He liquids. In a particular case of ESP,
when particles forming the Cooper pair have the same spin projection, the total
spin projection of the Cooper pair is either +1 or −1. These are particular states
arising in spin-triplet pairing, the pairing into the S = 1 state. The general form
of the order parameter for triplet pairing is the direct modification of eqn (7.3)
when the spin indices are taken into account:

2λ

V

〈

∑

p

papαa−pβ

〉

vac

= eµ(σ(µ)g)αβ , g = iσ(2). (7.38)

Here α = (↑, ↓) and β = (↑, ↓) denote the spin projections of a particle; and σ(µ)

with µ = 1, 2, 3 are the 2 × 2 Pauli matrices.
Instead of the complex vector in the spinless case, the order parameter now

is triplicated and becomes a 3× 3 complex matrix eµ ≡ eµ i, with µ = 1, 2, 3 and
i = 1, 2, 3. This order parameter eµ i belongs to the vector representation L = 1 of
the orbital rotation group SO(3)L (whence the name p-wave pairing), and to the
vector representation S = 1 of the spin rotation group SO(3)S (whence the name
spin-triplet pairing). In other words, eµ i transforms as a vector under SO(3)S
spin rotations (the first index) and as a vector under SO(3)L orbital rotations
(the second index). Also, the order parameter is not invariant under U(1)N
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symmetry operations, which is responsible for the conservation of the particle
number N (3He atoms or electrons ): under global U(1)N gauge transformation
(ap → eiαap) the order parameter transforms as

eµ i → e2iαeµ i . (7.39)

The factor 2 is because the order parameter eµ i is the vev of two annihilation
operators ap.

Thus all the symmetry groups of the liquid in the normal state

G = SO(3)L × SO(3)S × U(1)N (7.40)

are completely or partially broken in spin-triplet p-wave superfluids and super-
conductors.

7.4.2 Bogoliubov–Nambu spinor

The modification of the spinless BCS Hamiltonian (7.6) to the spin-triplet case
is straightforward. We mention only that there is another useful way to treat
the BCS Hamiltonian. Since in this Hamiltonian the states with N + 1 particles
(quasiparticle) and with N − 1 particles (quasihole) are hybridized by the order
parameter, it is instructive to double the number of degrees of freedom adding
the antiparticle for each particle as an independent field. This is accomplished
by constructing the Bogoliubov–Nambu field operator χ, which is a spinor in
the new particle–hole space (Bogoliubov–Nambu space) as well as the spinor in
conventional spin space:

χp =

(

ap
iσ(2)a†−p

)

. (7.41)

Under a U(1)N symmetry operation this spinor transforms as

χ→ eiτ̌3αχ , (7.42)

where τ̌b (with b = 1, 2, 3) are Pauli matrices in the Bogoliubov–Nambu space. τ̌3

is the particle number operator N with eigenvalues +1 for the particle component
of the Bogoliubov quasiparticle and −1 for its hole component.

Two components of the Bogoliubov–Nambu spinor χp are not independent:
they form a so-called Majorana spinor. However, in what follows we ignore
the connection and consider the two components of the spinor as independent.
When calculating different quantities of the liquids using the Bogoliubov–Nambu
fermions we must divide the final result by two in order to compensate the dou-
ble counting. Then for each p the Bogoliubov–Nambu Hamiltonian Hp in eqn
(7.6) has the form

Hp = τ̌3M(p) + τ̌1σµpi Re eµ i − τ̌2σµpi Im eµ i , (7.43)

where

M(p) =
p2

2m
− µ ≈ vF (p− pF ) . (7.44)

Since the order parameter is typically much smaller than p2
F /m, in all the effects

related to superfluidity the bare energy of particles M(p) is concentrated close
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to pF . (Note that here the chemical potential µ is counted from the bottom of
the band and thus is positive; in liquids it is negative when counted from the
energy of the isolated atoms.)

It is instructive to consider the following six vacuum states of p-wave super-
fluidity: 3He-B, 3He-A, 3He-A1, axiplanar, planar and polar states. Some of the
states realize the true vacuum if the parameters of the Theory of Everything
in eqn (3.2) are favourable for that. The other states correspond either to local
minima (i.e. to a false vacuum) or to saddle points of the energy functional. The
first three of them are realized in nature as superfluid phases of 3He.

7.4.3 3He-B – fully gapped system
3He-B is the only isotropic phase possible for spin-triplet p-wave superfluidity.
In its simplest form the matrix order parameter is

e
(0)
µ i = ∆0δµ i . (7.45)

This state has the quantum number J = 0, where J = L + S is the total
angular momentum of the Cooper pair. J = 0 means that the quantum vacuum
of the B-phase is isotropic under simultaneous rotations in spin and coordinate
space, and thus ensures the isotropy of the liquid. The phase transition to 3He-B
corresponds to the symmetry-breaking scheme (see Sec. 13.1 for definition of the
group G of the symmetry of physical laws and the group H of the symmetry of
the degenerate quantum vacuum)

G = U(1)N × SO(3)L × SO(3)S → HB = SO(3)S+L (7.46)

All the degenerate quantum vacuum states are obtained from the simplest state
(7.45) by symmetry transformations of the group G:

eµ i = RS
µνR

L
ike

2iαe
(0)
ν k = ∆0Rµ ie

iΦ , (7.47)

where Rµ i is the real orthogonal matrix (rotation matrix) resulting from the
combined action of spin and orbital rotations: Rµ i = RS

µνR
L
ikδνk; Φ is the phase

of the condensate.
The simplest state in eqn (7.45) has the following Bogoliubov–Nambu Hamil-

tonian:

HB =

(

M(p) c(σ · p)
c(σ · p) −M(p)

)

= M(p)τ̌3 + c(σ · p)τ̌1 , c =
∆0

pF
, (7.48)

with M(p) given in eqn (7.44). The square of the energy of fermionic quasipar-
ticles in this pair-correlated state is

E2
B(p) = H2 = M2(p) + c2p2 . (7.49)

This equation is invariant under the group G and thus is valid for any degenerate
state in eqn (7.47).
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Fig. 7.2. Fermi systems with an energy gap, or mass. Top left: The gap ap-
pearing on the Fermi surface in conventional superconductors and in 3He-B.
Bottom left: The quasiparticle spectrum in conventional superconductors and
in 3He-B. Bottom right: The spectrum of Dirac particles and of quasiparticles
in semiconductors.

7.4.4 From Bogoliubov quasiparticle to Dirac particle. From 3He-B to Dirac
vacuum

If M were independent of p, eqns (7.48) and (7.49) would represent the Hamil-
tonian and the energy spectrum of Dirac particles with mass M . However, in
our case M(p) depends on p in an essential way. In the weak-coupling approx-
imation (which corresponds to the BCS theory) the magnitude ∆0 of the order
parameter is small, so that the minimum of the energy is located close to p = pF .
Near the minimum of the energy, one has

E2
B(p) ≈ v2

F (p− pF )2 + ∆2
0 , (7.50)

showing that ∆0 plays the role of the gap in the quasiparticle energy spectrum.
One can continuously deform the energy spectrum of the 3He-B Bogoliubov

quasiparticle in eqn (7.49) to the spectrum of Dirac particles. This can be done,
for example, by increasing c. In the limit of large c one obtains the Dirac Hamil-
tonian with the mass determined by the chemical potential:
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mc2 ≫ |µ| : M(p) ≈ −µ , H → HDirac = cpiα
i−µβ , H2

Dirac = E2 = µ2+c2p2 ,
(7.51)

where αi and β are Dirac matrices. This shows that 3He-B and the Dirac vacuum
belong to the same universality class. This is the class with trivial topology in
momentum space: there are no points, lines or surfaces in momentum space
where the energy vanishes (Fig. 7.2).

Actually, the absence of zeros in the energy spectrum does not necessarily
imply trivial topology in momentum space. We shall see on examples of 2+1
systems (films) in Chapter 11 that p-space topology can be non-trivial even
for the fully gapped spectrum, so that the non-zero topological charge leads to
quantization of physical parameters. Such a situation is fairly typical for even
space dimensions (2+1 and 4+1), but can in principle occur in 3+1 dimensions
too.

3He-B is topologically equivalent to the Dirac vacuum and contains inter-
acting fermionic and bosonic (propagating oscillations of the order parameter
eµ i) quantum fields, whose dynamics is determined by the quantum field theory.
However, 3He-B does not provide the relativistic quantum field theory needed
for the simulation of the quantum vacuum: there is no Lorentz invariance and
some components of the order parameter only remotely resemble gravitons. Nev-
ertheless, the analogy with the Dirac vacuum can be useful, and 3He-B can serve
as a model system for simulations of different phenomena in particle physics and
cosmology. In particular, the symmetry-breaking pattern in superfluid 3He-B
was used for the analysis of color superconductivity in quark matter (Alford
et al. 1998; Wilczek 1998). Nucleation of quantized vortices observed in non-
equilibrium phase transitions by Ruutu et al. (1996a, 1998) and nucleation of
other topological defects – spin–mass vortices – observed by Eltsov et al. (2000)
served as experimental simulations in 3He-B of the Kibble (1976) mechanism,
describing the formation of cosmic strings during a symmetry-breaking phase
transition in the expanding Universe. Vortices in 3He-B were also used by Bevan
et al. (1997b) for the experimental simulation of baryon production by cosmic
strings mediated by spectral flow (see Chapter 23).

7.4.5 Mass generation for Standard Model fermions

Finally, let us discuss the connection with the electroweak phase transition, where
the originally gapless fermions (see Sec. 8.2.1 below) also acquire mass. In eqn
(7.48) for 3He-B, particles with the energy spectrum M(p) are hybridized with

holes whose energy spectrum is −M(p). The order parameter e
(0)
µ i provides the

off-diagonal matrix element which mixes particles and holes, and thus does not
conserve particle number. The resulting object is neither a particle nor a hole,
but their combination – the Bogoliubov quasiparticle.

In the electroweak transition, the right-handed particles with the spectrum
c(σ ·p) and the left-handed particles with the spectrum −c(σ ·p) are hybridized.
For example, below the transition, the common Hamiltonian for left and right
electrons becomes
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He =

(

c(σ · p) M
M∗ −c(σ · p)

)

, E2(p) = H2
e = c2p2 + |M |2 . (7.52)

The off-diagonal matrix element M , mixing left and right electrons, is provided
by the electroweak order parameter – the Higgs field in eqn (15.8): M ∝ φ2. This
gives the mass Me = |M | to the resulting electron, the quasiparticle, which is
neither a left nor a right particle, but a combination of them – a Dirac particle.
Thus, ignoring the difference in the relevant symmetry groups, the physics of
mass generation for the Standard Model fermions is essentially the same as in
superconductors and Fermi superfluids (Nambu and Jona-Lasinio 1961; Ander-
son 1963). For the further consideration of universality classes of fermionic vacua
it is important to note that in the Standard Model, the primary excitations are
not Dirac particles, but massless (gapless) fermions.

7.4.6 3He-A – superfluid with point nodes

The phase transition to 3He-A corresponds to the following symmetry-breaking
scheme (at the moment we consider continuous symmetries only and do not take
into account discrete symmetries):

G = U(1)N × SO(3)L × SO(3)S → HA = U(1)Lz−N/2 × U(1)Sz
. (7.53)

The order parameter with the residual symmetry HA is

e
(0)
µ i = ∆0ẑµ (x̂i + iŷi) . (7.54)

It is symmetric under spin rotations about the spin axis ẑµ, with Sz being the
generator of rotations. Orbital rotation by an angle β about the orbital axis ẑi

transforms (x̂i + iŷi) to e−iβ (x̂i + iŷi). This transformation can be compensated
by a phase rotation (from the group U(1)N ) with an angle α = β/2. Thus the
order parameter is symmetric under combined orbital and phase rotations with
the generator Lz −N/2.

The general form of the order parameter is obtained from eqn (7.54) by the
action of the group G. It is the product of the spin part described by the real
unit vector d̂, obtained from ẑµ by spin rotations SO(3)S, and the orbital part
described by the complex vector m̂+ in̂ in eqn (7.25), obtained from x̂i + iŷi by
orbital rotations SO(3)L:

eµ i = RS
µνR

L
ike

2iαe
(0)
ν k = ∆0d̂µ (m̂i + in̂i) , m̂ · m̂ = n̂ · n̂ = 1 , m̂ · n̂ = 0 .

(7.55)
Let us also mention the very important discrete Z2 symmetry P of the A-

phase vacuum. It is the symmetry of the vacuum under the following combined
π rotations in spin and orbital spaces. For the simplest order parameter in eqn
(7.54) this symmetry is

P = US
2xUL

2z . (7.56)

Here US
2x is the spin rotation by π around the axis x̂µ (or in general it is the

rotation by π about any axis perpendicular to d̂). UL
2z is the rotation by π about
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axis ẑi (or in general about the l̂-vector); its action on the order parameter is
equivalent to the phase rotation by α = π/2. The combined action of these two
groups is the symmetry operation, since each of the two symmetry operations
changes the sign of the order parameter. The latter property is the reason why we
call it the parity transformation. In many physical cases the combined symmetry
does play the role of space inversion. It will be shown later that P is this discrete
symmetry which gives rise to the Alice string (the half-quantum vortex, see Secs
15.3.1 and 15.3.2).

The Bogoliubov–Nambu Hamiltonian for the fermionic quasiparticles in 3He-
A has the form

HA =

(

M(p) ∆(p)
∆†(p) −M(p)

)

= M(p)τ̌3 + c⊥(σ · d̂)(τ̌1m̂ ·p− τ̌2n̂ ·p) , c⊥ =
∆0

pF
,

(7.57)
and the quasiparticle energy spectrum is

E2
A(p) = H2 = M2(p) + c2⊥(p × l̂)2 , l̂ = m̂ × n̂ . (7.58)

The unit vector l̂ shows the anisotropy axis of the quasiparticle spectrum, and
also determines the direction of the orbital momentum of Cooper pairs. This
energy spectrum has two zeros – Fermi points – at p(a) = qapF l̂ with qa = ±1
(Fig. 7.3). As we discussed in Sec. 7.2.4, eqn (7.16), the relativistic spectrum
emerges in the vicinity of each node.

Equation (7.57) shows that the spin projection of quasiparticles on the axis

d̂ is a good quantum number. Thus the Hamiltonians for quasiparticles with
spin projection Sz = +(1/2)σ · d̂ and with spin projection Sz = −(1/2)σ · d̂ are
independent. This demonstrates that 3He-A represents one of several possible
ESP states, where the pairing occurs independently for each spin projection.
The two Hamiltonians, H± = M(p)τ̌3 ± c⊥(τ̌1m̂ · p − τ̌2n̂ · p), differ only by

the sign in front of m̂ and n̂, i.e. they have the same direction of l̂. Thus in this
particular ESP state the Cooper pairs for both spin populations have the same
axial orbital structure and the same direction of the orbital momentum l̂. The
vacuum of 3He-A is axial.

7.4.7 Axiplanar state – flat directions

The more general ESP state, in which the direction of the orbital momentum
is different for two spin projections, is represented by the axiplanar state (Fig.
7.3). The order parameter in the axiplanar state has the form

eµ i =
1

2
∆↑

(

d̂′ + id̂′′
)

µ
(m̂↑ + in̂↑)i +

1

2
∆↓

(

d̂′ − id̂′′
)

µ
(m̂↓ + in̂↓)i . (7.59)

Here d̂′ · d̂′ = d̂′′ · d̂′′ = 1, d̂′ · d̂′′ = 0; ∆↑ is the gap amplitude of the pairing of

the spin-up fermions with respect to the axis ŝ = d̂′ × d̂′′, while ∆↓ is the gap
amplitude for the spin-down population; the directions of the orbital momenta
of Cooper pairs are correspondingly l̂↑ = m̂↑ × n̂↑ and l̂↓ = m̂↓ × n̂↓. In zero
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Fig. 7.3. Positions of the Fermi points in the A (3He-A), axiplanar and planar
phases. In the model BCS Hamiltonian used, the pairing occurs independently
for spin-up and spin-down fermions leading to hidden symmetry: the energy
of the state (solid line) does not depend on the mutual directions of the

orbital vectors l̂↑ and l̂↓, which show the directions to the point nodes in
the spectrum of spin-up and spin-down quasiparticles, respectively. This is
the reason for the so-called flat direction in configurational space: the energy
is the same all the way from the A-phase to the planar phase. The fully
gapped B-phase (3He-B) has the lowest energy among the considered p-wave
spin-triplet states. The energy monotonously decreases on the way from the
planar to the B-phase. In real liquid 3He the hidden symmetry is approximate,
so that both the B-phase and the A-phase correspond to local minima of
energy. The model BCS Hamiltonian with the hidden symmetry and flat
directions is believed to work best at low pressure.

external magnetic field, spin-up and spin-down pairs have the same amplitudes
∆↑ = ∆↓ ≡ ∆0

In 3He-A spin-up and spin-down pairs have the same directions of orbital
vectors l̂↑ = l̂↓ ≡ l̂. But they can have different phases: for example, m̂↑ + in̂↑ =
(x̂+ iŷ)iΦ↑ and m̂↓ + in̂↓ = (x̂+ iŷ)iΦ↓ . In this case one obtains eqn (7.55) with

d̂ = d̂′ cos
Φ↑−Φ↓

2 − d̂′′ sin
Φ↑−Φ↓

2 and with m̂ + in̂ = (x̂ + iŷ)i(Φ↑+Φ↓)/2. This
demonstrates that the phase difference between the two populations is equivalent
to rotation of the spin part d̂ of the order parameter.

7.4.8 3He-A1 – Fermi surface and Fermi points

In the 3He-A1 phase only fermions of one spin population are paired. The order
parameter is given by eqn (7.59) with, say, ∆↓ = 0. Such a state occurs in the
presence of an external magnetic field immediately below the phase transition
from the normal state. This is an example of the coexistence of topologically
different zeros in the energy spectrum: the spin-down quasiparticles have a Fermi
surface, while the spin-up quasiparticles have two Fermi points. The residual
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symmetry of this state is

HA1
= U(1)Lz−N/2 × U(1)Sz−N/2 . (7.60)

7.4.9 Planar phase – marginal Fermi points

In the so-called planar phase two spin populations haves opposite directions of the
orbital angular momentum, l̂↑ = −l̂↓, as a result the time reversal symmetry is
not broken and the vacuum of the planar phase is not axial. The order parameter
has the form

eµ i = ∆0

(

d̂′µm̂i + d̂′′µn̂i

)

eiΦ . (7.61)

If Φ = 0 this can be obtained from eqn (7.59) with ∆↑ = ∆↓ = ∆0, m̂↑ = m̂↓ ≡
m̂, n̂↑ = −n̂↓ ≡ n̂. The Bogoliubov–Nambu Hamiltonian for the planar state is

Hplanar = M(p)τ̌3 + c⊥τ̌
1((m̂ · p)(σ · d̂′) + (n̂ · p)(σ · d̂′′)) . (7.62)

The square of the energy spectrum

E2
planar(p) = H2 = M2(p) + c2⊥(p× l̂)2 , l̂ = m̂ × n̂ , (7.63)

coincides with that of the A-phase in eqn (7.58). The energy spectrum also has

two zeros at p(a) = ±pF l̂.
At first glance the planar state has the same fermionic spectrum with the

same point gap nodes as 3He-A. At least this is what follows from comparison
of eqn (7.58) and eqn (7.63). However, the ‘square roots’ of E2 for the planar
phase (7.62) and for 3He-A (7.57) are different. We shall see in Sec. 12.1.1 that
the topology of the point nodes is different in the two systems: the topological
charges of the gap nodes of two spin populations are added up in 3He-A, but
compensate each other in the planar phase. This means that in contrast to 3He-
A, the planar state is marginal, being topologically unstable toward the closing
of the nodes.

The planar phase is energetically unstable toward the fully gapped B-phase
(Fig. 7.3), say, along the following path: eµ i(M) = ∆0 (x̂µx̂i + ŷµŷi) + Mẑµẑi,
where the parameter M changes from M = 0 in the planar state to M = ∆0 in
the B-phase. At any non-zero M the quasiparticle spectrum E2(p) = M2(p) +
c2⊥(p2

x + p2
y) +M2p2

z/p
2
F acquires the finite gap M . It is an analog of the Dirac

mass, since for small M the low-energy spectrum has the form

E2
a(p) ≈ v2

F (pz − qapF )2 + c2⊥(p2
x + p2

y) +M2 . (7.64)

In complete analogy with the Standard Model fermions, the left-handed and
right-handed quasiparticles of the planar state are hybridized to form the Dirac
particle with the mass M .
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The residual symmetry of the planar state includes the continuous and dis-
crete symmetries

Hplanar = U(1)Lz+Sz
× P , (7.65)

where the element of the discrete symmetry P is

P = US
2ze

(π/2)N . (7.66)

It contains the spin rotation by angle π about the ẑµ axis combined with U(1)N

phase rotation by angle α = π/2; each of them changes the sign of the order
parameter and thus plays the part of space inversion. The discrete symmetry P
fixes M = 0 and thus protects the gapless (massless) Dirac quasiparticles.

The vacuum of the planar phase has similar properties to that of the Standard
Model of electroweak interactions. In both systems the Fermi points are marginal
being described by similar momentum space topological invariants protected by
symmetry. When the symmetry is broken, fermion zero modes disappear and
elementary particles acquire mass. We discuss this later in Sec. 12.3.2.

7.4.10 Polar phase – unstable nodal lines

In the so-called polar phase the residual symmetry is

Hpolar = U(1)Lz
× U(1)Sz

× P1 × P2 , (7.67)

where the discrete symmetries are P1 = US
2xUL

2x and P2 = US
2xe

(π/2)N. The
general form of the order parameter is

eµ i = ∆0d̂µêi e
iΦ , (7.68)

with real unit vectors ê and d̂. From the square of the energy spectrum,

E2
polar(p) = M2(p) + c2⊥(p · ê)2 , (7.69)

one finds that the energy of quasiparticles is zero on a line in p-space. Here it is
the circumference in the equatorial plane: p = pF , p · ê = 0. We already know
(see Sec. 7.2.5) that the polar state is marginal, since the lines of zeros are not
protected by topology. These fermion zero modes are, however, protected by the
symmetry Hpolar of the polar state in eqn (7.67). When the symmetry is violated,
nodal lines disappear.
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UNIVERSALITY CLASSES OF FERMIONIC VACUA

Now we proceed to effective theories of quantum fermionic liquids. In the low-
energy limit the type of the effective theory depends on the structure of the
quasiparticle spectrum, which in turn is determined by the universality class of
the Fermi system.

In the previous chapter several different types of fermionic quasiparticle spec-
tra have been discussed: (i) 3He-A1 has a Fermi surface for one of the two spin
populations – the 2D surface in 3D p-space where the energy is zero. (ii) In 3He-
A and in the axiplanar states the spectrum has stable point nodes. The planar
state also has point nodes in the quasiparticle spectrum, but these point zeros
disappear at arbitrarily small perturbations violating the symmetry of the pla-
nar state. (iii) 3He-B as well as conventional s-wave superconductor has a fully
gapped spectrum. (iv) Finally the polar phase has lines of zeros, which can be
destroyed by small perturbations of the order parameter.

Why do some types of zeros seem to be stable, while others are destroyed
by perturbations? The question is very similar to the problem of stability of
extended structures, such as vortices and domain walls: Why do some defects
appear to be stable, while others can be continuously unwound by deforma-
tions? The answer is given by topology which studies the properties robust to
continuous deformations. For extended objects it is the topology operating in
real r-space; in the case of the energy spectrum it is the p-space topology.

The p-space topology distinguishes three main generic classes of the sta-
ble fermionic spectrum in the quantum vacuum of a 3+1 fermionic system: (i)
vacua with Fermi surfaces; (ii) vacua with Fermi points; and (iii) vacua with a
fully gapped fermionic spectrum. Systems with the Fermi lines (nodal lines) in
the spectrum are topologically unstable and by small perturbations can be trans-
formed to one of the three classes; that is why they do not enter this classification
scheme.

The same topological classification is applicable to the fermionic vacua in
high-energy physics. The vacuum of the Weyl fermions in the Standard Model,
with the excitation spectrum E2(p) = c2|p|2, belongs to the class (ii); as we shall
see below, this class is very special: within this class RQFT with chiral fermions
emerges in the low-energy corner even in the originally non-relativistic fermionic
system. The vacuum of Dirac fermions, with the excitation spectrum E2(p) →
M2+c2|p|2, belongs to the class (iii) together with conventional superconductors
and 3He-B; this similarity allowed the methods developed for superconductors
to be applied to RQFT (Nambu and Jona-Lasinio 1961). And finally, in strong
fields the vacuum can acquire a Fermi surface (an example of the Fermi surface



FERMI SURFACE AS TOPOLOGICAL OBJECT 87

arising beyond the event horizon will be discussed in Sec. 32.4).
3He liquids present examples of all three classes of homogeneous fermionic

vacua (Fig. 7.1). The normal 3He liquid at T > Tc and also the superfluid 3He
phases in the ‘high-energy’ limit, i.e. at energy E ≫ ∆0, are representative of
the class (i). Below the superfluid transition temperature Tc one has either an
anisotropic superfluid 3He-A, which belongs to the class (ii), where RQFT with
chiral fermions gradually arises at low temperature, or an isotropic superfluid
3He-B of the class (iii).

A universality class unites systems of different origin and with different in-
teractions. Within each of these universality classes one can find the system of
non-interacting fermions: namely, Fermi gas of non-interacting non-relativistic
fermions in class (i); non-interacting Weyl fermions in class (ii); and non-interact-
ing Dirac fermions in class (iii).

We shall not consider here the class (iii) with trivial momentum space topol-
ogy. Since there are no fermion zero modes in the vacuum of this class, the
generic excitations of such a vacuum must have a mass of order of the Planck
energy scale. Considering the other two classes of quantum vacua, which contain
fermion zero modes, we start in each case with the non-interacting systems, and
show how the fermion zero modes are protected by topology when the interaction
is turned on.

The object whose topology is relevant must be related to the energy spectrum
of the propagating particle or quasiparticle. It turns out to be the propagator
– the Green function, and more precisely its Fourier components. For the non-
interacting or simplified systems the Green function is expressed in terms of the
Hamiltonian in p-space. That is why in these cases the universality classes can
be expressed in terms of the topologically different classes of the Hamiltonians
in p-space. But in general it is the topology of the propagator of the fermionic
field which distinguishes classes of the fermionic vacua.

Let us start with the universality class (i).

8.1 Fermi surface as topological object

8.1.1 Fermi surface is the vortex in momentum space

A Fermi surface naturally arises in Fermi gases, where it marks the boundary in
p-space between the occupied states (np = 1) and empty states (np = 0). It is
clear that in the ideal Fermi gas the Fermi surface is a stable object: if the energy
of particles is deformed the boundary between the occupied and empty states
does not disappear. Small deformations lead only to the change of shape of the
Fermi surface. Thus the Fermi surface is locally stable resembling the stability
of the domain wall in Ising ferromagnets, which separates domains with spin up
and spin down. The role of the Ising variable is played by I ≡ np − 1/2 = ±1/2.

If the interaction between particles is introduced, the distribution function
np of particles in the ground state of the system is no longer exactly 1 or 0.
Nevertheless, it appears that the Fermi surface survives as the singularity in
np. Such stability of the Fermi surface comes from a topological property of
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the Feynman quantum mechanical propagator for fermionic particles – the one-
particle Green function

G = (z −H)−1 . (8.1)

Let us write the propagator for a given momentum p and for an imaginary
frequency, z = ip0. The imaginary frequency is introduced to avoid the conven-
tional singularity of the propagator ‘on the mass shell’, i.e. at z = E(p). For
non-interacting particles the propagator has the form

G =
1

ip0 − vF (p− pF )
. (8.2)

Obviously there is still a singularity: on the 2D hypersurface (p0 = 0, p = pF ) in
the 4-momentum space (p0,p) the propagator is not well defined. This singularity
is stable, i.e. it cannot be eliminated by small perturbations. The reason is that
the phase Φ of the Green function G = |G|eiΦ changes by 2π around the path C
embracing the element of the 2D hypersurface in the 4-momentum space.

This can be easily visualized if we skip one spatial dimension; then the Fermi
surface is the closed line in the 2D space (px, py). The singularities of the prop-
agator are lying on a closed line in the 3-momentum space (p0, px, py) at the
bottom of Fig. 8.1. The phase Φ of the propagator changes by 2π around any
path C embracing any element of this vortex loop in the 3-momentum space.
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The phase winding number N1 = 1 cannot change continuously; that is why it
is robust toward any perturbation. The singularity of the Green function on the
2D surface in the frequency–momentum space and thus the fermion zero modes
near the Fermi surface are preserved, even when interactions between particles
are introduced.

The properties of the systems which are robust under deformations are usu-
ally described by topology. All the configurations (in momentum, coordinate or
mixed momentum–coordinate spaces and spacetimes) can be distributed into
classes. The configurations within a given topological class can be continuously
deformed into each other, while the configurations of different classes cannot.
These classes typically form a group and can be described by the group ele-
ments. In most of the cases the group (the homotopy group) is Abelian and
the classes can be characterized by integer numbers, called topological charges.
We shall discuss this in more detail in Part III which is devoted to topological
defects.

In the simplest case of the complex scalar Green function for particles with
a single spin projection, the topological charge which determines the stability
of fermion zero mode is the winding number N1 of the phase field Φ(p0,p) in
the 4-momentum space. The phase Φ(p0,p) of the Green function realizes the
mapping of the closed contours C in the 4-momentum space (p0,p) to the closed
contours C̃ in the space of the phase Φ – the circumference S1. The topological
charge N1 distinguishes the classes of homotopically equivalent contours C̃ on
S1. The group, whose elements are classes of contours, is called the fundamental
homotopy group and is denoted as π1. The homotopy group π1 of the space S1

is thus π1(S
1) = Z – it is the group of integers N1.

Exactly the same fundamental group π1(S
1) = Z leads to the stability

of quantized vortices in simple superfluids and superconductors, described by
the complex order parameter Ψ = |Ψ|eiΦ. The phase Φ of the order parameter
changes by 2πn1 around the path embracing the vortex line in 3D r-space (or
embracing the vortex sheet in 3+1 spacetime (r, t)). The only difference is that,
in the case of vortices, the phase is determined in r-space or in (r, t) spacetime,
instead of the 4-momentum space. Thus in systems with a Fermi surface the
manifold of singularities of the Green function in (p0,p) space is topologically
equivalent to a quantized vortex in 3+1 spacetime (r, t).

8.1.2 p-space and r-space topology

As a rule, in strongly correlated fermionic systems, there are no small parameters
which allow us to treat these system perturbatively. Also there are not many
models which can be solved exactly. Hence the qualitative description based on
the universal features coming from the symmetry and topology of the ground
state is instructive. In particular, it allows us to construct the effective low-energy
theory of fermion zero modes in strongly correlated fermionic systems of a given
universality class, which incorporates all the important features of this class. All
the information on the symmetry and topology of the fermion zero modes is
contained in the low-energy asymptote of the Green function of the fermionic
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fields, which is characterized by topological quantum numbers (see the book by
Thouless (1998) for a review on the role of the topological quantum numbers in
physics).

The Fermi surface and quantized vortex in Sec. 8.1.1 are two examples of the
simplest topological classes of configurations. There are a lot of other configu-
rations which are described by more complicated π1 groups and also by higher
homotopy groups (the second homotopy group π2, the third homotopy group π3,
etc.) and by relative homotopy groups. However, the main scheme of the distri-
butions of the configurations into topologically different classes is preserved. We
shall not discuss the technical calculations of the corresponding groups, which
can be found in the books and review papers by Mermin (1979), Michel (1980),
Kléman (1983) and Mineev (1998) on the application of topological methods to
the classification of defects in condensed matter systems.

These two examples also show that one can consider on the same grounds the
topology of configurations in coordinate space and in momentum space. There
can also be an interconnection between spacetime topology and the topology
in the 4-momentum space (see e.g. Volovik and Mineev 1982). If the vacuum
is inhomogeneous in spacetime, the propagator in the semiclassical approxima-
tion depends both on 4-momentum (p0,p) and on spacetime coordinates, i.e.
G(p0,p, t, r). The topology in the (4+4)-dimensional phase space describes: the
momentum space topology of fermion zero modes in homogeneous vacua, which
we discuss here; topological defects of the order parameter in spacetime (vor-
tices, strings, monopoles, domain walls, solitons, etc. in Part III); the topology
of the energy spectrum of fermion zero modes within the topological defects
and edge states (Part V); the quantization of physical parameters (see Chapter
21) and the fermionic charges of the topologically non-trivial extended objects.
Using the topological properties of the spectrum of fermion zero modes of the
quantum vacuum or inside the topological object we are able to construct the
effective theory which describes the low-frequency dynamics of the system, and
using it to investigate many phenomena including the axial anomaly discussed
in Part IV, vortex dynamics discussed in Part V, etc. The combined (p0,p, t, r)
space can be extended even further to include the space of internal or exter-
nal parameters which characterize, say, the ground state of the system (particle
density, pressure, magnetic field, etc.). When such a parameter changes it can
cross the point of the quantum phase transition at which the topology of the
quantum vacuum and its fermion zero modes changes abruptly (Sec. 8.2.8 and
Chapter 21).

8.1.3 Topological invariant for Fermi surface

Let us return to the topology of the Fermi surface. In a more general situation
the Green function is a matrix with spin indices. In addition, it has the band
indices in the case of electrons in the periodic potential of crystals, and indices
related to internal symmetry and to different families of quarks and leptons in
the Standard Model. In such a case the phase of the Green function becomes
meaningless; however, the topological property of the Green function remains
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robust. But now the integer momentum space topological invariant, which is
responsible for the stability of the Fermi surface, is written in the general matrix
form

N1 = tr

∮

C

dl

2πi
G(p0, p)∂lG−1(p0, p) . (8.3)

Here the integral is again taken over an arbitrary contour C in the 4-momentum
space (p, p0), which encloses the Fermi hypersurface (Fig. 8.1 bottom), and tr is
the trace over the spin, band or other indices.

8.1.4 Landau Fermi liquid

The topological class of systems with a Fermi surface is rather broad. In par-
ticular it contains conventional Landau Fermi liquids, in which the propagator
preserves the pole. Close to the pole the propagator is

G =
Z

ip0 − vF (p− pF )
. (8.4)

As distinct from the Fermi gas in eqn (8.2) the Fermi velocity vF no longer equals
pF /m, but is a separate ‘fundamental constant’ of the Fermi liquid. It determines
the effective mass of the quasiparticle, m∗ = pF /vF . Also the residue is different:
one now has Z 6= 1, but this does not influence the low-energy properties of the
liquid. One can see that that neither the change of vF , nor the change of Z,
changes the topological invariant for the propagator, eqn (8.3), which remains
N1 = 1. This is essential for the Landau theory of an interacting Fermi liquid;
it confirms the conjecture that there is one-to-one correspondence between the
low-energy quasiparticles in Fermi liquids and particles in a Fermi gas.

Thus (if there are no infrared peculiarities, which occur in low-dimensional
systems, see below) in (isotropic) Fermi liquids the spectrum of fermionic quasi-
particles approaches at low energy the universal behavior

E(p) → vF (|p| − pF ) , (8.5)

with two ‘fundamental constants’, the Fermi velocity vF and Fermi momentum
pF . The values of these parameters are governed by the microscopic physics,
but in the effective theory of Fermi liquids they are the fundamental constants.
The energy of the fermionic quasiparticle in eqn (8.5) is zero on a 2D manifold
|p| = pF in 3D momentum space – the Fermi surface.

8.1.5 Collective modes of Fermi surface

The topological stability of the Fermi surface determines also the possible bosonic
collective modes of a Landau Fermi liquid. Smooth perturbations of the vacuum
cannot change the topology of the fermionic spectrum, but they produces ef-
fective fields acting on a given particle due to the other moving particles. This
effective field cannot destroy the Fermi surface, due to its topological stability,
but it can locally shift the position of the Fermi surface. Therefore a collective
motion of the vacuum is seen by an individual quasiparticle as dynamical modes
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Zero sound – propagating oscillations of shape of Fermi surface

Fig. 8.2. Bosonic collective modes in the fermionic vacuum of the Fermi surface
universality class. Collective motion of particles comprising the vacuum is
seen by an individual quasiparticle as dynamical modes of the Fermi surface.
Here the propagating elliptical deformations of the Fermi surface are shown.

of the Fermi surface (Fig. 8.2). These bosonic modes are known as the different
harmonics of zero sound (see the book by Khalatnikov 1965).

Dynamics of fermion zero modes interacting with the collective bosonic fields
represents the quantum field theory. The effective quantum field theory in the
vacuum of the Fermi surface universality class is the Landau theory of Fermi
liquid.

8.1.6 Volume of the Fermi surface as invariant of adiabatic deformations

Topological stability means that any continuous change of the system will leave
the system within the same universality class. Such a continuous perturbation
can include the adiabatic, i.e. slow in time, change of the interaction strength
between the particles, or adiabatic deformation of the Fermi surface, etc. Under
adiabatic perturbations, no spectral flow of the quasiparticle energy levels occurs
across the Fermi surface (if the deformation is slow enough, of course). The state
without excitations transforms to another state, in which excitations are also
absent, i.e. one vacuum transforms into another vacuum. The absence of the
spectral flow leads in particular to Luttinger’s (1960) theorem stating that the
volume of the Fermi surface is an adiabatic invariant, i.e. the volume is invariant
under adiabatic deformations of the Fermi surface, if the total number of particles
is kept constant.

For the isotropic Fermi liquid, where the Fermi surface is spherical, the Lut-
tinger theorem means that the volume of the Fermi surface is invariant under
adiabatic switching on the interaction between the particles. In other words, in
the Fermi liquid the relation between the particle density and the Fermi momen-
tum remains the same as in an ideal non-interacting Fermi gas:

n =
p3

F

3π2h̄3 . (8.6)

Here we take into acoount two spin projections.
Actually the theorem must be applied to the total system, say, to the whole

isolated droplet of the 3He liquid. The corresponding Fermi surface is the 5D
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manifold in the 6D (p, r) space, where the quasiparticle energy becomes zero:
E(p, r) = 0. One can state that there is a relation between the total number
of particles and the volume Vphase space of the 6D phase space inside the 5D
hypersurface of zeros:

N = 2
Vphase space

(2πh̄)3
. (8.7)

A topological approach to Luttinger’s theorem has also been discussed by
Oshikawa (2000). The processes related to the spectral flow of quasiparticle en-
ergy levels will be considered in Chapters 18 and 23 in connection with the
phenomenon of axial anomaly. Sometimes it happens that the spectral flow can
occur on the boundary of the system even during the slow switching of the inter-
action, and this can violate the Luttinger theorem even in the limit of an infinite
system.

8.1.7 Non-Landau Fermi liquids

The Fermi hypersurface described by the topological invariant N1 exists for any
spatial dimension. In 2+1 dimensions the Fermi hypersurface is a line in 2D
momentum space, which corresponds to the vortex loop in the 3D frequency-
momentum space in Fig. 8.1. In 1+1 dimensions the Fermi surface is a point
vortex in momentum space.

In low-dimensional systems the Green function can deviate from its canonical
Landau form in eqn (8.4). For example, in 1+1 dimensions it loses its pole due to
infrared divergences. Nevertheless, the Fermi surface and fermion zero modes are
still there (Volovik 1991; Blagoev and Bedell 1997). Though the Landau Fermi
liquid transforms to another state with different infrared properties, this occurs
within the same topological class with given N1. An example is provided by the
so-called Luttinger liquid. Close to the Fermi surface the Green function for the
Luttinger liquid can be approximated by (see Wen 1990b; Volovik 1991; Schulz
et al. 2000)

G(z, p) ∼ (ip0 − v1p̃)
g−1

2 (ip0 + v1p̃)
g

2 (ip0 − v2p̃)
g−1

2 (ip0 + v2p̃)
g

2 , (8.8)

where v1 and v2 correspond to Fermi velocities of spinons and holons and p̃ =
p − pF . The above equation is not exact but illustrates the robustness of the
momentum space topology. Even if g 6= 0 and v1 6= v2, the singularity of the
Green function occurs at the point (p0 = 0, p̃ = 0). One can easily check
that the momentum space topological invariant in eqn (8.3) remains the same,
N1 = 1, as for the conventional Landau Fermi liquid. Thus the Fermi surface
(as the geometrical object in the 4-momentum space, where singularities of the
Green function are lying) persists even if the Landau state is violated.

The difference from the Landau Fermi liquid occurs only at real frequency z:
the quasiparticle pole is absent and one has branch-cut singularities instead of
a mass shell, so that the quasiparticles are not well-defined. The population of
the particles has no jump on the Fermi surface, but has a power-law singularity
in the derivative (Blagoev and Bedell 1997).
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Another example of a non-Landau Fermi liquid is the Fermi liquid with ex-
ponential behavior of the residue found by Yakovenko (1993). It also has a Fermi
surface with the same topological invariant, but the singularity at the Fermi
surface is exponentially weak.

A factorization of quasiparticles in terms of spinons and holons will be dis-
cussed in Sec. 12.2.3 for elementary particles in the Standard Model. Such a
factorization of the Green function (8.8) in terms of the fractional factors has
also a counterpart in r-space, thus providing the analogy between composite
fermions and composite defects. We shall see that fractional topological defects
in r-space such as Alice string – the half-quantum vortex – in Secs 15.3.1 and

15.3.2. are the consequence of the factorization of the order parameter into two
parts each with the fractional winding number, see e.g. eqn (15.18).

8.2 Systems with Fermi points

8.2.1 Chiral particles and Fermi point

In 3He-A the energy spectrum of fermionic quasiparticles has point nodes. Close
to each of the nodes the spectrum has a relativistic form given in eqn (7.16).
The Bogoliubov–Nambu Hamiltonian for 3He-A in eqn (7.57) written for one

spin projection (along d̂) and close to the nodes at p(a) = qapF ẑ (with qa = ±1)
has the form

HA = qaτ̌
3c‖p̃z + τ̌1c⊥p̃x − τ̌2c⊥p̃y , p̃ = p− qapF ẑ , (8.9)

where |p̃| ≪ pF .
In particle physics eqn (8.9) represents the Weyl Hamiltonian which describes

the Standard Model fermions, leptons and quarks, above the electroweak tran-
sition where they are massless and chiral. The Weyl Hamiltonian for the free
massless spin-1/2 particle is a 2 × 2 matrix

H = ±cσipi , (8.10)

where c is the speed of light, and σi are the Pauli matrices. The plus and minus
signs refer to right-handed and left-handed particles, with their spin oriented
along or opposite to the particle momentum p, respectively (Fig. 8.3).

The anisotropy of ‘speeds of light’ in eqn (8.9) can be removed by rescaling

the coordinate along the l̂ direction: z = (c‖/c⊥)z̃. We can also perform rotation

in momentum space to equalize the signs in front of the Pauli matrices τ̌b and
obtain HA = −qac⊥τ̌ ip̃i. Then the only difference remaining between eqn (8.10)
and eqn (8.9) is that the Hamiltonian for Bogoliubov quasiparticles in 3He-A is
expressed in terms of the Pauli matrices τ̌b in the Bogoliubov–Nambu particle–
hole space, instead of matrices σi in the spin space in the Hamiltonian for quarks
and leptons. This simply means that Bogoliubov–Nambu isospin plays the same
role for quasiparticles as the conventional spin for matter. Later we shall see
the inverse relation: the conventional spin of Bogoliubov quasiparticles which
comes from the spin of the 3He atom plays the same role as the weak isospin for
Standard Model fermions.
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Topologically stable Fermi points
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Fig. 8.3. Top: Gap node in superfluid 3He-A is the conical point in the 4-mo-
mentum space. Quasiparticles in the vicinity of the nodes in 3He-A and ele-
mentary particles in the Standard Model above the electroweak transition are
chiral fermions. Particles occupying the negative energy states of the vacuum
can leak through the conical point to the positive energy world of matter.
Bottom: The spectrum of the right-handed chiral particle as a function of
momentum along the spin. For particles with positive energy the spin σ is
oriented along the momentum p. The negative energy states are occupied.

The point p = 0 in eqn (8.10) is the exceptional point in p-space, since
the direction of the spin of the particle is not determined at this point. At this
point also the energy E = cp is zero. Thus distinct from the case of the Fermi
surface, where the energy of the quasiparticle is zero at the surface in 3D p-space,
the energy of a chiral particle is zero at isolated points – the Fermi points. The
fermion zero modes in the vacua of this universality class are chiral quasiparticles.

Let us show that such singular points in momentum space also have topolog-
ical signature, which is, however, different from that of the Fermi surface.

8.2.2 Fermi point as hedgehog in p-space

Let us again start with the non-interacting particles, which can be described in
terms of a one-particle Hamiltonian, and consider the simplest equation (8.10).
Let us consider the behavior of the particle spin s(p) as a function of the particle
momentum p in the 3D space p = (px, py, pz) (Fig. 8.4). For the right-handed
particle, whose spin is parallel to the momentum, one has s(p) = p/2p, while for
left-handed ones s(p) = −p/2p. In both cases the spin distribution in momentum
space looks like a hedgehog, whose spines are represented by spins. Spines point
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s(p)  ||  p – p(a)

Spins form a hedgehog
or anti-hedgehog

in momentum space

pz–pz
(a)

px–px
(a)

py–py
(a)

Fig. 8.4. Illustration of the meaning of the topological invariant for the sim-
plest case: the Fermi point as a hedgehog in 3D momentum space. For each
momentum p we draw the direction of the quasiparticle spin, or its equivalent
in 3He-A – the Bogoliubov spin. The topological invariant for the hedgehog
is the mapping S2 → S2 with integer winding number N3 which is N3 = +1
for the drawn case of a right-handed particle. The topological invariant N3

is robust to any deformation of the spin field σ(p): one cannot comb the
hedgehog smooth.

outward for the right-handed particle producing the mapping of the sphere S2 in
3D p-space onto the sphere S2 of the spins with the winding number N3 = +1.
For the left-handed particle the spines of the hedgehog look inward and one has
the mapping with N3 = −1. In 3D space the hedgehogs are topologically stable,
which means that the deformation of the Hamiltonian cannot change the winding
number and thus cannot destroy the singularity (the fermion zero mode) of the
Hamiltonian.

8.2.3 Topological invariant for Fermi point

Let us consider the general 2 × 2 Hamiltonian

H = τ̌bgb(p) , b = (1, 2, 3) , (8.11)

where gb(p) are three arbitrary functions of p. An example of such a Hamiltonian
is provided by the p-wave pairing of ‘spinless’ fermions in eqn (7.10)

g1 = p · e1 , g2 = −p · e2 , g3 =
p2

2m
− µ , e1 × e2 = l̂ |e1 × e2| 6= 0 . (8.12)

The singular points in momentum space are the Fermi points p(a) where gb(p
(a)) =

0. In case of eqn (8.12) these are p(a) = qapF l̂ = ±pF l̂. The topological invari-
ant which describes these points is the winding number of the mapping of the
sphere σ2 around the singular point in p-space to the 2-sphere of the unit vector
ĝ = g/|g|:
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N3 =
1

8π
eijk

∫

σ2

dSk ĝ ·
(

∂ĝ

∂pi
× ∂ĝ

∂pj

)

. (8.13)

One can check that the topological charge of the hedgehog at p = 0 in the
Hamiltonian (8.10) describing the right-handed particle (sign +) is N3 = +1, the

same as of the Fermi point with q = −1 (i.e. at p = −pF l̂) in the Hamiltonian
for quasiparticles in a ‘spinless’ p-wave superfluid.

Correspondingly, N3 = −1 for the left-handed fermions (eqn (8.10) with sign
−) and for quasiparticles in ‘spinless’ p-wave superfluids in the vicinity of the

Fermi point at p = pF l̂.

8.2.4 Topological invariant in terms of Green function

In the general case the system is not described by a simple 2 × 2 matrix, since
there can be other degrees of freedom. For example, the Hamiltonian eqn (7.57)
for quasiparticles in 3He-A is a 4 × 4 matrix. Also, if the interaction between
the fermions is included, the system cannot be described by a single-particle
Hamiltonian. However, even in this complicated case the topological invariant
can be written analytically if we proceed from p-space to the 4-momentum space
(p0,p) by introducing the Green function. Since the invariant should not depend
on the deformation, we can consider it on an example of the Green function
for non-interacting fermions. Let us again introduce the Green function on the
imaginary frequency axis, z = ip0 (Fig. 8.5):

G = (ip0 − τ̌bgb(p))−1 . (8.14)

One can see that this propagator has a singularity at the points in the 4-
momentum space: (p0 = 0,p = p(a)). The generalization of the p-space invariant
N3 in eqn (8.13) to the 4-momentum space gives

N3 =
1

24π2
eµνλγ tr

∫

σ3

dSγ G∂pµ
G−1G∂pν

G−1G∂pλ
G−1 . (8.15)

Now the integral is over the 3D surface σ3 embracing the singular point (p0 =
0,p = p(a)) – the Fermi point. It is easy to check that substitution of eqn (8.14)
into eqn (8.15) gives the p-space invariant in eqn (8.13). However, in contrast to
eqn (8.13) the equation (8.15) is applicable for the interacting systems where the
single-quasiparticle Hamiltonian is not determined: the only requirement for the
Green function matrix G(p0,p) is that it is continuous and differentiable outside
the singular point.

One can check that under continuous variation of the matrix function the
integrand changes by a total derivative. That is why the integral over the closed
3-surface does not change, i.e. N3 is invariant under continuous deformations of
the Green function, and also it is independent of the choice of closed 3-surface
σ3 around the singularity.

The possible values of the invariant can be found from the following con-
sideration. If one considers the matrix Green function for the massless chiral
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Topological stability of Fermi point
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Fig. 8.5. The Green function for fermions in 3He-A and in the Standard Model
have point singularities in the 4-momentum space, which are described by
the integer-valued topological invariant N3. The Fermi points in 3He-A at
p(a) = ±pF l̂ have N3 = ∓2. The Fermi point at p = 0 for the chiral rela-
tivistic particle in eqn (8.10) has N3 = Ca, where Ca = ±1 is the chirality.
The chirality, however, appears only in the low-energy corner together with
the Lorentz invariance. Thus the topological index N3 is the generalization
of the chirality to the Lorentz non-invariant case.

fermions in eqn (8.10), one finds that it is proportional to a unitary 2 × 2 ma-
trix: G−1 = ip0 − cσipi = i

√

p2
0 + c2p2 U with UU+ = 1. Let us discuss the

more complicated case, when this unitary matrix is an arbitrary function of the
4-momentum: U = u0(pµ)+ iσiui(pµ), where u2

0 +u2 = 1. In this particular case
the invariant N3 becomes

N3 =
1

24π2
eµνλγ tr

∫

σ3

dSγ U∂pµ
U+U∂pν

U+U∂pλ
U+ (8.16)

=
1

12π2
eµνλγ e

αβǫκ

∫

σ3

dSγ uα∂pµ
uβ∂pν

uǫ∂pλ
uκ . (8.17)

It describes the mapping of the S3 sphere σ3 surrounding the singular point in
4D pµ-space onto the S3 sphere u2

0 + u2 = 1. The classes of such mappings form
the non-trivial third homotopy group π3(S

3) = Z, where Z is the group of inte-
ger numbers N3. The same integer values N3 are preserved for any continuous
deformations of the Green function matrix, if it is well determined outside the sin-
gularity where det G−1 6= 0. The integral-valued index N3 thus represents topo-
logically different classes of Fermi points – the singular points in 4-momentum
space.
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8.2.5 A-phase and planar state: the same spectrum but different topology

For quasiparticles in 3He-A, where the Hamiltonian in eqn (7.57) is a 4×4 matrix,

one obtains that the topological charges of the Fermi points at p = −pF l̂ and
p = +pF l̂ are N3 = +2 and N3 = −2 correspondingly. On the other hand, in
the planar phase in eqn (7.62) one obtains N3 = 0 for both Fermi points. Thus,
though quasiparticles in the A-phase and planar state have the same energy

spectrum E(p) =
√

M2(p) + c2⊥(p × l̂)2, the topology of the Green function

is essentially different. Because of the zero value of the topological invariant
the Fermi points of the planar state is marginal and can be destroyed by small
perturbations, while the perturbations of the 3He-A can only split the Fermi
point, say, with the topological charge N3 = +2 into two Fermi points with
N3 = +1. This is what actually occurs when the A-phase transforms to the
axiplanar phase in Fig. 7.3.

8.2.6 Relativistic massless chiral fermions emerging near Fermi point

Systems with elementary Fermi points, i.e. Fermi points with topological charge
N3 = +1 or N3 = −1, have remarkable properties. In such a system, even if

it is non-relativistic, the Lorentz invariance always emerges at low energy. Since
the topological invariant is non-zero, there must be a singularity in the Green
function or in the Hamiltonian, which means that the quasiparticle spectrum
remain gapless: fermions are massless even in the presence of interaction. For
the cases N3 = ±1, the function g(p) in eqn (8.11) is linear in deviations from

the Fermi point, pi − p
(a)
i . Expanding this function g(p) one obtains the general

form in the vicinity of each Fermi point: gb(p) ≈ ei
b(pi − p

(a)
i ). After the shift of

the momentum and the diagonalization of the 3×3 matrix ei
b, one again obtains

H = ±cσipi, where the sign is determined by the sign of the determinant of the
matrix ei

b. Thus the Hamiltonian for relativistic chiral particles is the emergent
property of the Fermi point universality class.

If the interactions are introduced, and the one-particle Hamiltonian is no
longer valid, the same can be obtained using the Green function: in the vicinity

of the Fermi point p
(a)
µ in the 4-momentum space one can expand the propagator

in terms of the deviations from this Fermi point, pµ−p(a)
µ . If the Fermi point has

the lowest non-zero value of the topological charge, i.e. N3 = ±1, then close to
the Fermi point the linear deviations are dominating. As a result the general form
of the inverse propagator is expressed in terms of the tetrad field eµ

b (vierbein):

G−1 = τ̌beµ
b (pµ − p(a)

µ ) , b = (0, 1, 2, 3) . (8.18)

Here we have returned from the imaginary frequency axis to the real energy, so
that z = E = −p0 instead of z = ip0; and τ̌b = (1, τ̌1, τ̌2, τ̌3). The quasiparticle
spectrum E(p) is given by the poles of the propagator, and thus by the following
equation:

gµν(pµ − p(a)
µ )(pν − p(a)

ν ) = 0 , gµν = ηbceµ
b e

ν
c , (8.19)

where ηbc = diag(−1, 1, 1, 1).
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gµν( pµ– qAµ – qτ .Wµ)( pν– qAν – qτ .Wµ) = 0

Quasiparticle near Fermi point  is
left- or right -handed particle moving in effective 
gravitational , electromagnetic and weak fields

vacuum mode 
which shifts position of Fermi point
is effective electromagnetic field

vacuum modes which change slopes
form effective metric: gravity field  

E2 = c2p2 → gikpi pk
p → p – qA

Fig. 8.6. Bosonic collective modes of the fermionic vacuum which belongs to the
Fermi point universality class. The slow (low-energy) vacuum motion cannot
destroy the topologically stable Fermi point, it can only shift the point (top
left) and/or change its slopes (top right). The shift corresponds to the gauge
field A, while the slopes (‘speeds of light’) form the metric tensor field gik.
Both fields are dynamical, representing the collective modes of the fermionic
vacuum with Fermi points. Such a collective motion of the vacuum is seen
by an individual quasiparticle as gauge and gravity fields. Thus the chiral
fermions, gauge fields and gravity appear in the low-energy corner together
with physical laws: Lorentz and gauge invariance.

Thus in the vicinity of the Fermi point the massless quasiparticles are always
described by the Lorentzian metric gµν , even if the underlying Fermi system is
not Lorentz invariant; superfluid 3He-A is an example.

8.2.7 Collective modes of fermionic vacuum – electromagnetic and
gravitational fields

The quantities gµν (or eµ
b ) and p

(a)
µ , which enter the general fermionic spectrum

at low energy in eqn (8.19), are dynamical variables, related to the bosonic
collective modes of the fermionic vacuum. They play the role of an effective
gravity and gauge fields, respectively (Fig. 8.6). In principle, there are many
different collective modes of the vacuum, but these two modes are special. Let
us consider the slow collective dynamics of the vacuum, and how it influences
the quasiparticle spectrum. The dynamical perturbation with large wavelength
and low frequency cannot destroy the topologically stable Fermi point. Thus
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under such a perturbation the general form of eqn (8.18) is preserved. The only
thing that the perturbation can do is to shift locally the position of the Fermi

point p
(a)
µ in momentum space and to deform locally the vierbein eµ

b (which in
particular includes slopes of the energy spectrum).

This means that the low-frequency collective modes in such Fermi systems
are the propagating collective oscillations of the positions of the Fermi point and
the propagating collective oscillations of the slopes at the Fermi point (Fig. 8.6).
The former is felt by the right- or the left-handed quasiparticles as a dynamical
gauge (electromagnetic) field, because the main effect of the electromagnetic field
Aµ = (A0,A) is just the dynamical change in the position of zero in the energy
spectrum: in the simplest case, (E − qaA0)

2 = c2(p − qaA)2.
The collective modes related to a local change of the vierbein eµ

b correspond
to the dynamical gravitational field gµν . The quasiparticles feel the inverse tensor
gµν as the metric of the effective space in which they move along the geodesic
curves

ds2 = gµνdx
µdxν . (8.20)

Therefore, the collective modes related to the slopes play the part of a gravity
field.

Thus near a Fermi point the quasiparticle is a chiral massless fermion moving
in the effective dynamical electromagnetic and gravitational fields generated by
the low-frequency collective motion of the vacuum.

8.2.8 Fermi points and their physics are natural

From the topological point of view the Standard Model and the Lorentz non-
invariant ground state of 3He-A belong to the same universality class of systems
with topologically non-trivial Fermi points, though the underlying ‘microscopic’
physics can be essentially different. Pushing the analogy further, one may con-
clude that classical (and quantum) gravity, as well as electromagnetism and weak
interactions, are not fundamental interactions. If the vacuum belongs to the uni-
versality class with Fermi points, then matter (chiral particles and gauge fields)
and gravity (vierbein or metric field) inevitably appear together in the low-
energy corner as collective fermionic and bosonic zero modes of the underlying
system.

The emerging physics is natural because vacua with Fermi points are natural:
they are topologically protected. If a pair of Fermi points with opposite topo-
logical charges exist, it is difficult to destroy them because of their topological
stability: the only way is to annihilate the points with opposite charges. Vacua
with Fermi points are not as abundant as vacua with Fermi surfaces, since the
topological protection of the Fermi surface is more powerful. But they appear
in most of the possible phases of spin-triplet superfluidity. They can naturally
appear in semiconductors without any symmetry breaking (see Nielsen and Ni-
nomiya (1983) where the Fermi point is referred to as a generic degeneracy
point). Possible experimental realization of such Fermi points in semiconductors
was discussed by Abrikosov (1998) and Abrikosov and Beneslavskii (1971). In
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Fig. 8.7. Quantum phase transition between two axial vacua with the same
symmetry but of different universality class. It occurs when the chemical
potential µ in the BCS model in eqn (7.26) crosses zero value. At µ > 0 the
axial vacuum has two Fermi points which annihilate each other when µ = 0.
At µ < 0 the Green function has no singularities and the axial quantum
vacuum is fully gapped.

vacua with a fully gapped spectrum the Fermi points appear inside the cores of
vortices (Fig. 23.4).

In quantum liquids the Fermi points always appear in pairs, so that the
sum of topological charges N3 of all the Fermi points is zero. This is similar to
the observation made by Nielsen and Ninomiya (1981) for the Fermi points in
RQFT on a lattice. In their case the vanishing of the total topological charge is
required by the periodicity in momentum space. As a result, in addition to the
chiral fermion living in the vicinity of the Fermi point at p = 0, there must be
a fermion with opposite chirality living in some point of momentum space far
from the origin. This means the doubling of fermions. Recently chiral fermions
emerging at Fermi points in the 4-dimensional generalization of graphene were
discussed by Creutz (2008).

Appearance of the pair of Fermi points in the initial topologically trivial vac-
uum (or their annihilation) represents the quantum phase transition at which
the universality class of the fermionic spectrum changes. Such a transition oc-
curs for instance in the axial vacuum when the interaction between the bare
atoms increases and the BCS model transforms to the Bose–Einstein conden-
sate of Cooper pairs: at some critical value of the interaction parameter λ in
eqn (7.2) the Fermi points annihilate each other. See Fig. 8.7 where the same
quantum phase transition occurs when the chemical potential µ in eqn (7.26)
changes sign (Volovik 1992a; Gurarie and Radzihovsky 2007). The symmetry of
the vacuum state is the same above and below this quantum phase transition.
More on quantum phase transitions generated by topology see in review (Volovik
2007a).

Another important property of chiral quasiparticles in the vicinity of the
Fermi point is that such a quasiparticle is ‘a flat membrane moving in the or-
thogonal direction with the speed of light’ (’t Hooft 1999); the position of the
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Fig. 8.8. Zeros of co-dimension dc = 0. The vortex line in momentum space
in Fig. 8.1 representing the Fermi surface – the manifold of zeros of co-di-
mension dc = 1 – splits in two fractional vortices, say half-quantum vortices,
at p = p1 and p = p2. The Green function has singularities on a whole
band p1 < p < p2 between the fractional vortices. Such a band can be rep-
resented by the fermionic condensate suggested by Khodel and Shaginyan
(1990) where the quasiparticle energy is zero, E(p) = 0, for all p within the
band p1 < p < p2.

membrane and its velocity are well determined simultaneously. The fact that
just these ‘deterministic’ quasiparticles emerge in the Standard Model may shed
light on the fundamental concepts of quantum mechanics.

8.2.9 Manifolds of zeros in higher dimensions

The topological classification of universality classes of fermionic vacua in terms
of their fermion zero modes can be extended to higher-dimensional space. The
manifolds of zeros can be characterized by co-dimension dc, which is the dimen-
sion D of p-space minus the dimension of the manifold of zeros:

(1) Co-dimension dc = 1. The two-dimensional Fermi surface in D = 3 p-
space, described by the topological invariant N1, has according to this definition
co-dimension dc = 1. The topologically stable manifolds of zeros with the same
invariantN1 can exist for any spatial dimensionD ≥ 1. Such Fermi hypersurfaces
have dimension D − 1.

(2) Co-dimension dc = 3. The dimension of such manifolds of zeroes is D−3,
that is why they can exist only for spatial dimensions D ≥ 3. For D = 3 these are
the Fermi points described by the topological invariant N3. The same invariant
N3 describes topologically stable hypersurfaces with dc = 3 in higher dimensions.

(3) Co-dimension dc = 5. Topologically stable hypersurfaces of dimension
D−5 are described by the higher-order topological invariant N5. They can exist
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if the spatial dimension D ≥ 5. The N5 invariant for dc = 5 will be discussed in
Sec. 22.2.1.

There is no invariant which can be constructed for the Green function sin-
gularities of even co-dimension. That is why the lines of nodes in 3D p-space
(co-dimension dc = 2) and the point nodes in 2D p-space (also of co-dimension
dc = 2) are typically topologically unstable. They can be protected by the sym-
metry of the vacuum, and thus disappear under small deformations violating the
symmetry, or are described by Z2 topological charge (Horava 2005).

Zeros of co-dimension dc = 0 have also been discussed. The homogeneous
vacuum state with such a Fermi band in which all fermions have zero energy
(the so-called fermionic condensate) was suggested by Khodel and Shaginyan
(1990). The quantum phase transition from the Fermi surface to fermionic con-
densate can be visualized as splitting of the vortex in momentum space in Fig.
8.1 representing the Fermi surface into fractional vortices in Fig. 8.8 connected
by the vortex sheet – the fermionic condensate (Volovik 1991).

The manifold of co-dimension dc = 0 can also be formed by fermion zero
modes in the vortex core (Sec. 23.1.2).

Finally let us mention, that linear expansion of the Green’s function in the
vicinity of the Fermi manifold (such as eqn (8.18) for expansion near the Fermi
point which leads to the emergent relativistic matter and gravity, and an expan-
sion (8.2) near the Fermi surface) is the consequence of the general mathematical
theorem – the so-called Atiyah-Bott-Shapiro construction (Horava 2005).
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EFFECTIVE QUANTUM ELECTRODYNAMICS IN 3He-A

The new point compared to Bose superfluids where the effective gravity arises,
is that in the fermionic vacuum there appear in addition chiral fermions and
an effective electromagnetic field. One obtains all the ingredients of quantum
electrodynamics (QED) with massless fermions. Let us start with the fermionic
content of the theory.

9.1 Fermions

9.1.1 Electric charge and chirality

The Hamiltonian (7.57) for fermionic quasiparticles in 3He-A is

HA = M(p)τ̌3 + c⊥σ
µd̂µ(τ̌1m̂ · p− τ̌2n̂ · p) . (9.1)

First we consider a fixed unit vector d̂. Then the projection Sz = (1/2)σµd̂µ

of the quasiparticle spin on the d̂ axis is a good quantum number, Sz = ±1/2.
Let us recall that the conventional spin of the fermionic quasiparticle in 3He-A
comes from the nuclear spin of the bare 3He atoms. It plays the role of isospin
in emerging RQFT (see Sec. 9.1.5).

There are four different species a of quasiparticles in 3He-A. In addition to
the ‘isospin’ Sza = ±1/2, they are characterized by ‘electric charge’ qa = ±1. As
before, we assign the ‘electric charge’ qa = +1 to the quasiparticle which lives
in the vicinity of the Fermi points at p = +pF l̂. Correspondingly the quasipar-
ticle living in the vicinity of the opposite node at p = −pF l̂ has the ‘electric’
charge qa = −1. Then close to the Fermi points the Hamiltonian for these four
quasiparticle species has the form

Ha = e
k(a)
b (pk − qaAk)τ̌b

= 2Szac⊥
[

m̂ · (p − qaA)τ̌1 − n̂ · (p− qaA)τ̌2
]

+ qac‖ l̂ · (p − qaA)τ̌3, (9.2)

A = pF l̂ . (9.3)

The chirality Ca of quasiparticles is determined by the sign of the determinant

of matrices e
k(a)
b :

Ca = sign |ek(a)
b | = −qa . (9.4)

Thus in the vicinity of the Fermi point at p = +pF l̂ there live two left-handed
fermions with ‘isotopic’ spins Sz = ±1/2 and with ‘electric’ charge qa = +1. Two
right-handed fermions with ‘isotopic’ spins Sz = ±1/2 and charge qa = −1 live

near the opposite node at p = −pF l̂ . Equation (9.2) is particular realization of
Atiyah-Bott-Shapiro construction in 3He-A.
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9.1.2 Topological invariant as generalization of chirality

For the chiral fermions in eqn (8.10) the momentum space invariant (8.15) coin-
cides with the chirality of the fermion: N3 = Ca, where Ca = ±1 is the chirality.
In other words, for a single relativistic chiral particle the topological invariant
N3 is equivalent to the chirality. In the case of several species of relativistic par-
ticles, the invariant N3 is simply the number of right-handed minus the number
of left-handed fermions. However, this connection is valid only in the relativistic
edge. The topological invariant is robust to any deformation, including those
which violate Lorentz invariance. In the latter case the notion of chirality loses
its meaning, while the topological invariant persists. This means that the topo-
logical description is far more general than the description in terms of chirality,
which is valid only when Lorentz symmetry is obeyed. Actually the momentum
space charge N3 is the topological generalization of chirality.

According to eqn (8.18) we know that in the originally non-relativistic sys-
tem, the effective Lorentz invariance gradually arises in the vicinity of the Fermi
points with N3 = ±1. Simultaneously the quasiparticles acquire chirality: they
gradually become right-handed (left-handed) in the vicinity of the Fermi point
with N3 = +1 (N3 = −1). Thus the topological index N3 is not only the gen-
eralization of chirality to the Lorentz non-invariant case, but also the source of
chirality and of Lorentz invariance in the low-energy limit.

Later in Sec. 12.4 we shall see that in the vicinity of the degenerate Fermi
point, i.e. the Fermi point with |N3| > 1, chirality of fermions is protected by
the symmetry only. If the corresponding symmetry is violated the quasiparticles
are no longer relativistic and chiral.

9.1.3 Effective metric viewed by quasiparticles

In eqn (9.2) the Hamiltonian is represented in terms of a dreibein, which gives
the spatial part of the effective metric:

gij
(a) =

3
∑

b=1

e
i(a)
b e

j(a)
b = c2‖ l̂

il̂j + c2⊥(δij − l̂il̂j) . (9.5)

Note that all four fermions have the same metric tensor and thus the same ‘speed
of light’. This is the result of symmetries of the vacuum state connecting different
fermionic species. The energy spectrum in the vicinity of each of the nodes

E2
a(p) = gij(pi − qaAi)(pj − qaAj). (9.6)

demonstrates that the interaction of fermions with effective electromagnetic field
depends on their electric charge, while their interaction with gravity is universal.

What is still missing in eqn 89.6 is the non-diagonal metric g0i and the
A0 component of the electromagnetic field. Both of them are simulated by the
superfluid velocity field vs of the 3He-A vacuum. Equation (9.6) is valid in the
superfluid-comoving frame. The Hamiltonian and the energy spectrum in the
environment frame are obtained by the Doppler shift:

H̃(a) = H(a) + p · vs = H(a) + (p − qaA) · vs + qapF l̂ · vs , (9.7)
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Ẽa(p) = Ea(p) + (p − qaA) · vs + qapF l̂ · vs . (9.8)

This gives finally the fully relativistic Weyl equations for the spinor wave function
of fermions

e
µ(a)
b (pµ − qaAµ)τ̌b χ = 0 , τ̌b =

(

1, τ̌1, τ̌2, τ̌3
)

, (9.9)

gµν(pµ − qaAµ)(pν − qaAν) = 0 , (9.10)

where the components of the effective metric and electromagnetic fields acting
on the fermionic quasiparticles are

gij = c2‖ l̂
il̂j + c2⊥(δij − l̂il̂j) − vi

sv
j
s , g

00 = −1 , g0i = −vi
s , (9.11)

√−g =
1

c‖c
2
⊥

, (9.12)

gij =
1

c2‖
l̂il̂j +

1

c2⊥
(δij − l̂il̂j) , g00 = −1 + gijv

i
sv

j
s , g0i = −gijv

j
s , (9.13)

ds2 = −dt2 + gij(dx
i − vi

sdt)(dx
j − vj

sdt) , (9.14)

A0 = pF l̂ · vs , A = pF l̂ . (9.15)

9.1.4 Superfluid velocity in axial vacuum

Superfluid motion of the quantum vacuum in 3He-A has very peculiar properties.
They come from the fact that there is no phase factor in the order parameter
m̂ + in̂ in eqn (7.25), which characterizes the axial vacuum. The phase factor
is absorbed by the complex vector. That is why the old definition of superfluid
velocity vs = h̄

2m∇Φ is meaningless. The phase Φ becomes meaningful if the

vector l̂ = m̂ × n̂ is uniform in space, say l̂ = ẑ. Then one can write the order
parameter as m̂ + in̂ = (x̂ + iŷ)eiΦ. In this case global phase rotations U(1)N

have the same effect on the order parameter as orbital rotations about axis l̂, so
that the superfluid velocity can be expressed in terms of the orbital rotations:
vs = h̄

2m∇Φ = h̄
2mm̂

i∇n̂i. Dropping the intermediate expression in terms of the

phase Φ, which is valid only for homogeneous l̂, one obtains the equation for the
superfluid velocity valid for any non-uniform l̂-field:

vs =
h̄

2m
m̂i∇n̂i . (9.16)

Since in our derivation we used the connection to the U(1)N group, the ob-
tained superfluid velocity transforms properly under the Galilean transforma-
tion: vs → vs + u. It follows from eqn (9.16) that in contrast to the curl-free
superfluid velocity in superfluid 4He, the vorticity in 3He-A can be continuous.
It is expressed through an l̂-texture by the following relation:

∇× vs =
h̄

4m
eijk l̂i∇l̂j ×∇l̂k , (9.17)

which was first found by Mermin and Ho (1976) and is called the Mermin–Ho
relation. It reflects the properties of the symmetry-breaking pattern SO(3)L ×
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U(1)N → U(1)L3−N/2, which connects orbital rotations and U(1)N transforma-
tions.

Since the triad m̂, n̂ and l̂ play the role of dreibein, the superfluid velocity
is analogous to the torsion field in the tetrad formalism of gravity. It describes
the space-dependent rotations of vectors m̂ and n̂ about the third vector of the
triad, the l̂-vector.

9.1.5 Spin from isospin, isospin from spin

We have seen in eqn (9.1) that nuclear spin of 3He atoms is not responsible for
chirality of quasiparticles in superfluid 3He-A. The chirality which appears in
the low-energy limit is determined by the orientation of its Bogoliubov–Nambu
spin τ̌b with respect to the direction of the motion of a quasiparticle. Even
for the originally ‘spinless’ fermions one obtains (after rescaling the ‘speeds of
light’, rotating in τ̌b-space, and shifting the momentum) the standard isotropic
Hamiltonian for the Weyl’s chiral quasiparticles

H(a) = cCaτ̌
bpb , (9.18)

where Ca = ±1 is the emerging chirality. This Hamiltonian is invariant under
rotations in the rescaled coordinate space (or rescaled momenta pb) if they are
accompanied by rotations of matrices τ̌b in the Bogoliubov–Nambu space. The
elements of this combined symmetry of the low-energy Hamiltonian form the
SO(3) group of rotations with the generators

Jb = Lb +
1

2
τ̌b , b = (1, 2, 3) . (9.19)

This combined SO(3) group is effective; it arises only in the low-energy cor-
ner where it is part of the emerging effective Lorentz group. It has nothing to
do with the SO(3)J group of rotations in the underlying liquid helium which
is spontaneously broken in 3He-A. From eqn (9.19) it follows that it is the
Bogoliubov–Nambu spin, which plays the role of the ‘relativistic’ spin for an
inner observer living in the world of quasiparticles. While the inner observer be-
lieves that the spin is a consequence of the fundamental group of space rotations,
or of the fundamental Lorentz group, an external observer finds that the spin is
not fundamental, but emerges in the low-energy corner where it gives rise to the
full group of relativistic rotations (or Lorentz group) as the effective combined
symmetry group of the low-energy quasiparticle world.

Spin 1/2 naturally arising for the fermion zero modes of co-dimension dc = 3
– the fermionic quasiparticles near the Fermi points – produces the connection
between spin and statistic in the low-energy world: even if the original bare
fermions are spinless, the fermion zero modes of quantum vacuum acquire spin
1/2 in the vicinity of the Fermi point.

On the other hand the conventional spin Sz = ±1/2 (the spin in the under-
lying physics of 3He atoms), which leads to the degeneracy of the Fermi point in
3He-A, plays the role of isotopic spin in the world of quasiparticles. The global
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SO(3)S group of spin rotations (actually this is the SU(2) group) is seen by
quasiparticles as an isotopic group. It is responsible for the SU(2) degeneracy of
quasiparticles, but not for their chirality. We shall see later that it corresponds
to the weak isospin in the Standard Model, so that in the low-energy corner the
global SU(2) group gradually becomes a local one.

Such interchange of spin and isospin degrees of freedom shows that the only
origin of chirality of the (quasi)particle is the non-zero value of the topological
invariant N3 of the fermion zero modes of the quantum vacuum. What kind of
spin is related to the chirality depends on the details of the matrix structure
of the Green function in the vicinity of the Fermi point, i.e. what energy levels
cross each other at the Fermi point. For example, the ‘relativistic’ spin can be
induced near the conical point where two electronic bands in a crystal touch
each other. In a sense, there is no principal difference between spin and isospin:
by changing continuously the matrix structure of the Green function one can
gradually convert isospin to spin, while the topological charge N3 of the Fermi
point remains invariant under such a rotation in spin–isospin space. In RQFT
the conversion between spin and isospin degrees of freedom can occur due to
fermion zero modes which appear in the inhomogeneous vacuum of a magnetic
monopole (Jackiw and Rebbi 1976b).

9.1.6 Gauge invariance and general covariance in fermionic sector

It is not only the Lorentz invariance which arises in the low-energy corner. The
Weyl equation (9.9) for the wave function of fermionic quasiparticles near the
elementary Fermi point is gauge invariant and even obeys general covariance. For
example, the local gauge transformation of the wave function of the fermionic
quasiparticle, χ → χeiqaα(r,t), can be compensated by the shift of the ‘electro-
magnetic’ field Aµ → Aµ + ∂µα. The same occurs with general coordinate trans-
formations, which can be compensated by the deformations and rotations of the
vierbein fields. These attributes of the electromagnetic (Aµ) and gravitational
(gµν) fields arise gradually and emergently when the Fermi point is approached.
In this extreme limit, massless relativistic Weyl fermions have another symmetry
– the invariance under the global scale transformation gµν → Ω2gµν .

9.2 Effective electromagnetic field

9.2.1 Why does QED arise in 3He-A?

Will the low-energy collective modes – the effective gravity and electromagnetic
fields – experience the same symmetries as fermions? If yes, we would obtain
completely invariant RQFT emerging naturally at low energy. However, this is
not as simple. We have already seen in Bose liquids that the low-energy quasi-
particles are relativistic and that there is a dynamical metric field gµν which
simulates gravity, but the gravity itself does not obey the Einstein equations.
The same occurs for the effective gravity in 3He-A. But the situation with the
effective electromagnetic field is different: the leading term in the action for the
electromagnetic field is fully relativistic.



110 EFFECTIVE QUANTUM ELECTRODYNAMICS

The reason for such a difference is the following. The effective action for the
collective modes is obtained by integration over the fermionic degrees of freedom.
This principle was used by Sakharov (1967a) to obtain an effective gravity and
by Zel’dovich (1967) to derive an effective electrodynamics, with both effective
actions arising from quantum fluctuations of the fermionic vacuum. In quantum
liquids all the fermionic degrees of freedom are known at least in principle for all
energy scales. At any energy scale the bare fermions are certainly non-relativistic
and do not obey any of the invariances which the low-energy quasiparticles enjoy.
That is why one should not expect a priori that the dynamics of the collective
vacuum modes will acquire some symmetries.

The alternative is to integrate over the dressed particles – the quasiparticles.
If the main contribution to the integral comes from the low-energy corner, i.e.
from the fermion zero modes of the quantum vacuum, then the use of the low-
energy quasiparticles is justified, and the action obtained in this procedure will
automatically obey the same symmetry as fermion zero modes. This is where the
difference between the effective gravity and electromagnetic fields shows up. We
know that the Newton constant has the dimension [h̄][E]−2, that is why the con-
tribution to G−1 depends quadratically on the cut-off energy G−1 ∼ E2

Planck/h̄,
and thus it practically does not depend on the low-energy fermions. In case of
the electromagnetic field the divergence of the dimensionless coupling constant
is logarithmic, 1/α ∼ ln(EPlanck/E) (eqn (9.21)). Thus the smaller the energy E
of gapless fermions, the larger is their contribution to the effective action. That
is why in the leading logarithmic approximation, the action for the effective
electromagnetic field is determined by the low-energy quasiparticles and thus it
automatically acquires all the symmetries experienced by these quasiparticles:
gauge invariance, general covariance and even conformal invariance.

Thus in terms of QED, the 3He-A behaves as almost ‘perfect’ condensed
matter, producing in a leading logarithmic approximation the general covariant,
gauge and conformal invariant action for the effective electromagnetic field:

Sem =

∫

d4x

4αh̄

√−ggµνgαβFµαFνβ . (9.20)

Bearing in mind that the gauge field in the effective QED in 3He-A comes from
the shift of the 4-momentum pµ, we must choose the same dimension for Aµ as
that of the 4-momentum pµ. Then α becomes a dimensionless coupling ‘constant’.

Since the effective action in eqn (9.20) is obtained by integration over mo-
menta where fermions are mostly relativistic, it is covariant in terms of the same
metric gµν as that acting on fermions. This is the reason why photons have
the same speed as the maximum attainable speed for fermions. Moreover, since
fermions are massless the action obeys conformal invariance: gµν → Ω2gµν does
not change the action.

Note that eqn (9.20) does not contain the speed of light c explicitly: it is
hidden within the metric field, That is why it can be equally applied both to the
Standard Model and to 3He-A, where the speed of light is anisotropic as viewed
by an external observer.
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9.2.2 Running coupling constant

Both in QED with massless fermions (or fermions with a mass small compared
to the cut-off energy scale) and in the effective QED in 3He-A, the coupling
constant is not really constant but ‘runs’, i.e. changes with the energy scales. The
vacuum of QED can be considered as some kind of polarizable medium, where
virtual pairs of fermions and anti-fermions screen the electric charge. If the
fermions are massless this screening is perfect: the charge is completely screened
by the polarized vacuum, whence the name zero-charge effect. Mathematically
this means that the running coupling constant α is logarithmically divergent. The
ultraviolet cut-off is given by either the Planck or GUT energy scale. If qa are
dimensionless electric charges of chiral fermions in terms of, say, electric charge
of the positron, then after integration over the virtual fermions one obtains eqn
(9.20) with the following α (see e.g. Terazawa et al. 1977; Akama et al. 1978):

α−1 =
1

24π2

∑

a

q2aln

(

E2
Planck

max(B, T 2,M2)

)

. (9.21)

The infrared cut-off is provided by the temperature T , external frequency ω, the
inverse size r of inhomogeneity, the magnetic field B itself, or, if the fermions are
paired forming Dirac particles, by the Dirac mass M . Thus the infrared cut-off in
QED is max(T 2, ω2, (h̄c/r)2, B,M2). If T = ω = B = M = 0, then the infrared
cut-off is given by the distance r from the charge. This demonstrates that the
effective electric charge of the body logarithmically decreases with the distance
r from the body: e2 ∼ e20/ ln(rpPlanck/h̄). At infinity the observed electric charge
is zero.

Equation (9.21) is not complete (see the book by Weinberg 1995): (i) It
gives only the logarithmic contribution, while the constant term is ignored. The
constant term is important since, because of the mass of fermions, the logarithm
is not very big. (ii) It misses the antiscreening contribution of charge bosons.
That is why it cannot be applied to real QED, but it works well in 3He-A, where
the fermions are always massless and the contribution of bosons can be neglected.

9.2.3 Zero-charge effect in 3He-A

Since 3He-A belongs to the same universality class of the vacua with chiral
fermions, the above equations can be applied to 3He-A. There are NF = 4 chiral
fermionic species in 3He-A with charges qa = ±1 and ‘isotopic’ spin Sza = ±1/2.
However, since we doubled the number of degrees of freedom by introducing
particles and holes, we must divide the final result by two to compensate the
double counting. That is why the effective number of chiral fermionic species
in 3He-A is NF = 2. The ultraviolet cut-off of the logarithmically divergent
coupling is provided by the gap amplitude ∆0 = c⊥pF , which is the second
Planck energy scale in 3He-A, eqn (7.31). It is the same energy scale which
enters the vacuum energy densityNF

√−g∆4
0/12π2 in eqn (7.32), and the Newton

gravitational constant of the effective gravity which arises in 3He-A: G−1 =
(NF /9π)∆2

0 (see Sec. 10.5). As a result the logarithmically divergent running
coupling constant in 3He-A is
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α−1 =
1

12π2
ln

(

∆2
0

T 2

)

. (9.22)

In 3He-A, the effective metric gµν , its determinant
√−g and the gauge field

Aµ must be expressed in terms of the 3He-A observables in eqns (9.11) and
eqn (9.15). Substituting all these into eqn (9.20) one obtains the logarithmically

divergent contribution to the Lagrangian for the l̂ field in 3He-A:

ln

(

∆2
0

T 2

)

p2
F

24π2h̄vF

(

c2‖

(

l̂ × (∇× l̂)
)2

+ c2⊥

(

l̂ · (∇× l̂)
)2

−
(

∂t l̂ + (vs · ∇)̂l
)2
)

.

(9.23)
This is what was obtained in a microscopic BCS theory of 3He-A (see Chap-
ter 10; Leggett and Takagi 1978; Dziarmaga 2002). The second term contains
the parameter c⊥, which is small in 3He-A. That is why it is usually neglected
compared to the regular (non-divergent) term with the same structure in eqn
(10.41). At T = 0 the infrared cut-off instead of T 2 is given by the field B, which

in our case is c2⊥pF |̂l × (∇× l̂)|.

9.2.4 Light – orbital waves

There are many drawbacks of the effective QED in 3He-A, which are conse-
quences of the fact that the low-energy physics is formed mostly by fermions
at the trans-Planckian scale where these fermions are not relativistic. Though
eqn (9.23) was obtained from the completely symmetric eqn (9.20) for QED,
the difference between QED and 3He-A is rather large. For example, the vector
field l̂ is an observable variable in 3He-A. Only at low energy does it play the
role of the vector potential of gauge field A, which is not the physical observ-
able for the inner observer because of the emerging gauge invariance. Moreover,
the l̂-vector and the superfluid velocity vs form both the gauge field (A = pF l̂

and A0 = pF vs · l̂) and the metric field in eqn (9.11). The only case when the

gauge and gravitational fields are not mixed is when c‖ = c⊥, and vs ⊥ l̂. Also
there are the non-logarithmic terms in action, which can be ascribed to both the
gravitational and electromagnetic fields.

There are, however, situations where these fields are decoupled. One physi-
cally important case, where only the ‘electromagnetic part’ is relevant, will be
discussed in Sec. 19.3. In this particular case we need the linearized equations in
the background of the equilibrium state which is characterized by the homoge-
neous direction of the l̂-vector. The latter is fixed by the counterflow: l̂0 ‖ vn−vs.
The vector potential of the electromagnetic field is simulated by the small devi-
ations of the l̂-vector from its equilibrium direction, A = pF δl̂, while the metric
is determined by the equilibrium background l̂0-vector. Since l̂ is a unit vector,
its variation is δl̂ ⊥ l̂0. This corresponds to the gauge choice Az = 0, if the z axis
is chosen along the background orientation, ẑ = l̂0. In the considered case only
the dependence on z and t is relevant; as a result l̂ · (∇× l̂) = ∇ · l̂ = 0 and the

dynamics of the field A = pF δl̂ is determined by the Lagrangian (9.23), which
acquires the following form in the superfluid-comoving frame:
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1

2α

√−g
(

B2 − E2
)

=
p2

F vF

24π2h̄
ln

(

∆2
0

T 2

) (

(∂zδl̂)
2 − 1

v2
F

(

∂tδl̂
)2
)

. (9.24)

There are two modes of transverse oscillations of A = pF δl̂ propagating along z,
with the effective electric and magnetic fields (Ey , Bx) in one mode and (Ex, By)
in the other. These effective electromagnetic waves are called orbital waves.
‘Light’ propagates along z with the velocity vF = c‖, i.e. with the same velocity
as fermionic quasiparticles propagating in the same direction. Fermions impose
their speed on light. Though in 3He-A this happens only for the z-direction (3He-
A is not a perfect system for a complete simulation of RQFT), nevertheless this
example demonstrates the mechanism leading to the same maximum attainable
speed for fermions and bosons in an effective theory.

9.2.5 Does one need the symmetry breaking to obtain massless bosons?

Ironically the enhanced symmetry of orbital dynamics in 3He-A characterized by
the fully ‘relativistic’ equation (9.20) arises due to the spontaneous symmetry
breaking into the 3He-A state which leads to formation of the Fermi points
at p(a) = −CapF l̂, and at low energy to all phenomena following from the
existence of the Fermi points. In other words, the low-energy symmetry emerges
from the symmetry breaking, which occurs at the second Planck energy scale, at
T = Tc ∼ ∆0 = EPlanck 2 (eqn (7.31)). Below Tc the liquid becomes anisotropic

with the anisotropy axis along the l̂-vector. The propagating oscillations of the
anisotropy axis A = pF l̂ in eqn (9.24) are the Goldstone bosons arising in 3He-A
due to spontaneously broken symmetry. They are viewed by an inner observer
as the propagating electromagnetic waves.

However, the spontaneous symmetry breaking is not a necessary condition
for the Fermi points to exist. For instance, the Fermi points can naturally appear
in semicondictors without any symmetry breaking (Nielsen and Ninomiya 1983;
Abrikosov 1998). It is the collective dynamics of the fermionic vacuum with Fermi
points which gives rise to the massless photon.

Moreover, one must avoid symmetry breaking in order to have a closer anal-
ogy with the Einstein theory of gravity. This is because the symmetry breaking
is the main reason why the effective action for the metric gµν and gauge field
Aν is contaminated by non-covariant terms. The latter come from the gradients
of Goldstone fields, and in most cases they dominate or are comparable to the
natural Einstein and Maxwell terms in the effective action. An example is the
(1/2)mnv2

s term in eqn (4.6). It is always larger than the Einstein action for gµν ,
which, when expressed through vs, contains the gradients of vs:

√−gR =
1

c3

(

2∂t∇ · vs + (∇ · vs)
2 +

1

2
∇ivsj∇ivsj +

1

2
∇ivsj∇jvsi

)

. (9.25)

This is why a condensed matter system, where the analogy with RQFT is realized
in full, would be a quantum liquid in which Fermi points exist without symmetry
breaking, and thus without superfluidity. In other words, our physical vacuum is
not a superfluid liquid.
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9.2.6 Are gauge equivalent states physically indistinguishable?

The discussed example of the effective QED arising in 3He-A shows the main
difference between effective and fundamental theories of QED. In a fundamental
theory the gauge equivalent fields – the fields obtained from each other by the
gauge transformation Aµ → Aµ + ∇µφ – are considered as physically indistin-
guishable. In an effective theory gauge invariance is not fundamental: it exists
in the low-energy world of quasiparticles and is gradually violated at higher en-
ergy. That is why gauge equivalent states are physically different as viewed by
an external (i.e. high-energy) observer. The homogeneous states with different

directions of l̂ and thus with different homogeneous vector potentials A = pF l̂

are equivalent for an inner observer, but can be easily resolved by an external
observer, who does not belong to the 3He-A vacuum. The same can occur in
gravity: if general relativity is an effective theory, general covariance must be
violated at high energy. This means that metrics which are equivalent for us, i.e.
the metrics which can be transformed to each other by general coordinate trans-
formations, become physically distinguishable at high energy. We shall discuss
this in Chapter 32.

Finally we note that, as we already discussed in Sec. 5.3, the speed of light c
does not enter eqn (9.20) explicitly. It is absorbed by the metric tensor gµν and
by the fine structure constant α. According to eqn (9.22) α is a dimensionless
quantity determined by the number of chiral fermionic species NF and by the
Planck energy cut-off ∆0. The factorization of α = e2/4πh̄c in terms of the
dimensionful parameters – electric charge e and speed of light c – would be
artificial, especially if one must choose between two considerably different speeds
of ‘light’, c‖ and c⊥. Such a factorization can be appropriate for an inner observer,
for whom the ‘speeds of light’ in different directions are indistinguishable, but
not for an external observer, for whom they are different.

9.3 Effective SU(N) gauge fields

9.3.1 Local SU(2) from double degeneracy

In 3He-A each Fermi point is doubly degenerate owing to the ordinary spin σ of
the 3He atom (Sec. 9.1.5). These two species of fermions living in the vicinity of
the Fermi point transform to each other by the discrete Z2-symmetry operation
P in eqn (7.56), which in turn originates from the global SU(2)S group of spin
rotations in the normal liquid (Sec. 7.4.6). The total topological charge of the

point, say at the north pole p = pF l̂, is N3 = −2. This degeneracy, however,
exists only in equilibrium. If the vacuum is perturbed the P-symmetry is violated,
and the doubly degenerate Fermi point splits into two elementary Fermi points
with N3 = −1 each. The perturbed A-phase effectively becomes the axiplanar
phase discussed in Sec. 7.4.7 (see Fig. 7.3), though it remains the A-phase in

a full equilibrium. The positions of the split Fermi points, pF l̂1 and pF l̂2, can
oscillate separately. This does not violate momentum space topology as the total
topological charge of the two Fermi points is conserved in such oscillations: N3 =
−1 − 1 = −2.
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The additional degrees of freedom of the low-energy collective dynamics of
the vacuum, which are responsible for the separate motion of the Fermi points,
have a direct analog in RQFT. These degrees of freedom are viewed by an inner
observer as the local SU(2) gauge field. The reason for this is the following.

The propagator describing the two fermionic species, each being a spinor
in the Bogoliubov–Nambu space, is a 4 × 4 matrix. Let us consider a general
form of the perturbations of the propagator. In principle one can perturb the
vierbein separately for each of the two fermionic species. We ignore such degrees
of freedom, since they appear to be massive. Then the general perturbation of
the propagator for quasiparticles living near the north Fermi point, where its
‘electric’ charge q = +1, has the following form:

G−1 = τ̌beµ
b (pµ − qAµ − qσaW

a
µ ) , a = (1, 2, 3) . (9.26)

The last term contains the Pauli matrix for conventional spin and the collective
variable W a

µ which interacts with the spin. This new effective field is viewed by
quasiparticles (and thus by an inner observer) as an SU(2) gauge field – it is the
analog of the weak field in the Standard Model. The ordinary spin of the 3He
atoms is viewed by an inner observer as the weak isospin.

This weak field Wα
µ is dynamical, since it represents some collective motion

of the fermionic vacuum. The leading logarithmic contribution to the action for
this Yang–Mills field can be obtained by integration over fermions:

SY M =

∫

d4x

4αW

√−ggµνgαβF a
µαF

a
νβ . (9.27)

Calculations show that the coupling constant αW for the Yang–Mills field in 3He-
A in eqn (9.27) coincides with the coupling constant α for the Abelian field in
eqn (9.22), i.e. the ‘weak’ charge is also logarithmically screened by the fermionic
vacuum. It experiences a zero-charge effect in 3He-A instead of the asymptotic
freedom in the Standard Model, where the antiscreening is produced by the
dominating contribution from bosonic degrees of freedom of the vacuum. The
reason for such a difference is that in 3He-A the SU(2) gauge bosons are not
fundamental: they appear in the low-energy limit only. That is why their contri-
bution to the vacuum polarization is relatively small compared to the fermionic
contribution, and thus their antiscreening effect can be neglected in spite of the
prevailing number of bosons. The same can in principle occur in the Standard
Model above, say, the GUT scale (see Klinkhamer and Volovik 2005b).

9.3.2 Role of discrete symmetries

The spin degrees of freedom come from the global SU(2)S group of spin rotations
of the normal liquid. This group is spontaneously broken in superfluid 3He-A, but
not completely. The π rotation combined with either orbital or phase rotation
form the important Z2-symmetry group P of the 3He-A vacuum in eqn (7.56).
This discrete symmetry is the source of the degeneracy of the Fermi point in
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3He-A, which finally leads to the local SU(2) symmetry group in the effective
low-energy theory. Thus in 3He-A we have the following chain:

SU(2)global → Z2 → SU(2)local . (9.28)

In principle, the first stage is not necessary: the simplest discrete Z2 symmetry
of the vacuum state can be at the origin of the local SU(2) gauge field in the
effective theory.

This implies that the higher local symmetry group of the quantum vacuum,
such as SU(4), can also arise from the discrete symmetry group, such as Z4 or
Z2×Z2. The higher discrete symmetry group leads to multiple degeneracy of the
Fermi point, and thus to the multiplet of chiral fermionic species. The collective
modes of such a vacuum contain effective gauge fields of the higher symmetry
group. The discrete symmetry between fermions ensures that all the fermions of
the multiplet have the same maximum attainable speed. The same speed will
enter the effective action for the gauge bosons, which is obtained by integration
over fermions. Thus, in principle, it is possible that the discrete symmetry can
be at the origin of the degeneracy of the Fermi point in the Standard Model
too, giving rise to its fermionic and bosonic content, and to the same Lorentz
invariance for all fermions and bosons. Thus the Lorentz invariance gradually
becomes the general principle of the low-energy physics, which in turn is the
basis for the general covariance of the effective action.

The importance and possible decisive role of the discrete symmetries in RQFT
was emphasized by Harari and Seiberg (1981), Adler (1999) and Peccei (1999).
The relation between the discrete symmetry in the Standard Model and the
topological invariant for the Fermi point will be discussed in Sec. 12.3.2.

9.3.3 Mass of W -bosons, flat directions and supersymmetry

In the effective theory the gauge invariance is approximate. It is violated due
to the so-called non-renormalizable terms in the action, i.e. terms which do not
diverge logarithmically. They come from ‘Planckian’ physics beyond the loga-
rithmic approximation, i.e. from the fermions which are not close to the Fermi
point. Due to such a term the SU(2) gauge boson – the W -boson – acquires a
mass in 3He-A. This mass comes from the physics beyond the BCS model; as a
result it is small compared to the typical gap of order ∆0 in the spectrum of the
other massive collective modes (see the book by Volovik 1992a).

As we know the BCS model for 3He-A enjoys a hidden symmetry: the spin-up
and spin-down components are independent. The energy of the axiplanar phase
does not depend on the mutual orientation of the vectors l̂1 and l̂2 (Fig. 7.3
top). Since the mutual orientation is the variable corresponding to the W -boson,
one obtains that the W -boson is the Goldstone boson and therefore massless.
Thus the masslessness of the W -boson is a consequence of the flat direction in
the vacuum energy functional obtained within the BCS model (Fig. 7.3 bottom),
and the W -boson becomes massive when flatness is disturbed. Flat directions
are popular in RQFT, especially in supersymmetric models (see e.g. Achúcarro
et al. (2002) and references therein).
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Probably the same hidden symmetry in the BCS model is at the basis of the
supersymmetry between fermions and bosons revealed by Nambu (1985), who
observed that in superconductors, in nuclear matter and in superfluid 3He-B, if
they are described within the BCS theory, there is a remarkable relation between
the masses of the fermions and the masses of the bosons: the sum of the squares
of the masses is equal. The same elements of the supersymmetry can be shown
to exist in superfluid 3He-A as well.

Consequences of the hidden symmetry in 3He-A are discussed by Volovik and
Khazan (1982), Novikov (1982), and in Sec. 5.15 of the book by Volovik (1992a).

9.3.4 Different metrics for different fermions. Dynamic restoration of Lorentz
symmetry

In eqn (9.26) we did not take into account that in the axiplanar phase each
of the two elementary Fermi points can have its own dynamical vierbein field.
Though in equilibrium their vierbeins coincide due to internal symmetry, they

can oscillate separately. As a result the number of collective modes could increase
even more. In the BCS model for 3He-A, which enjoys hidden symmetry, the spin-
up and spin-down components are decoupled. As a result the two vierbeins are
completely independent, and each of them acts on its own ‘matter’: fermions with
given spin projection. Thus we have two non-interacting worlds: two ‘matter’
fields each interacting with their own gravitational field.

However, in the real liquid, beyond the BCS model, the coupling between
different spin populations is restored. As a result the collective mode, which
corresponds to the out-of-phase oscillations of the two vierbeins, acquires a mass.
This means that in the low-energy limit the vierbeins are in the in-phase regime:
i.e. all fermions have the same metric gµν in this limit.

A similar example has been discussed by Chadha and Nielsen (1983). They
considered massless electrodynamics with a different metric (vierbein) for the
left-handed and right-handed fermions. In this model Lorentz invariance is vio-
lated. They found that the two metrics converge to a single one as the energy
is lowered. Thus in the low-energy corner the Lorentz invariance becomes better
and better, and at the same time the number of independent massless bosonic
modes decreases.
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THREE LEVELS OF PHENOMENOLOGY OF

SUPERFLUID 3He

There are three levels of phenomenology of superfluid 3He, determined by the
energy scale of the variables and by the temperature range.

The first one is the Ginzburg–Landau level. It describes the behavior of the
general order parameter field which is not necessarily close to the vacuum mani-
fold. The order parameter is the analog of the Higgs field in the Standard Model.
As distinct from the Higgs field in the Standard Model, which belongs to the
spinor representation of the SU(2) group, the Higgs field eµi in 3He belongs to
the product of vector representations (S = 1 and L = 1) of groups SO(3)S and
SO(3)L, respectively. At fixed i the elements eµi with µ = 1, 2, 3 form a vector
which rotates under the group SO(3)S of spin rotations. Correspondingly, at
fixed µ the same elements eµi with i = 1, 2, 3 form a vector which rotates under
the group SO(3)L of the orbital (coordinate) rotations.

The static order parameter field is described by the Ginzburg–Landau free
energy functional, which is valid only in the vicinity of the temperature Tc of the
phase transition into the broken-symmetry state, Tc − T ≪ Tc. Extrema of the
Ginzburg–Landau free energy determine the vacuum states: the true vacuum if
it is a global minimum, or the false vacuum if it is a local minimum. In some
rather rare cases the Ginzburg–Landau theory can be extended to incorporate the
dynamics of the Higgs field. However, in most typical situations this dynamics,
which originates from the microscopic fermionic degrees of freedom, is non-local
and the time-dependent Ginzburg–Landau theory does not exist.

Another level of phenomenology is the statics and dynamics of the soft vari-
ables describing the ‘vacuum’ in the vicinity of a given vacuum manifold. This is
an analog of elasticity theory in crystals; in superfluid 4He this is the two-fluid
hydrodynamics; and in superconductors and also in Fermi superfluids it is called
the London limit: equations which are valid in this limit were first introduced
for superconductivity by H. and F. London in 1935. This phenomenology is ap-
plicable in the whole range of the broken symmetry state, 0 < T < Tc, if the
considered length scale exceeds the characteristic microscopic length scale ξ –
the coherence length.

Finally, in the low-temperature limit T ≪ Tc the analog of RQFT arises in
3He-A as the third level of phenomenology.
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10.1 Ginzburg–Landau level

10.1.1 Ginzburg–Landau free energy

The Ginzburg–Landau theory of superconductivity and also of superfluidity in
Fermi systems is based on Landau’s theory of second-order phase transition.
Close to the transition temperature, Tc − T ≪ Tc, the static behavior of the
order parameter (the Higgs field) is determined by the Ginzburg–Landau free
energy functional, which contains second- and fourth-order terms only. In our
case the order parameter is the matrix eµi(r) in eqn (7.38). The general form of
the Ginzburg–Landau functional must be consistent with the symmetry group
G = U(1)N × SO(3)L × SO(3)S of the symmetric normal state of liquid 3He.
The condensation energy term, i.e. the free energy of the spatially uniform state
measured from the energy of the normal Fermi liquid with unbroken symmetry,
is given by

F bulk
GL = −α(T )e∗µieµi + β1e

∗
µie

∗
µieνjeνj + β2e

∗
µieµie

∗
νjeνj

+β3e
∗
µie

∗
νieµjeνj + β4e

∗
µieνie

∗
νjeµj + β5e

∗
µieνieνje

∗
µj . (10.1)

Here α(T ) = α′(1 − T/Tc) changes sign at the phase transition. The input pa-
rameters – coefficient α′ of the second-order term, and the coefficients β1, . . . , β5

of the fourth-order invariants – can be considered as phenomenological. In prin-
ciple, they can be calculated from the exact microscopic Theory of Everything in
eqn (3.2), but this requires serious numerical simulations and still has not been
completed. In the BCS model of superfluid 3He these parameters are expressed
in terms of the ‘fundamental constants’ entering the BCS model, pF , vF (or the
effective mass m∗ = pF /vf ), and Tc ∼ ∆0(T = 0):

α =
1

3
N(0)(1 − T/Tc) , − 2β1 = β2 = β3 = β4 = −β5 =

7N(0)ζ(3)

120(πTc)2
, (10.2)

where N(0) = m∗pF /2π
2h̄3 is the density of fermionic states in normal 3He for

one spin projection at the Fermi level; ζ(3) ≈ 1.202.
The gradient terms in the Ginzburg–Landau free energy functional contain

three more phenomenological parameters:

F grad
GL = γ1∂ieµj∂ie

∗
µj + γ2∂ieµi∂je

∗
µj + γ3∂ieµj∂je

∗
µi . (10.3)

In the BCS model they are expressed in terms of the same ‘fundamental con-
stants’:

γ1 = γ2 = γ3 = γ = 7ζ(3)N(0)
h̄2v2

F

240(πTc)2
≡ 1

3
N(0)ξ20 , (10.4)

where ξ0 ∼ h̄vF /Tc enters the temperature-dependent coherence or healing
length

ξ(T ) =
( γ

α

)1/2

=
ξ0

√

1 − T/Tc

. (10.5)

The coherence length ξ(T ) characterizes the spatial extent of an inhomogeneity,
at which the gradient energy becomes comparable to the bulk energy in the
liquid: perturbations of the order parameter decay over this distance.
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10.1.2 Vacuum states

If the system is smooth enough, i.e. if the size of the inhomogeneity regions is
larger than ξ(T ), the gradient terms may be neglected compared to the conden-
sation energy in eqn (10.1). Then the minimization of this bulk energy (10.1)
determines the vacuum states – possible equilibrium phases of spin-triplet p-wave
superfluidity. It is known from experiment that depending on pressure (which
certainly influences the relations between the parameters βi in eqn (10.1)) only
two of the possible superfluid phases are realized in the absence of an external
magnetic field. These are: 3He-A with eµ i = ∆0(T )d̂µ (m̂i + in̂i) in eqn (7.55);
and 3He-B with eµ i = ∆0(T )Rµ ie

iΦ in eqn (7.47). The gap parameters ∆0(T )
in these two vacua are respectively

∆2
0(T ) =

α(T )

4(β2 + β4 + β5)
, A-phase , (10.6)

∆2
0(T ) =

α(T )

2(β3 + β4 + β5) + 6(β1 + β2)
, B-phase . (10.7)

10.2 London level in 3He-A

10.2.1 London energy

In the London limit only such deformations are considered which leave the system
in the vicinity of a given vacuum state. Here we are mostly interested in the
3He-A vacuum. Because of the SO(3)L × SO(3)S symmetry of the bulk energy,
the vacuum energy in the A-phase does not depend on the orientation of unit
vectors m̂, n̂, l̂, forming the triad, and on the unit vector d̂ describing spin
degrees of freedom of the vacuum. These vectors thus characterize the degenerate
states of the A-phase vacuum. The space swept by these vectors forms the so-
called vacuum manifold: each point of this manifold corresponds to the minimum
of the bulk energy. These unit vectors thus represent the Goldstone modes –
massless bosonic fields which appear due to symmetry breaking. For the slow
(hydrodynamic) motion of the vacuum, only these soft Goldstone modes are
excited. The energetics of these static Goldstone fields is given by the so-called
London energy, which is the quadratic form of the gradients of the Goldstone
fields. The London energy is only applicable if the length scale is larger than the
coherence length ξ, such that the system is locally in the vacuum manifold.

Let us for simplicity ignore the spin degrees of freedom. The gradients of the
remaining degrees of freedom – orbital variables m̂, n̂, l̂ – can be conveniently
expressed in terms of physical observables. The l̂-vector is observable (for an
external observer), since it determines the direction of the anisotropy axis in
this anisotropic liquid. However, it is not so easy to detect the rotation angle
of the other two vectors of the triad around the l̂-vector, since according to
the symmetry U(1)Lz−N/2 of the 3He-A vacuum, the orbital rotation about the

l̂-vector is equivalent to the global gauge transformation from U(1)N group.
The observable variable is the gradient of the angle of rotation of m̂ and n̂

about l̂. It is the superfluid velocity vs = (h̄/2m)m̂i∇n̂i in eqn (9.16). Since



LONDON LEVEL 121

the three components of vs are constrained by the Mermin–Ho relation eqn
(9.17), the variables l̂ and vs represent the same three degrees of freedom as the
original triad. We assume that the normal component is in a global equilibrium,
i.e. vn = 0 in the environment frame. Then the London energy density, which
is quadratic in the gradients of the soft Goldstone variables, is written in the
following general form, satisfying the global symmetry U(1)N × SO(3)L of the
energy functional:

FLondon =
m

2
nsikv

i
sv

k
s +

1

2
vs ·

(

C∇× l̂ − C0 l̂(̂l · (∇× l̂))
)

(10.8)

+ Ks(∇ · l̂)2 +Kt(̂l · (∇× l̂))2 +Kb(̂l × (∇× l̂))2. (10.9)

10.2.2 Particle current

Compared to the simplest superfluids discussed in Part I, there are several com-
plications related to the particle current or mass current:

(1) Superfluid 3He-A is anisotropic with the uniaxial anisotropy along the

l̂-vector; as a result the superfluid density is a tensor with uniaxial anisotropy:

nsik = ns‖ l̂i l̂k + ns⊥(δik − l̂il̂k) . (10.10)

(2) The direction l̂ of the anisotropy axis is the Goldstone part of the order

parameter, and thus the London energy also contains gradients of l̂ in eqn (10.9).
This gradient energy is the same as in liquid crystals with uniaxial anisotropy,
the so-called nematic liquid crystals. The coefficients Ks, Kt and Kb describe
the response of the system to splay-, twist- and bend- like deformations of the
l̂-vector, respectively.

(3) The flow properties of 3He-A are remarkably different. We have already
seen that the vorticity of the flow velocity vs of the superfluid vacuum is non-
zero in the presence of an l̂-texture according to the Mermin–Ho relation (9.17).
Also the particle current, in addition to the superfluid current carried by the
superfluid component of the liquid, and the normal current carried by the normal
component of the liquid, contains (as follows from eqn (10.8)) the orbital current

carried by textures of the l̂-vector:

Pi = mnsikv
k
s +mnnikv

k
n +Pi{̂l} , P{̂l} =

C

2
∇× l̂− C0

2
l̂(̂l · (∇× l̂)) . (10.11)

We recall that nsik+nnik = nδik due to Galilean invariance, where n ≈ p3
F /3π

2h̄3

is the particle density of the liquid. The last (textural) term in the current density
is allowed by symmetry and thus must be present. This current is related to the
phenomenon of chiral anomaly in RQFT, which we shall discuss later on.

10.2.3 Parameters of London energy

In general all seven temperature-dependent coefficients in London energy, ns‖,
ns⊥, C, C0, Ks, Kt and Kb, must be considered as phenomenological. However,
in the limit Tc −T ≪ Tc, all these parameters are obtained from the higher-level
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theory – the Ginzburg–Landau free energy functional. The latter, in turn, can be
derived using the more fundamental BCS theory. Using the BCS values (10.4) of
parameters γ which enter the gradient energy (10.3) one obtains (see the book
by Vollhardt and Wölfle (1990):

ns‖ =
1

2
ns⊥ = 16

m

h̄2Ks = 16
m

h̄2Kt =
16m

3h̄2 Kb =
C0

h̄
=

2C

h̄
=

2

5

m

m∗
n

(

1 − T

Tc

)

.

(10.12)

10.3 Low-temperature relativistic regime

10.3.1 Energy and momentum of vacuum and ‘matter’

In the low-temperature limit, the system enters the regime where the ‘matter’
consists of a dilute gas of ‘relativistic’ quasiparticles interacting with the vacuum
collective degrees of freedom, vs and l̂. These vacuum variables produce the fields
which are seen by quasiparticles as effective electromagnetic and gravity fields.

The particle current density J (or momentum density P = mJ) and energy
density of the system are given by the same eqn (6.3) as for a Bose liquid,

modified to include the orbital degrees of freedom – the l̂-field:

E =
m

2
nv2

s + P{̂l} · vs +
∑

a

∫

d3p

(2πh̄)3
Ẽa(p)fa(p) (10.13)

+ Ks(∇ · l̂)2 +Kt(̂l · (∇× l̂))2 +Kb(̂l × (∇× l̂))2, (10.14)

P = mnvs + P{̂l} + PM + PF , (10.15)

PM =
∑

a

∫

d3p

(2πh̄)3

(

p− p(a)
)

fa(p) , (10.16)

PF =
∑

a

∫

d3p

(2πh̄)3
p(a)fa(p) . (10.17)

Here we excluded from consideration the variation of the particle density n and
the Goldstone field d̂. The quasiparticle energy Ẽa is given by eqn (9.8).

The momentum of the liquid contains four contributions which have different
physical meaning. The momentum P{̂l} carried by the texture in eqn (10.11)
is anomalous: in Sec. 19.2 we shall show that this current is determined by the
chiral anomaly. The corresponding energy term P{̂l} · vs in eqn (10.13) is the
analog of the Chern–Simons term in the Standard Model (Sec. 19.2).

The momentum carried by quasiparticles, ∝∑a

∫

pfa(p), is written as a sum
of two terms. Such separation stems from the fact that the Fermi points p(a) are
not in the origin in the momentum space, i.e. in the equilibrium vacuum p(a) 6= 0.
As a result the momentum PM counted from the Fermi points corresponds to
the momentum of ‘matter’ introduced for quasiparticles in Bose systems in eqn
(5.14). The remaining part of the quasiparticle momentum PF represents the
fermionic charge which serves as an analog of the baryonic charge in the effect of
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chiral anomaly (Sec. 18.3). PF is directed along the l̂-vector, while PM becomes

perpendicular to l̂ in the limit of low T .
Let us first consider the uniform state of the l̂-field, when the texture does

not carry the momentum, and consider these two quasiparticle currents.

10.3.2 Chemical potential for quasiparticles

In the local thermodynamic equilibrium the distribution of quasiparticles is char-
acterized by the local temperature T and by the local velocity vn of the normal
component:

f
(a)
T (p) =

1

exp Ẽa−p·vn

T + 1
=

1

exp Ea−p·w
T + 1

. (10.18)

Here, as before, w = vn − vs is the counterflow velocity – the velocity of the
‘matter’ in the superfluid-comoving frame. Let us now introduce the following
quantities:

µa = qapF (̂l · w) . (10.19)

Then eqn (10.18) can be rewritten in the gauge invariant form

f
(a)
T (p) =

1

exp Ea−µa−(p−qaA)·w
T + 1

. (10.20)

From this equation it follows that parameters µa play the role of effective chem-
ical potentials for relativistic quasiparticles living in the vicinity of two Fermi
points. The counterflow thus produces the effective chemical potentials with op-
posite sign for quasiparticles of different chiralities Ca = −qa.

The effective chemical potential is different from the true chemical potential
µ of the original bare particles, 3He atoms of the underlying liquid, which arises
from the microscopic physics as a result of the conservation of the number of
atoms related to the U(1)N symmetry. The effective chemical potential µa for
quasiparticles appears only in the low-energy corner of the effective theory, i.e.
in the vicinity of the a-th Fermi point. For the external observer, i.e. at the
fundamental level, there is no conservation law for the quasiparticle number.
But in the low-energy corner such a conservation law gradually emerges, and the
quasiparticle number

Na =
∑

p

fa(p) (10.21)

is conserved better and better, as the energy is lowered. For an inner observer
this is a true conservation law, which is, however, violated at the quantum level
due to the chiral anomaly.

10.3.3 Double role of counterflow

Note that the counterflow velocity w = vn − vs enters the distribution function
(10.20) through the chemical potential (10.19), and also explicitly. This reflects
the separation of quasiparticle momentum, which is obtained by variation of
energy over counterflow, into PF and PM.
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Let us first consider the case when the counterflow is orthogonal to the l̂-
vector: w ⊥ l̂. Then the effective chemical potentials µa = 0 and only the
current PM is induced. The explicit dependence of fT on w does the same job
as in the case of Bose superfluids. It leads to the modification of the effective
temperature in eqn (5.23) for the thermodynamic potential. For the dilute gas
of massless fermionic quasiparticles, the thermodynamic potential (the pressure)
has the standard relativistic form

Ω =
7π2

360h̄3NFT
4
eff

√−g , Teff =
T√

1 − w2
, w2 = gikw

iwk . (10.22)

Here NF is the number of chiral fermions (NF = 2 for 3He-A) and gik is the
effective metric for quasiparticles in 3He-A. Equation (10.22) is valid when Tc ≫
T ≫ |µa| and w ⊥ l̂. From this equation one obtains the momentum density of
‘matter’ PM in eqn (10.16) expressed in terms of the transverse component of
the normal density tensor:

PM
i =

dΩ

dwi
⊥

∣

∣

∣

∣

w→0

= mnnik⊥w
k , (10.23)

mnnik⊥ = mnn⊥(δik − l̂il̂k) , mnn⊥ =
7π2T 4

45h̄3vF c4⊥
. (10.24)

For the counterflow along the l̂-vector, new phenomena become important.

10.3.4 Fermionic charge

There are effective fermionic charges which become conserved in the low-energy
corner together with the quasiparticle number. We discuss here the most impor-
tant fermionic charge, which for the inner observer is an analog of the baryon
number in the Standard Model. The non-conservation of this charge is governed
by the same Adler–Bell–Jackiw equation derived for the phenomenon of axial
anomaly which is responsible for the non-conservation of the baryon number
(see Chapter 18). Moreover, in the case of 3He-A, the Adler–Bell–Jackiw equa-
tion for axial anomaly has been experimentally verified.

The relevant fermionic charge of a quasiparticle is the momentum carried by
a quasiparticle just at the Fermi point. This momentum is non-zero since the
Fermi points are situated away from the origin in the momentum space. For a
quasiparticle at the Fermi point with chirality Ca this fermionic charge is

p(a) = −CapF l̂ . (10.25)

In the low-temperature limit, the momentum p of quasiparticles is close to p(a)

and thus the total fermionic charge carried by the gas of quasiparticles becomes
indistinquishable from the current along the l̂-vector

PF =
∑

a

p(a)Na ≈ l̂

(

l̂ ·
∑

a

∑

p

pfa(p)

)

. (10.26)
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In equilibrium this fermionic charge is non-zero if the effective chemical po-
tentials µa in eqn (10.19) are non-zero. This is clear: the momentum (or current)

along l̂ carried by quasiparticles can be non-zero only if there is a counterflow
along l̂. Let us first consider the case of small chemical potentials |µa| ≪ T ≪ ∆0.
The total fermionic charge stored in the heat bath of ‘relativistic’ massless quasi-
particles in this temperature range is given by the relativistic equation for the
particle number

PF =
∑

a

p(a)Na = −
∑

a

p(a)µa

∑

p

∂fa

∂E
=

V

6h̄3

√−gT 2
∑

a

p(a)µa . (10.27)

As expected, the fermionic charge is proportional to the effective chemical poten-
tial. If the fermionic charges p(a) and chemical potentials µa are substituted by
the baryonic charges and chemical potentials of the Standard Model fermions,
this equation would describe the baryonic charge stored in the heat bath of
quarks.

In the case of 3He-A, introducing the 3He-A variables from eqns (10.25) and
(10.19) one obtains

∑

a

p(a)µa = 2p2
F l̂(̂l · w) . (10.28)

Then eqn (10.27) gives the relation between the longitudinal momentum of quasi-

particles and the longitudinal component l̂ · w of the counterflow velocity. By
definition (5.20) their ratio represents the longitudinal part of the anisotropic
normal density of the liquid

mnn‖ =
p2

F

3h̄3

√−gT 2 = π2m∗n
T 2

∆2
0

. (10.29)

In analogy with RQFT, this plays the part of the density of states of massless
relativistic fermions

mnn‖ = p2
F

∑

a

dNa

dµa
. (10.30)

The transverse part of the normal component tensor in eqn (10.24) is propor-
tional to T 4, which is natural for massless relativistic fermions. But the longitu-
dinal part in eqn (10.29) is proportional to T 2 and is much larger at low T . This
is a consequence of fermionic charge PF carried by quasiparticles at non-zero
effective chemical potential µa of quasiparticles.

10.3.5 Normal component at zero temperature

Let us now consider the fermionic charge PF in the opposite limit, where T is
small compared to the effective chemical potentials, T ≪ |µa| ≪ ∆0. In this
T → 0 limit let us introduce the relevant thermodynamic potential which takes
into account that the number of quasiparticles is conserved:

W =
∑

p

E(p)f(p) −
∑

a

µaNa = −
√−g

24π2h̄3

∑

a

µ4
a . (10.31)
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Fig. 10.1. Fermi surface is formed from the Fermi point at finite chemical po-
tential of chiral fermions right or in the presence of counterflow in 3He-A
left.

In terms of the 3He-A variables in eqns (10.19) and (10.13) this reads as

W =
∑

p

E(p)f(p) − PF · w ≈ − m∗p3
F

12π2h̄3c2⊥

(

l̂ · w
)4

. (10.32)

This means that the energy of the counterflow along the l̂-vector simulates the
energy stored in the system of chiral fermions with the non-zero chemical poten-
tials µa. Variation of eqn (10.32) with respect to w gives the fermionic charge

PF(T → 0) = −dW
dw

=
m∗p3

F

3π2h̄3c2⊥
l̂
(

l̂ ·w
)3

. (10.33)

Thus one arrives at an apparent paradox: quasiparticles carry a finite momentum
even in the limit T → 0 (Volovik and Mineev 1981; Muzikar and Rainer 1983;
Nagai 1984; Volovik 1990a). The normal component density at T → 0 is also
non-zero:

mnn‖(T → 0) =
d(PF · l̂)
d(w · l̂)

=
p2

F

2π2h̄3

√−g
∑

a

µ2
a =

m∗p3
F

π2h̄3c2⊥
(̂l · w)2 . (10.34)

This corresponds to the non-zero density of states of chiral fermions ∂Na/∂µa

in the presence of non-zero chemical potentials.

10.3.6 Fermi surface from Fermi point

The situation at first glance is really paradoxical. At T = 0 there are no excita-
tions, and thus one cannot determine the counterflow, since the velocity of the
normal component vn has no meaning. Then what is the meaning of eqns (10.33)
and (10.34)?

The situation becomes clear when we introduce the walls of a container,
and thus the preferred environment frame which determines the velocity vn in
equilibrium: vn = 0 in the laboratory frame in a global equilibrium even if T = 0.
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Fig. 10.2. Fermi surface with global topological charge N3 = +1. When such a
Fermi surface shrinks, it transforms to the Fermi point.

(If there are no boundaries, we must assume that there are impurities which form
the preferred reference frame of the environment, or the temperature of the heat
bath is not exactly zero, i.e. we consider the limit when T → 0 but T is still
large compared to, say, inverse relaxation time or other relevant energy scale.)

If there is a flow of vacuum with respect to the walls of the container, then,
since the fermions are massless, the Doppler shifted energy spectrum of quasi-
particles measured in the environment frame Ẽ = E(p)−p ·w acquires negative
values. The non-zero contribution to eqn (10.33) for the fermionic charge comes
just from the fermionic quasiparticles which in a global equilibrium at T = 0
occupy the negative energy levels:

PF(T → 0) =
∑

a,p

p(a)Θ(−Ẽ) , (10.35)

where Θ(x) is the step function: Θ(x > 0) = 1 and Θ(x < 0) = 0. As distinct from
the quasiparticles in Bose superfluids discussed in Sec. 5.3 where the appearance
of a state with negative energy Ẽ = E(p) − p · w < 0 is catastrophic, for the
fermionic quasiparticles the catastrophe is avoided by the Pauli principle which
restricts the number of fermions in one state by unity. When quasiparticles fill
all the negative levels, the production of quasiparticles stops and the equilibrium
state is reached.

This new equilibrium state of the vacuum contains the Fermi surface shown
in Fig. 10.1 for the relativistic particles right and for the 3He-A quasiparticles
left. In the relativistic description the energy states of massless fermions with
cp − µa < 0 are occupied at T = 0 if the chemical potential is non-zero and
positive. The quasiparticles filling the negative energy levels form the solid Fermi
sphere, with the Fermi surface determined by the equation pF = µa/c. For µa < 0
the Fermi surface with pF = −µa/c is formed by holes. In both cases the Fermi
point is transformed to the Fermi surface. This Fermi surface, in addition to
the momentum space invariant N1 which characterizes it locally, also has the
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topological invariant N3 = ±1 in eqn (8.15) which characterizes it globally: the
surface σ3 in eqn (8.15) now surrounds the whole Fermi sphere (Fig. 10.2). When
such a Fermi surface shrinks it cannot disappear completely due to its non-zero
global charge N3, and a Fermi point will remain.

The non-zero density of the normal component at T → 0 can also be calcu-
lated from the finite density of fermionic states N(ω) = 2

∑

a

∑

p δ(ω − Ẽa(p))
at ω = 0, which appears as a consequence of the formation of the Fermi surface
at l̂ ·w 6= 0:

N(0) =

√−g
π2h̄3

∑

a

µ2
a ≡ pFm

∗

π2h̄3c2⊥
(̂l · (vs − vn))2 , mnn‖(T → 0) = p2

FN(0) .

(10.36)
As we shall see in Sec. 26.1.3, Fermi surface always appears in the supercritical

regime where the flow velocity exceeds the Landau critical velocity. A similar
formation of the Fermi surface in the presence of the counterflow occurs in high-
temperature superconductors where the Landau critical velocity is zero and thus
the counterflow is always supercritical. This leads to the non-zero density of
states in the presence of the counterflow. The low-energy fermionic quasiparticles
there are 2+1-dimensional massless Dirac fermions. Since the space dimension
is reduced, the energy stored in the counterflow in eqn (10.32) has the power 3
instead of 4: W ∝ |vs−vn|3. The second derivative gives the non-analytic normal
density at T → 0 and the non-analytic density of states: N(0) ∝ |vs − vn|.

In a mixed state of superconductor in applied magnetic field B, the counter-
flow occurs around vortices, with the average counterflow velocity being deter-
mined by the applied field: |vs−vn| ∼

√
B. The Doppler shift causes the opening

of the Fermi surface which gives the finite density of states, N(0) ∝ |vs − vn| ∝√
B (Volovik 1993c). The non-analytic DOS as a function of magnetic field leads

to the non-analytic dependence on B of the thermodynamic quantities in d-wave
superconductors which has been observed experimentally (see Revaz et al. (1998)
and references therein).

In superconductors all this occurs not only in the limit T → 0, but even at
exactly zero temperature, T = 0. This is because, even if there is no heat bath of
thermal quasiparticles, the crystal itself provides the preferred reference frame:
vn is the velocity of the crystal.

10.4 Parameters of effective theory in London limit

10.4.1 Parameters of effective theory from BCS theory

In the low-T limit some of the temperature-dependent coefficients in the Lon-
don energy, such as nn‖, nn⊥ and Kb, can be determined within the effective
relativistic theory of chiral fermions interacting with gauge and gravity fields.

To obtain the temperature dependence of all the coefficients in the entire
temperature range 0 ≤ T < Tc one needs the microscopic theory, which is pro-
vided by the BCS model in conjunction with the Landau Fermi liquid theory.
The gradient expansion within this scheme has been elaborated by Cross (1975).
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We are interested in the low-temperature region T ≪ Tc ∼ ∆0, which corre-
sponds to low energies compared to the Planck energy EPlanck 2 where most of
the analogies with RQFT are found. In this limit, according to Cross (1975),
one obtains the following coefficients in the gradient energy in eqns (10.11) and
(10.14):

C0 − C =
1

2m
ns‖ , C =

1

2m
ns⊥

n0
s‖

n0
s⊥

, (10.37)

Ks =
1

32m∗
n0

s⊥ , (10.38)

Kt =
1

96m∗

(

n0
s⊥ + 4n0

s‖ + 3

(

m∗

m
− 1

)

ns‖n
0
s‖

n

)

, (10.39)

Kb =
1

32m∗

(

2n0
s‖ +

(

m∗

m
− 1

)

ns‖n
0
s‖

n

)

+ Log , (10.40)

Log =
1

4m∗
n

∫

dΩ

4π

(̂l · p̂)4

(̂l × p̂)2

[

1 + 2

∫ ∞

0

dM
∂fT
∂E

]

. (10.41)

Here, as before, m∗ = pF /vF is the effective mass of quasiparticles in the normal
Fermi liquid, while m is the bare mass of the 3He atoms: these masses coincide
only in the limit of weak interactions between the particles. The index 0 marks
the bare (non-renormalized) values of the superfluid and normal densities, com-
puted in the weak-interaction limit, where m∗ = m:

n0
s‖ = n− n0

n‖ , n
0
n‖ = π2n

T 2

∆2
0

=
m

m∗
nn‖ , (10.42)

n0
s⊥ = n− n0

n⊥ , n0
n⊥ =

7π4

15
n
T 4

∆4
0

=
m

m∗
nn⊥ . (10.43)

The different power law for the momentum carried by quasiparticles along and
transverse to l̂ shows that there is a different physics of longitudinal PF and
transverse PM momenta of quasiparticles behind the scenes.

In eqn (10.41) Log is the term which diverges at T → 0 as ln(∆0/T ).

10.4.2 Fundamental constants

In the simplest BCS theory, the London gradient energy is determined by five
‘fundamental’ parameters:

The ‘speeds of light’ c‖ = vF and c⊥ characterize the ‘relativistic’ physics
of the low-energy corner. These are the parameters of the quasiparticle en-
ergy spectrum in the relativistic low-energy corner below the first Planck scale,
E ≪ EPlanck 1 = ∆2

0/vF pF = m∗c2⊥. Let us, however, repeat that the inner
observer cannot resolve between the two velocities, c‖ and c⊥. For him (or her)
the measured speed of light is fundamental. In particular, it does not depend on
the direction of propagation.
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The parameter pF is the property of the higher level in the hierarchy of the
energy scales – the Fermi liquid level (the related quantity is the quasiparticle
mass in the Fermi liquid theory, m∗ = pF /c‖). Thus the spectrum of quasiparti-
cles in 3He-A in the entire range E ≪ vF pF is determined by three parameters,
c‖ = vF , c⊥ and pF : E2 = M2(p) + c2⊥(p × l̂)2, where M(p) = vF (p− pF ).

The bare mass m of 3He is the parameter of the underlying microscopic
physics of interacting ‘indivisible’ particles – 3He atoms. This parameter does
not enter the spectrum of quasiparticles in 3He-A. However, the Galilean invari-
ance of the underlying system of 3He atoms requires that the kinetic energy of
superflow at T = 0 must be (1/2)mnv2

s , i.e. the bare mass m must be incor-
porated into the BCS scheme to maintain Galilean invariance. This is achieved
in the Landau theory of the Fermi liquid, where the dressing occurs due to
quasiparticle interaction. In the simplified approach one can consider only that
part of the interaction which is responsible for the renormalization of the mass
and which restores Galilean invariance of the Fermi system. This is the current–
current interaction with the Landau parameter F1 = 3(m∗/m − 1), containing
the bare mass m. This is how the bare mass m enters the Fermi liquid and thus
the BCS theory.

Together with h̄ this gives five ‘fundamental’ constants: h̄, m, pF , m∗, c⊥. But
only one of them is really fundamental, the h̄, since it is the same for all energy
scales. The important combinations of these parameters are c‖ = vF = pF /m

∗

and ∆0 = pF c⊥. There are two dimensionless parameters, m∗/m and c‖/c⊥, and
now we can play with them: we would like to know how to ‘improve’ the liquid
by changing its dimensionless parameters so that it would resemble closer the
quantum vacuum of RQFT. In this way one could possibly understand the main
features of the quantum vacuum.

10.5 How to improve quantum liquid

10.5.1 Limit of inert vacuum

Though 3He-A and RQFT – the Standard Model – belong to the same univer-
sality class and thus have similar properties of the fermionic spectrum, we know
that 3He-A cannot serve as a perfect model for the quantum vacuum in RQFT.
While the properties of the chiral fermions are well reproduced in 3He-A, the
effective action for bosonic gauge and gravity fields obtained by integration over
fermionic degrees of freedom is contaminated by the terms which are absent
in a fully relativistic system. This is because the integration over the vacuum
fermions is not always concentrated in the region where their spectrum obeys
the Lorentz invariance.

The missing detail, which is to have a generally covariant theory as an emer-
gent phenomenon, is the mechanism which would confine the integration over
fermions to the ‘relativistic’ region. The effective ultraviolet cut-off must be lower
than the momenta at which the ‘Lorentz’ invariance is violated. It is reasonable
to expect that strong interactions between the bare particles can provide such
a natural cut-off, which is well within the ‘relativistic’ region. Unfortunately, at
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the moment there is no good model which can treat the system of strongly inter-
acting particles. Instead, let us use the existing BCS model and try to ‘correct’
the 3He-A by moving the parameters of the theory in the direction of strong in-
teractions but still within the BCS scheme, in such a way that the system more
easily forgets its microscopic origin. The first step is to erase the memory of the
microscopic parameter m – the bare mass. Thus the ratio between the bare mass
and the mass m∗ of the dressed particle, which enters the effective theory, must
be either m/m∗ → 0 or m/m∗ → ∞.

In real liquid 3He the ratio m∗/m varies between about 3 and 6 at low
and high pressure, respectively. However, we shall consider this ratio as a free
parameter which one can adjust to make the system closer to the relativistic
theories in the low-energy corner. As we discussed in Sec. 9.2.5, in the system
with broken symmetry the Goldstone fields spoil the Einstein action. The effect
of the symmetry breaking, i.e. the superfluidity, must therefore be suppressed.
This happens in the limit m → ∞, since the superfluid velocity is inversely
proportional to m according to eqn (9.16): vs ∝ 1/m. Because of the heavy mass
m of atoms comprising the vacuum, the vacuum becomes inert, and the kinetic
energy of superflow (1/2)mnv2

s vanishes as 1/m. The superfluidity effectively
disappears, and at the same time the bare mass drops out of the physical results.
Since the influence of the microscopic level on the effective theory of gauge field
and gravity is weakened one may expect that the effective action for the collective
modes would more closely resemble the covariant and gauge invariant limit of
the Einstein–Maxwell action. So, let us consider the limit of the ‘inert’ vacuum,
m≫ m∗.

10.5.2 Effective action in inert vacuum

In the limit m→ ∞ all the terms in the London energy related to superfluidity
vanish since vs ∝ 1/m. In the remaining l̂-terms we take into account that in this
limit according to eqn (10.42) one has ns‖ = n. As a result the London energy
is substantially reduced:

FLondon(m → ∞) =
1

32m∗
n0

s⊥(∇ · l̂)2 (10.44)

+
1

96m∗
(n0

s⊥ + n0
s‖)(̂l · (∇× l̂))2 (10.45)

+

(

1

32m∗
n0

s‖ + Log

)

(̂l × (∇× l̂))2 . (10.46)

All three terms have a correspondence in QED and Einstein gravity. We have
already seen that the bend term, i.e. (̂l × (∇× l̂))2, is exactly the energy of the
magnetic field in curved space in eqn (9.20) with the logarithmically diverging
coupling constant α−1 – the coefficient (Log) in eqn (10.41). This running cou-
pling constant does not depend on the microscopic parameter m, which shows
that it is within the responsibility of the effective field theory.

Let us now consider the twist term, i.e. (̂l · (∇× l̂))2, and show that it corre-
sponds to the Einstein action.
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10.5.3 Einstein action in 3He-A

The part of effective gravity which is simulated by the superfluid velocity field,
vanishes in the limit of inert vacuum. The remaining part of the gravitational
field is simulated by the inhomogeneity of the l̂-field, which plays the part of the
‘Kasner axis’ in the metric

gij = c2‖ l̂
il̂j + c2⊥(δij − l̂il̂j) , g00 = −1, g0i = 0,

√−g =
1

c‖c
2
⊥

, (10.47)

gij =
1

c2‖
l̂il̂j +

1

c2⊥
(δij − l̂il̂j), g00 = −1 , g0i = 0 . (10.48)

The curvature of space with this metric is caused by spatial rotations of the
‘Kasner axis’ l̂. For the stationary metric, ∂t̂l = 0, one obtains that in terms of
the l̂-field the Einstein action is

− 1

16πG

∫

d4x
√−gR =

1

32πG∆2
0

(

1 − c2⊥
c2‖

)2
p3

F

m∗

∫

d4x(̂l · (∇× l̂))2 . (10.49)

It has the structure of the twist term in the gradient energy (10.45) obtained in
a gradient expansion, which in the inert vacuum limit is

Ftwist =
1

288

(

2

π2
− T 2

∆2
0

)

p3
F

h̄m∗

∫

d3x(̂l · (∇× l̂))2 . (10.50)

We thus can identify the twist term with the Einstein action. Neglecting the small
anisotropy factor c2⊥/c

2
‖ one obtains that the Newton constant in the effective

gravity of the ‘improved’ 3He-A is:

G−1 =
2

9πh̄
∆2

0 −
π

9h̄
T 2 . (10.51)

10.5.4 Is G fundamental?

In the limit of the inert vacuum the action for the metric in eqn (10.49) expressed

in terms of the l̂-vector has the general relativistic form with a temperature-
dependent Newton constant G (10.51). This ‘improved’ 3He-A is still not the

right model to provide the analogy on a full scale, because the l̂-vector enters
both the gravity and electromagnetism. However, there has already been some
progress on the way toward the right model of effective gravity, and one can draw
some conclusions probably concerning real gravity.

The temperature-independent part of G certainly depends on the details
of trans-Planckian physics: it contains the second Planck energy scale ∆0. To
compare this to G following from the Sakharov theory of induced gravity let us
introduce the number of fermionic species NF . Since the bosonic action for l̂ is
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obtained by integration over fermions it is proportional to NF . The general form
for the parameter G in the system with NF species (for real 3He-A, NF = 2) is

G−1(T = 0) =
NF

9πh̄
∆2

0 . (10.52)

This eqn (10.52) is similar to that obtained by Sakharov, where G−1 is the prod-
uct of the square of the cut-off parameter and the number of fermion zero modes
of quantum vacuum. The numerical factor depends on the cut-off procedure.

The temperature dependence of G does not contain any microscopic parame-
ters or ‘fundamental constants’. This suggests the universal temperature depen-
dence of the Newton constant in the vacuum with NF Weyl fermions:

G−1(T ) −G−1(T = 0) = − π

18h̄
NFT

2 . (10.53)

In RQFT, this coincides with the universal contribution to the Newton constant
which comes from thermal relativistic fermions moving in the background of
curved space-time (Gusev and Zelnikov 1998; Volovik and Zelnikov 2003).

Since in the effective theory of gravity the Newton constant G depends on
temperature, and thus on the energy scale at which gravity is measured,G is not a
fundamental constant. Its asymptotic value, G(T = 0), also cannot be considered
as a fundamental constant according to Weinberg’s (1983) criterion: it is derived
from a more fundamental quantity – Planck energy. Applying eqn (10.53) to
cosmology, one finds that G depends on the cosmological time t. In the radiation-
dominated regime, when T 2 ∼ h̄EPlanck/t, the correction to G decays as δG/G ∝
h̄/(tEPlanck) (at T = 0 this transforms to δG/G ∝ h̄ sin(tEPlanck)/(tEPlanck)
(Klinkhamer and Volovik 2008)), andG approaches its asymptotic value dictated
by EPlanck. This is very different from the Dirac (1937, 1938) suggestion that G
decays as 1/t and is small at present time simply because the universe is old.
Thus the effective theory of gravity rules out the Dirac conjecture.

10.5.5 Violation of gauge invariance

Let us finally consider the splay term (∇ · l̂)2 in eqn (10.44). It has only fourth
order temperature corrections, T 4/∆4

0. This term has a similar coefficient to the
curvature term, but it is not contained in the Einstein action, since it cannot be
written in covariant form. The structure of this term can, however, be obtained
using the gauge field presentation of the l̂-vector, where A = pF l̂. It is known that
a similar term can be obtained in the renormalization of QED to leading order of
a 1/N expansion regularized by introducing a momentum cut-off (Sonoda 2000):

L′
QED =

1

96π2
(∂µAµ)2 . (10.54)

This term violates gauge invariance and cannot appear in the dimensional reg-
ularization scheme (see the book by Weinberg 1995), but it can appear in the
momentum cut-off procedure, since such a procedure violates gauge invariance.
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When written in covariant form, eqn (10.54) can be applied to 3He-A, where

A = pF l̂ and
√−g = constant:

L′
QED =

1

96π2

√−g(∂µ(gµνAν))2 =
1

96π2

p2
F c

3
‖

c2⊥
(∇ · l̂)2 =

c2‖

c2⊥

1

96π2

p3
F

m∗
(∇ · l̂)2.

(10.55)
The last term is just the splay term in eqn (10.44) except for an extra big factor
of the vacuum anisotropy c2‖/c

2
⊥: FLondon splay = (c2⊥/c

2
‖)L

′
QED. However, in the

isotropic case, where c‖ = c⊥, they exactly coincide. This suggests that the
regularization provided by the ‘trans-Planckian physics’ of 3He-A represents an
anisotropic version of the momentum cut-off regularization of QED.

10.5.6 Origin of precision of symmetries in effective theory

There is, however, an open question in the above scheme as well as in the gen-
eral approach to the problem of emergence of effective theories: it is necessary
to explain the high precision of symmetries which we observe today. At the
moment according to Kostelecky and Mewes (2001) the existing constraint on
different Lorentz-violating coefficients is about a few parts in 1031. Such accuracy
of symmetries observed in nature certainly cannot be explained by logarithmic
selections of terms in the effective action as suggested by Chadha and Nielsen
(1983): the logarithm is too slow a function for that (Iliopoulus et al. 1980).

According to Bjorken (2001b) the effective RQFT with such high precision
can only emerge if there is a small expansion parameter in the game, say about
10−15. Bjorken relates this parameter to the ratio of electroweak and Planck
scales. In the above scheme this can be the ratio m∗/m, but the more instructive
development of Bjorken’s idea would be the suggestion that the small parameter
is the ratio of two different Planck scales: the lowest one provides the natural
ultraviolet cut-off for integrals in momentum space. The second one (with higher
energy) marks the energy above which the Lorentz symmetry is violated.

The 3He-A analogy indicates that the non-covariant terms in the effective
action appear due to integration over fermions far from the Fermi point, where
the ‘Lorentz’ invariance is not obeyed. If the natural ultraviolet cut-off is very
much below the scale where the Lorentz symmetry is violated, all the symmetries
of the effective theory, including the gauge invariance and general covariance, will
be protected to a high precision. The ratio of the two Planck scales can provide
the origin of the other small numbers, such as electroweak energy with respect
to the Planck scale, say, in the mechanism of reentrant violation of symmetry
discussed in Sec. 12.4 (see also Klinkhamer and Volovik 2005b).

3He-A does provide several different ‘Planck’ energy scales, but unfortunately
the hierarchy of Planck scales is the opposite of what we need: the Lorentz
symmetry is violated before the natural ultraviolet cut-off is reached. That is why
3He-A is not a good example of emergent RQFT: the integration over fermions
occurs mainly in the region of momenta where there is no symmetry, and as
a result the effective action for bosonic fields is contaminated by non-covariant
terms. In future efforts must be made to reverse the hierarchy of Planck scales.
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MOMENTUM SPACE TOPOLOGY OF 2+1 SYSTEMS

11.1 Topological invariant for 2+1 systems

11.1.1 Universality classes for 2+1 systems

In the D = 2 space the possible manifolds of gap nodes in the quasiparticle
energy spectrum may have co-dimensions dc = 1 or dc = 2. Nodes with dc = 1
are described by the topological invariant N1 in eqn (8.3). In 3D p-space these
zeroes form the surface, the Fermi surface, while in 2D p-space (px, py) these are
lines of zeros. Nodes of co-dimension dc = 2 (points in 2D space) are typically
marginally stable: they may be topologically protected being described by the Z2

topological charge. These are either Majorana fermions (Horava 2005) or nodes
protected by discrete symmetries (Volovik 2007a). Nodes with dc = 3 described
by the topological invariant N3 cannot exist in 2D p-space.

However, it appears that even the fully gapped systems, i.e. without sin-
gularities in the Green function, are not so dull in the 2D case: the p-space
topology of their vacua can be non-trivial. The states with non-trivial topology
can be obtained by a dimensional reduction of states with dc = 3 Fermi points
in 3D systems. Such non-trivial vacua without singularities in p-space have a
counterpart in r-space: these are the topologically non-trivial but non-singular
configurations – textures or skyrmions – characterized by the third homotopy
groups π3 in 3D space, by the second homotopy group π2 in 2D space, or by
the relative homotopy groups (see Chapter 16; Skyrme (1961) considered non-
singular solitons in high-energy physics as a model for baryons, hence the name).
We discuss here p-space skyrmions – topologically non-trivial vacua with a fully
non-singular Green function (Fig. 11.1).

For the 2D systems the non-trivial momentum space topology of the gapped
vacua is of particular importance, because it gives rise to quantization of physi-
cal parameters (see Chapter 21). These are: 2D electron systems exhibiting the
quantum Hall effect (Kohmoto 1985; Ishikawa and Matsuyama 1986, 1987; Mat-
suyama 1987); thin films of 3He-A (Volovik and Yakovenko 1989, 1997; and Sec.
9 of the book by Volovik 1992a); 2D (or layered) superconductors with broken
time reversal symmetry (Volovik 1997a); fermions living in the 2+1 world within
a domain wall etc. Topological quantization of physical parameters, such as the
Hall conductance, is possible only for dissipationless systems (Kohmoto 1985).
The fully gapped systems at T = 0 satisfy this condition.
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g (px,py)
py

px

Fig. 11.1. Skyrmion in p-space with momentum space topological charge
Ñ3 = −1. It describes topologically non-trivial vacua in 2+1 systems with a
fully non-singular Green function.

11.1.2 Invariant for fully gapped systems

The gapped ground states (vacua) in 2D systems or in quasi-2D thin films are
characterized by the invariant obtained by dimensional reduction from the topo-
logical invariant for the dc = 3 Fermi point in eqn (8.15):

Ñ3 =
1

24π2
eµνλ tr

∫

d2pdp0 G∂pµ
G−1G∂pν

G−1G∂pλ
G−1 . (11.1)

The integral is now over the entire 3-momentum space pµ = (p0, px, py). (If
a crystalline system is considered the integration over (px, py) is bounded by
the Brillouin zone; we shall use it in Sec. 21.2.1) The integrand is determined
everywhere in the 3-momentum space since the system is fully gapped and thus
the Green function is nowhere singular.

In Sec. 12.3.1 we shall discuss the 4-momentum topological invariants pro-
tected by symmetry. The dimensional reduction of these invariants to the 3-
momentum space leads to other topological invariants in addition to eqn (11.1),
and thus to other fermionic charges characterizing the ground state of 2+1 sys-
tems (see e.g. Yakovenko 1989 and Sec. 21.2.3).

Further dimensional reduction determines the topology of edge states: the
fermion zero modes, which appear on the surface of a 2D system or within a
domain wall separating domains with different values of Ñ3 (see Chapter 22).

11.2 2+1 systems with non-trivial p-space topology

11.2.1 p-space skyrmion in p-wave state

An example of the 2D system with non-trivial Ñ3 is the crystal layer of the chiral
p-wave superconductor – the 2D analog of 3He-A, where both time reversal sym-
metry and reflection symmetry are spontaneously broken. Current belief holds
that such a superconducting state occurs in the tetragonal Sr2RuO4 material
(Rice 1998; Ishida et al. 1998). Because of the interaction with crystal fields, the

l̂-vector is normal to the layers, l̂ = ±ẑ. Let us consider fermionic quasiparti-
cles with a given projection of the ordinary spin. Then the Bogoliubov–Nambu
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Hamiltonian for the 2+1 fermions living in the layer is actually the same as for
a 3+1 system with a Fermi point in eqn (8.12) with the exception that there is
no dependence on the momentum pz along the third dimension.

H = τ̌bgb(p) , g3 =
p2

x + p2
y

2m∗
− µ , g1 = cpx , g2 = ∓cpy , c =

∆0

pF
. (11.2)

The sign of g2 depends on the orientation of the l̂-vector. Due to suppression of
a third dimension the quasiparticle energy spectrum E(p),

E2(p) = H2 = g2(p) =

(

p2

2m∗
− µ

)2

+ c2p2 , (11.3)

is fully gapped for both negative and positive chemical potential µ, which is
counted from the bottom of the band. If µ is positive and large, ∆0 ≪ µ, the
gap in the energy spectrum coincides with ∆0, i.e. min(E(p)) ≈ ∆0:

m∗c2 ≪ µ : E2 ≈ v2
F (p− pF )2 + ∆2

0 . (11.4)

If µ is negative and large, ∆0 ≪ |µ|, the gap is determined by µ, i.e. min(E(p)) ≈
|µ|.

The special case is when the chemical potential crosses the bottom of the
band, i.e. when µ crosses zero. At the moment of crossing the quasiparticle energy
spectrum becomes gapless: it is zero at the point px = py = 0. The point µ =
px = py = 0 represents the singularity in the Green function: it is the hedgehog
in 3D space (µ, px, py). This case will be discussed later in Sec. 11.4. Close to the
crossing point, where |µ| ≪ ∆0, the Bogoliubov–Nambu Hamiltonian transforms
to the 2+1 Dirac Hamiltonian, with the minimum of the energy spectrum being
at p = 0:

m∗c2 ≫ |µ| : E2 ≈ µ2 + c2(p2
x + p2

y) . (11.5)

In the case of a simple 2×2 Hamiltonian, the topological invariant Ñ3 in eqn
(11.1) can be expressed in terms of the unit vector field ĝ(p) = g/|g|, just in
the same way as in eqn (8.13) for the topology of Fermi points in 3D momentum
space:

Ñ3 =
1

4π

∫

dpxdpy ĝ ·
(

∂ĝ

∂px
× ∂ĝ

∂py

)

. (11.6)

Since at infinity the unit vector field ĝ has the same value, ĝp→∞ → (0, 0, 1), the
2-momentum space (px, py) becomes isomoprhic to the compact S2 sphere. The
function ĝ(p) realizes the mapping of the S2 sphere to the S2 sphere, ĝ · ĝ = 1,
described by the second homotopy group π2. If µ > 0, the winding number of
such a mapping is Ñ3 = 1 or Ñ3 = −1 depending on the orientation of the
l̂-vector. In the case Ñ3 = −1 the ĝ(p)-field forms a skyrmion in Fig. 11.1.
For µ < 0 one has Ñ3 = 0. The zero value of the chemical potential µ marks
the border between quantum vacua with different momentum space topological
charge Ñ3, the quantum phase transition (Sec. 11.4).
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Gap nodes
in d-wave superconductor Fully gapped system 

broken
time reversal

symmetry

Fig. 11.2. Zeros of co-dimension dc = 2 are typically topologically unstable.
Nodal lines in 3D superconductor or point nodes in 2D superconductor dis-
appear when perturbation violating time reversal symmetry is introduced.

11.2.2 Topological invariant and broken time reversal symmetry

It is important that the necessary condition for a non-zero value of Ñ3 in a
condensed matter system is a broken time reversal symmetry. The non-zero in-
tegrand in eqn (11.6) is possible only if all three components of vector ĝ are
non-zero. This includes the component g2 6= 0, which is in front of the imaginary
matrix τ̌2, and as a result one has H∗ 6= H. The time reversal operation changes
the sign of g2 and thus the sign of the topological charge: TÑ3 = −Ñ3. This is
the reason why systems with Ñ3 6= 0 typically exhibit ferromagnetic behavior.
An example is provided by 3He-A with orbital ferromagnetism of the Cooper
pairs along the vector l̂ (Leggett 1977b; Vollhardt and Wölfle 1990).

11.2.3 d-wave states

It is believed that in the cuprate high-temperature superconductors the Cooper
pairs are in the d-wave state with g1 = dx2−y2(p2

x − p2
y) and g2 = 0. Such a state

has four point nodes at px = ±pF , py = ±pF . These nodes have co-dimension
dc = 2 and thus are topologically unstable (Fig. 11.2). Perturbations which
destroy the nodes are those which make g2 non-zero. Simultaneously these per-
turbations break time reversal symmetry: a d-wave superconductor with broken
time reversal symmetry is fully gapped. For the popular model with g2 = dxypxpy

the Bogoliubov–Nambu Hamiltonian for the 2+1 fermions living in the atomic
layer is

H = τ̌3
p2

x + p2
y − p2

F

2m∗
+ τ̌1dx2−y2(p2

x − p2
y) + τ̌2dxypxpy . (11.7)

For µ > 0 the topological invariant in eqn (11.6) is Ñ3 = ±2 for any small value of
the amplitude dxy; the sign of Ñ3 is determined by the sign of dxy/dx2−y2 (Volovik

1997a). If both spin components are taken into account one has Ñ3 = ±4. And
again Ñ3 = 0 for µ < 0 with the quantum phase transition at µ = 0 (Sec. 11.4).
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M < 0 M=0 M > 0
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Fig. 11.3. The Fermi point in (px, py,M) space describes a quantum transition

between the two vacuum states with different topological charge Ñ3, when
the parameter M crosses the critical value. In this particular example M is
the mass of the Dirac particle in 2+1 spacetime, which changes sign after
the transition, while Ñ3 changes from −1/2 to +1/2. This Fermi point is a
diabolical point at which two branches of the spectrum can touch each other.

11.3 Fermi point as diabolical point and Berry phase

11.3.1 Families (generations) of fermions in 2+1 systems

In thin films, in addition to spin indices, the Green function matrix G can contain
the indices of the transverse levels, which come from the quantization of motion
along the normal to the film (see the book by Volovik 1992a). In periodic systems
(2D crystals) in addition the band indices appear. In these cases the simple
equation (11.6) for topological invariant is not applicable, and one must use the
more general eqn (11.1) in terms of the Green function.

Quasiparticles on different transverse levels represent different families of
fermions with the same properties. This would correspond to generations of
fermions in the Standard Model, if our 3+1 world is embedded within a soliton
wall (brane) in higher-dimensional spacetime. The transverse quantization of
fermions living inside the brane demonstrates one of the possible routes to the
solution of the family problem: why each fermion is replicated three (or maybe
more) times, i.e. why in addition to, say, the electron we also have the muon and
the tau lepton, which exhibit the same electric and other charges.

11.3.2 Diabolical points

For the periodic systems the fermionic spectrum is described by the same in-
variant in eqn (11.1), but in this case the dpxdpy-integral is over the Brillouin
zone. The Brillouin zone is a compact space which is topologically equivalent to
a 2-torus T 2. The invariant Ñ3 can be extended to characterize the topological
property of a given band En(px, py), if it is not overlapping with the other bands
(Avron et al. 1983).
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Let us now introduce some external parameter M , which we can change to
regulate the band structure. This can be, for instance, the chemical potential
µ whose position can cross different bands. Now we have the 3D space of pa-
rameters, (px, py,M), which mark the energy levels En(px, py,M). The general
properties of the crossing of different branches of an energy spectrum in the space
of external parameters were investigated by Von Neumann and Wigner (1929).
From their analysis it follows that two bands can touch each other at isolated
points, say (px0, py0,M0). Typically different branches of the energy spectrum, if
they have the same symmetry, repel each other. But in 3D space of parameters a
contact point is possible, which has the following properties. After M crosses M0

the bands again become isolated, but the topological charge Ñ3 of the vacuum
changes.

In the case of a chiral particle with the Hamiltonian H = c(τ̌1px + τ̌2py +
τ̌3M), the two relevant branches are branches with positive and negative square

root, En = ±c
√

p2
x + p2

y +M2. The parameter M here plays the role of the mass

M of the 2+1 Dirac particle, or the momentum pz of the 3+1 Weyl fermion. The
two branches contact each other when M crosses zero (Fig. 11.3). For the 2+1
system, the topological charge of the 2+1 Dirac vacuum Ñ3 changes from Ñ3 =
−1/2 to Ñ3 = +1/2 after crossing. The point (px = 0, py = 0, M = 0) at which
the reconnection takes place is a diabolical (or conical) point – an exceptional
point in the energy spectrum at which two different energy levels with the same
symmetry can touch each other. In our case the point (px = 0, py = 0, M = 0)
forms a Fermi point in 3D space – the hedgehog with topological chargeN3 = +1.
Thus Fermi points with the topological charge N3 are diabolical points in the
spectrum. This again shows the abundance of Fermi points in physics.

The fractional charge Ñ3 = ±1/2 appears because the Hamiltonian of the
2+1 Dirac particle is pathological: it is linear in momentum p everywhere in
2-momentum space. A non-linear correction restores the integer values of Ñ3 on
both sides of this quantum phase transition between two quantum vacua (see
Sec. 11.4.2).

11.3.3 Berry phase and magnetic monopole in p-space

The diabolical or conical point also represents the Dirac magnetic monopole
related to the Berry (1984) phase. Let us consider this in an example of the
Fermi point arising in Hamiltonian H = τ̌bgb(p) in 3-momentum space. Let us
adiabatically change the momentum p of the quasiparticle; then the unit vector
ĝ = g/|g| moves along some path on its unit sphere. If the path C is closed, the
wave function of the chiral quasiparticle acquires the geometrical phase factor
γ(C), called the Berry phase. It is half an area of the surface S(C) enclosed by
the closed contour C: γ(C) = S(C)/2. The Berry phase can be expressed in
terms of ‘magnetic flux’ through the surface S(C):

γ(C) =

∫

S(C)

dS ·H(p) , Hi(p) =
1

4|g|3 eijk g ·
(

∂g

∂pj
× ∂g

∂pk

)

. (11.8)
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Fig. 11.4. The Fermi point as a Dirac magnetic monopole in 3-momentum
space. The geometric Berry phase acquired by a chiral fermion after it cir-
cumvents an infinitesimal contour C around the Dirac string in 3-momentum
p-space is γ(C) = 2π. The Dirac string carries the ‘magnetic’ flux Φ0 = 2π
to the monopole, from which the flux radially propagates outwards.

The ‘magnetic’ field providing this flux is determined in 3-momentum space. The
analog of such a topological magnetic field in r-space will be discussed in Sec.
21.1.1 (see eqn (21.2)).

This p-space magnetic field has a singularity – a magnetic monopole – at the
Fermi point:

∂

∂pi
Hi(p) = 2πδ(p) . (11.9)

Because of the ‘magnetic’ monopole in momentum space, the eigenfunctions of
the Weyl Hamiltonian cannot be defined globally for all p. In any determination
of the eigenfunctions, one cannot continue them to all p: one always finds a ‘Dirac
string’ in momentum space (see Fig. 11.4), a vortex line in p-space emerging from
the monopole, on which the solution is ill defined; along an infinitely small path
around such a line the solution acquires the Berry phase γ(C) = 2π.

11.4 Quantum phase transitions

11.4.1 Quantum phase transition as change of momentum space topology

Figure 11.3 demonstrates the phase transition between two vacuum states of a
2+1 system. Such a transition, occurring at T = 0, is an example of a quantum
phase transition which is accompanied by a change of the topological quantum
number of the quantum vacuum. On both sides of the transition the quasiparticle
spectrum is fully gapped, but vacua have different topological charges Ñ3. At the
transition point the spectrum becomes gapless and the invariant Ñ3 is ill defined.
In the extended 3D space (M,px, py) the node in the spectrum represents the
Fermi point characterized by the topological charge N3. The relation between
the charges of the two vacua and the charge of the Fermi point is evident:

N3 = Ñ3(M > 0) − Ñ3(M < 0) . (11.10)
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Let us consider quantum phase transitions which occur if we change some
parameters of the system. For the chiral p-wave 2+1 superconductor in eqn
(11.2), let us choose as the parameter M the chemical potential µ. At µ = 0
the quantum phase transition occurs between vacua with Ñ3 = 0 at µ < 0 and
Ñ3 = +1 at µ > 0. The intermediate state between the two fully gapped vacua is
gapless: Eµ=0(p = 0) = 0. In the extended 3D space (µ, px, py), the intermediate
state represents the Fermi point with N3 = +1 in agreement with eqn (11.10).

In the d-wave superconductor in eqn (11.7) we can choose as the parameter
M the amplitude dxy of the order parameter. At µ > 0 the quantum phase
transition occurs when dxy changes sign. When dxy crosses zero the invariant

in eqn (11.6) changes from Ñ3 = −2 to Ñ3 = +2. The intermediate state with
dxy = 0 is also gapless, and in the extended 3D space (dxy, px, py) it represents
Fermi point(s). It can be for example one degenerate Fermi point with N3 = +4,
or four elementary Fermi points each with N3 = +1.

The quantum phase transition between the states with different Ñ3 can
also be achieved by choosing as the parameter M the inverse effective mass m∗

in eqn (11.2). The transition between states with Ñ3 6= 0 and Ñ3 = 0 occurs
when at fixed µ 6= 0 the inverse mass 1/m∗ crosses zero. Such a transition has a
special property since the intermediate state with 1/m∗ = 0 is not gapless. Let
us consider this example in more detail.

11.4.2 Dirac vacuum is marginal

In the chiral p-wave superconductor in eqn (11.2), the quasiparticles in interme-
diate state at 1/m∗ = 0 are Dirac 2+1 particles with mass M = −µ (see eqn
(11.5)). This intermediate state is fully gapped everywhere, and the topological
invariant in eqn (11.6) for the Dirac vacuum is well defined. But it has the frac-
tional value Ñ3 = +1/2, intermediate between two integer values on two sides of
the quantum transition, Ñ3 = +1 and Ñ3 = 0. This happens because momen-
tum space is not compact in this intermediate state: the unit vector ĝ does not
approach the same value at infinity, but instead forms the 2D hedgehog.

The fractional topology, Ñ3 = 1/2, of the intermediate Dirac state demon-
strates the marginal behavior of the vacuum of 2+1 Dirac fermions. The physical
properties of the vacuum, which are related to the topological quantum num-
bers in momentum space (see Chapter 21), are not well defined for the Dirac
vacuum. They crucially depend on how the Dirac spectrum is modified at high
energy: toward Ñ3 = 0 or toward Ñ3 = 1. This modification is provided by the
quadratic term p2/2m∗ which is non-zero on both sides of the transition; as a
result Ñ3(1/m

∗ < 0) = 0 and Ñ3(1/m
∗ > 0) = +1.

Thus the intermediate state at the point of the quantum phase transition
between two regular, fully gapped vacua with integer topological charges Ñ3 in
2+1 systems is either gapless or marginal. The Dirac vacuum in 2+1 systems
serves as the marginal intermediate state.

Quantum phase transitions induced by the momentum-space topology in
other systems (Standard Model, graphene, quantum Ising model, etc.) can be
found in the recent review (Volovik 2007a).
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MOMENTUM SPACE TOPOLOGY PROTECTED BY

SYMMETRY

12.1 Momentum space topology of planar phase

12.1.1 Topology protected by discrete symmetry

Let us consider first the p-space topology of the planar state of p-wave superfluid
in eqn (7.61). We know that in the model of the independent spin components,
the planar phase and 3He-A differ only by their spin structure. That is why
in this model the planar phase has point nodes at the same points p = ±pF l̂

of the p-space as the A-phase. The only difference is that the Fermi points for
quasiparticles with spin projection Sz = 1/2 and Sz = −1/2 have the same
topological charges in the A-phase, N3(Sz = 1/2) = N3(Sz = −1/2) = ±1, and
opposite topological charges in the planar phase, N3(Sz = 1/2) = −N3(Sz =
−1/2) = ±1. That is why, while in the A-phase the total charge of the Fermi
point is finite, N3(Sz = 1/2)+N3(Sz = −1/2) = ±2, in the planar one the total
charge N3(Sz = 1/2) +N3(Sz = −1/2) = 0 for each of the two Fermi points.

The zero value of the invariant does not support the singularity of the Green
function. Thus the question arises: Do the nodes at p = ±pF l̂ survive if instead
of the above model we consider the ‘real’ planar phase, where the interaction
between the particles with different spin projection is non-zero?

The answer depends on the symmetry of the vacuum state. Let us consider
the homogeneous vacuum of the planar phase whose order parameter is, say,

eµi = ∆0(x̂µx̂i + ŷµŷi) . (12.1)

The Bogoliubov–Nambu Hamiltonian (7.62) for quasiparticles in this state,

Hplanar = M(p)τ̌3+c⊥τ̌
1(σxpx+σypy) ≈ qac‖τ̌

3(pz−qapF )+c⊥τ̌
1(σxpx+σypy) ,

(12.2)
is equivalent to the Hamiltonian HDirac = αi(pi − qAi) for Dirac fermions with
zero mass, where αi are Dirac matrices. In other words, in the vicinity of the
Fermi point, say at p = pF ẑ, there are the right-handed and the left-handed
fermions which are not mixed. The absence of mixing (zero Dirac mass) is pro-
vided by the discrete symmetry P of the vacuum in eqn (7.66). For the fermionic
Hamiltonian this symmetry is

P = τ3σz , PP = 1 , PH = HP . (12.3)

Since H and P commute, the same occurs with the Green function: [G,P] = 0.
This allows us to construct in addition to N3 the following topological invariant:
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N3(P) =
1

24π2
eµνλγ tr

(

P

∫

σ

dSγ G∂pµ
G−1G∂pν

G−1G∂pλ
G−1

)

. (12.4)

It can be shown that N3(P) is robust to any perturbations of the Green function,
unless they violate the commutation relation [G,P] = 0. In other words, eqn
(12.4) is invariant under perturbations conserving the symmetry P. This is the
topological invariant protected by symmetry.

For the Fermi points in the planar state one obtains N3(P) = N3(Sz =
1/2) − N3(Sz = −1/2) = ±2. The non-zero value of this invariant shows that,
though the total conventional topological charge of the Fermi point in the planar
state is zero, N3 = N3(Sz = 1/2)+N3(Sz = −1/2) = 0, the Fermi point is robust
to any interactions which do not violate P.

In addition, because of the discrete symmetry P, the topological charge
N3(P) = ±2 of the degenerate Fermi point is equally distributed between the
fermionic species. This ensures that each quasiparticle has an elementary (unit)
topological charge: N3(Sz = 1/2) = −N3(Sz = −1/2) = ±1. This is important
since only such quasiparticles that are characterized by the elementary charge
N3 = ±1 acquire the relativistic energy spectrum in the low-energy corner. In
3He-A the analogous discrete symmetry P ensures that the topological charge
N3 = ±2 of the doubly degenerate Fermi point is equally distributed between
two fermions, and thus is responsible for the Lorentz invariance in the vicinity
of the Fermi point. Thus the discrete symmetry is the necessary element for the
development of the effective RQFT at low energy.

12.1.2 Dirac mass from violation of discrete symmetry

If the symmetry P is violated, either by the external field or by some extra
interaction, or by inhomogeneity of the order parameter, N3(P) in eqn (12.4)
ceases to be the invariant. As a result the Fermi points with the charge N3 = 0
are not protected by symmetry and will be destroyed: the quasiparticles will
acquire gap (mass). Let us consider how this occurs in the planar state.

First, we recall that in the planar state, the symmetry P in eqn (7.66) is the
combination of a discrete gauge transformation from the U(1) group and of spin
rotation by π around the z axis. Applying eqn (7.66) to the Bogoliubov–Nambu
Hamiltonian (7.62), for which the generator of the U(1)N gauge rotation is τ3,
one obtains P = e−πiτ3/2eπiσz/2 = τ3σz in eqn (12.3). Thus the symmetry P of
the planar state includes the element of the original SO(3)S symmetry group of
liquid 3He above the superfluid transition, which was spontaneously broken in
the planar phase.

However, even in normal liquid 3He, the symmetry SO(3)S under spin rota-
tions is an approximate symmetry violated by the spin–orbit interaction. This
means that at a deep trans-Planckian level, the symmetry P is also approximate,
and thus it cannot fully protect the topologically trivial Fermi point. The Fermi
point must disappear leading to a small Dirac mass for relativistic quasiparticles
proportional to the symmetry-violating interaction. In our case the Dirac mass
is expressed in terms of the spin–orbit interaction:
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M ∼ E2
D

EPlanck 2
, ED =

h̄c‖

ξD
. (12.5)

Here ED is the energy scale characterizing the spin–orbit coupling (see eqn
(16.1)), which comes from the dipole–dipole interaction of 3He atoms; the cor-
responding length scale called the dipole length is typically ξD ∼ 10−3 cm.

This symmetry-violating spin–orbit coupling also generates masses for the
‘gauge bosons’ in the planar state and in 3He-A: see eqn (19.23) for the mass of
a ‘hyperphoton’ in 3He-A.

This example demonstrates three important roles of discrete symmetry: (i) it
establishes stability of the Fermi point; (ii) it ensures the emergence of relativistic
chiral fermions and thus RQFT at low energy; (iii) the violation of the discrete
symmetry at a deep fundamental level is the source of a small Dirac mass of
relativistic fermions.

The analogous discrete symmetry P is also important for the quasiparticle
spectrum in the vicinity of the degenerate Fermi point with N3 = 2 in 3He-A.
We know that the quasiparticle spectrum becomes relativistic in the vicinity of
the Fermi point with elementary topological charge, N3 = ±1. In the case of
N3 = 2 there is no such rule. The role of the discrete symmetry P in eqn (7.56)
is again to ensure that in the vicinity of the N3 = 2 Fermi point, the spectrum
behaves as if there are two quasiparticle species each with the elementary charge
N3 = 1. Though P is violated by the spin–orbit interaction, the Fermi point
cannot disappear since its topological charge is non-zero, N3 = 2. However,
because of the violation of P the quasiparticle spectrum is modified and again
becomes non-relativistic, but now at a very low energy. This reentrant violation
of Lorentz symmetry will be discussed in Sec. 12.4.

Now we proceed to the Standard Model and show that the massless chiral
fermions there are also described by the Fermi points protected by discrete sym-
metry. When this symmetry is violated at low energy, all the fermions acquire
mass.

12.2 Quarks and leptons

The Standard Model of particle physics is the greatest achievement in the physics
of second half of the 20th century. It is in excellent agreement with experimental
observation even today. It is a common view now that the Standard Model is
an effective theory, which describes the physics well below the Planck and GUT
scales, 1019 GeV and 1015 GeV respectively. At temperatures above the elec-
troweak scale, i.e. at T > 102–103 GeV, the elementary particles – quasiparticles
if the theory is effective – are massless chiral fermions. This means that the vac-
uum of the Standard Model belongs to the universality class of Fermi points. At
lower temperature fermions acquire masses in almost the same way as electrons
in metals gain the gap below the phase transition into the superconducting state
(see Sec. 7.4.5). Since the fermionic and bosonic contest of the Standard Model
is much bigger than that in conventional superconductors, an effective theory
of such a transition (or crossover) to the ‘superconducting’ state contains many
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Fig. 12.1. First family of quarks and leptons. Number in bottom right corner
is the hypercharge – the charge of U(1)Y group. Electric charge Q = Y +TL3

is shown in the top left corner.

parameters which must be considered as phenomenological. Here we discuss the
Standard Model above the electroweak energy scale, when fermions are massless
and chiral.

12.2.1 Fermions in Standard Model

In the Standard Model of electroweak and strong interactions each family of
quarks and leptons contains eight left-handed and eight right-handed fermions
(Fig. 12.1). We assume here that the right-handed neutrino is present, as fol-
lows from the Kamiokande experiments. Experimentally, there are three families
(generations) of fermions, Ng = 3. However, the larger number of families does
not contradict observations if Dirac masses of fermions in extra families are large
enough.

In the Standard Model fermions transform under the gauge group G(213) =
SU(2)L ×U(1)Y ×SU(3)C of weak, hypercharge and strong interactions respec-
tively. In addition there are two global charges: baryonic B and leptonic L.
Quarks, u and d, appear in three colors, i.e. they are triplets under the color
group SU(3)C of quantum chromodynamics (QCD). They have B = 1/3 and
L = 0. Leptons e and ν are colorless, i.e. they are SU(3)C -singlets. They have
B = 0 and L = 1. There is a pronounced asymmetry between left fermions,
which are SU(2)L-doublets (their weak isospin is TL = 1/2), and right fermions,
which are all weak singlets (TL = 0). The group SU(2)L thus transforms only
left fermions, hence the index L.

At low energy below about 200 GeV (the electroweak scale) the SU(2)L ×
U(1)Y group of electroweak interactions is violated so that only its subgroup
U(1)Q is left, where Q = Y + TL3 is the electric charge. This is the group
of quantum electrodynamics (QED). Thus the group G(213) is broken into its
subgroup G(13) = U(1)Q × SU(3)C . Figure 12.1 shows the hypercharge Ya of
fermions (bottom right corner) and also the electric charge Q = Y + TL3 (top
left corner).
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Fig. 12.2. Left: Standard Model fermions organized in the G(224) group. Right:
Slave-boson description of Standard Model fermions. Spinons are fermions
with spin and isospin, while the SU(4) color charge is carried by slave bosons
– holons. The number in the top left corner is electric charge Q.

12.2.2 Unification of quarks and leptons

According to Fig. 12.1, charges of Standard Model fermions are rather clumsily
distributed between the fermions. It looks very improbable that the fundamental
theory can have such diverse charges. There certainly must be a more fundamen-
tal theory, the Grand Unification Theory (GUT), where such charges elegantly
arise from a simpler construction. The idea of Grand Unification is supported by
the observation that three running coupling constants of the G(213) group, when
extrapolated to high energy, meet each other at an energy about 1015–1016 GeV.
This suggests that above this scale the groups of weak, hypercharge and strong
interactions are unified into one big symmetry group, such as SO(10), with a
single coupling constant. Let us remind ourselves, however, that from the con-
densed matter point of view even the GUT remains the effective sub-Planckian
theory.

There is another group, the subgroup of SO(10), which also unites in a
very simple way all 16Ng fermions with their diverse hypercharges and electric
charges. This is a type of Pati–Salam model (Pati and Salam 1973, 1974; Foot et
al. 1991) with the symmetry group G(224) = SU(2)L ×SU(2)R ×SU(4)C . This
semi-simple group G(224) is the minimal subgroup of the more popular SO(10)
group which preserves all its important properties (Pati 2000; 2002). It naturally
arises in the compactification scheme (Shafi and Tavartkiladze 2002).

Though the G(224) group does not represent GUT, since it has two coupling
constants instead of a single one, it has many advantages when compared to
the SO(10) group. In particular, the SO(10) group organizes fermions in a mul-
tiplet which contains both matter and antimatter. This does not happen with
the G(224) group which does not mix matter and antimatter. What is most im-
portant is that this group allows the correct definition of the momentum space
topological charge.
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The G(224) group organizes all 16 fermions of one generation of matter into
left and right baryon–lepton octets (Fig. 12.2 left). Here the SU(3)C color group
of QCD is extended to the SU(4)C color group by introducing as a charge the
difference between baryon and lepton charges B − L. Now the quarks and lep-
tons are united into quartets of the SU(4)C group, with leptons treated as a
fourth color. Quarks and leptons can thus transform to each other, so that the
baryon and lepton charges are not conserved separately, but only in combina-
tion B − L. The non-conservation of baryon charge is an important element in
modern theories of the origin of the baryonic asymmetry of our Universe (see
Sec. 18.2). At present B and L are conserved with a high precision, since the
mutual transformation of quarks and leptons is highly suppressed at low energy.
That is why, though the decay of the proton is allowed in the GUT scheme, the
proton lifetime estimated using the GUT scheme is about 1033–1034 years. The
discovery of proton decay would be direct proof of the unification of quarks and
leptons.

The SU(2)R group for the right particles is added to make the nature left–
right symmetric: at this more fundamental level the parity is conserved. All the
charges of 16 fermions are collected in the following table:

Fermion TL3 TR3 B − L → Y → Q

uL(3) + 1
2 0 1

3
1
6

2
3

uR(3) 0 + 1
2

1
3

2
3

2
3

dL(3) − 1
2 0 1

3
1
6 − 1

3

dR(3) 0 − 1
2

1
3 − 1

3 − 1
3

νL + 1
2 0 −1 − 1

2 0
νR 0 + 1

2 −1 0 0
eL − 1

2 0 −1 − 1
2 −1

eR 0 − 1
2 −1 −1 −1

(12.6)

When the energy is reduced the G(224) group transforms to the intermedi-
ate subgroup G(213) of the weak, hypercharge and strong interactions with the
hypercharge given by

Y =
1

2
(B − L) + TR3 . (12.7)

This equation naturally reproduces all the diversity of the hypercharges Y(a)

of fermions in Fig. 12.1. When the energy is reduced further the electroweak–
strong subgroup G(213) is reduced to the G(13) = U(1)Q × SU(3)C group of
electromagnetic and strong interactions. The electric charge Q of the U(1)Q

group is left–right symmetric:

Q =
1

2
(B − L) + TR3 + TL3 . (12.8)

12.2.3 Spinons and holons

Another advantage of the G(224) group is that all 16 chiral fermions of one
generation can be considered as composite objects being the product Cw of four
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C-bosons and four w-fermions in Fig. 12.2 right (Terazawa 1999). Extension of
the Terazava scheme, which includes four families of fermions, can be found in
(Volovik 2003).

The number in the top left corner shows the electric charge Q of C-bosons
and w-fermions. This scheme is similar to the slave-boson approach in condensed
matter, where the particle (electron) is considered as a product of the spinon and
holon. Spinons in condensed matter are fermions which carry electronic spin,
while holons are ‘slave’ bosons which carry its electric charge (see e.g. Marchetti
et al. (1996) and references therein and Sec. 8.1.7).

In the scheme demonstrated in Fig. 12.2 right four ‘holons’ C have zero spin
and zero isospins, but they carry the color charge of the SU(4)C group; their
B − L charges of the SU(4)C group are (1

3 ,
1
3 ,

1
3 ,−1). Correspondingly their

electric charges in eqn (12.8) are Q = (B − L)/2 = (1
6 ,

1
6 ,

1
6 ,− 1

2 ).
The ‘spinons’ w are the SU(4)C singlets, but they carry spin and weak

isospins. Left and right spinons form doublets of SU(2)L and SU(2)R groups
respectively. Since their B − L charge is zero, the electric charges of spinons
according to eqn (12.8) are Q = TL3 + TR3 = ±1/2.

12.3 Momentum space topology of Standard Model

In the case of a single chiral fermion, the massless (gapless) character of its energy
spectrum, E = cp, is protected by the momentum space topological invariant N3

of the Fermi point at p = 0. However, the Standard Model has an equal number of
left and right fermions, so the Fermi point there is marginal: the total topological
charge N3 of the Fermi point in eqn (8.15) is zero, if the trace is over all the
fermionic species. Thus the topological mechanism of mass protection does not
work and, in principle, an arbitrarily small interaction between the fermions can
provide the Dirac masses for all eight pairs of fermions. This indicates that the
vacuum of the Standard Model is marginal in the same way as the planar state
of superfluid 3He as was discussed in Sec. 12.1.

In an example of the planar phase, we have seen that in the fermionic systems
with marginal Fermi points, the mass (gap) does not appear if the vacuum has
the proper symmetry element. The same situation occurs for the Fermi points
of the Standard Model. Here also the momentum space topological invariants
protected by symmetry can be introduced. These invariants are robust under
symmetric perturbations, and provide the protection against the mass if the
relevant symmetry is exact.

In the Standard Model the protection against the mass is provided by both
discrete and continuous symmetries. Let us first consider the relevant continuous
symmetries. They form the electroweak group G(12) = U(1)Y × SU(2)L gener-
ated by the hypercharge and by the weak isospin respectively. The topological
invariants protected by symmetry are the functions of parameters of these sym-
metry groups. If these symmetries are violated all the fermions acquire masses.
However, we shall see that instead of the G(12) group it is enough to have one
discrete symmetry group which also protects the gapless fermions.
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12.3.1 Generating function for topological invariants constrained by symmetry

Following Volovik (2000a) let us introduce the matrix N whose trace gives the
invariant N3 in eqn (8.15):

N =
1

24π2
eµνλγ

∫

σ

dSγ G∂pµ
G−1G∂pν

G−1G∂pλ
G−1 , (12.9)

where, as before, the integral is about the Fermi point in the 4-momentum space.
Let us consider the expression

tr (NY) , (12.10)

where Y is the generator of the U(1)Y group, the hypercharge matrix. It is clear
that eqn (12.10) is robust to any perturbation of the Green function which does
not violate the U(1)Y symmetry, since in this case the hypercharge matrix Y
commutes with the Green function: [Y,G] = 0. The same occurs with any power
of Y, i.e. tr (NYn)) is also invariant under symmetric deformations. That is
why one can introduce the generating function for all the topological invariants
containing powers of the hypercharge

tr
(

eiθY YN
)

. (12.11)

All the powers tr(NYn), which are topological invariants, can be obtained by dif-
ferentiating eqn (12.11) over the group parameter θY . Since the above parameter-
dependent invariant is robust to interactions between the fermions, it can be
calculated for the non-interacting particles. In the latter case the matrix N is
diagonal and its eigenvalues coincide with chirality Ca = +1 and Ca = −1 for
right and left fermions correspondingly. The trace of the matrix N over the given
irreducible fermionic representation of the gauge group is (with minus sign) the
symbol N(y/2,a,IW ) introduced by Froggatt and Nielsen (1999). In their notation
y/2(= Y ), a, and IW denote hypercharge, color representation and the weak
isospin correspondingly.

For the Standard Model with hypercharges for 16 fermions given in Fig. 12.1
one has the following generating function:

tr
(

eiθY YN
)

=
∑

a

Cae
iθY Ya = 2

(

cos
θY

2
− 1

)

(

3eiθY /6 + e−iθY /2
)

. (12.12)

The factorized form of the generating function reflects the composite spinon–
holon representation of fermions and directly follows from Fig. 12.2 right. Since
Y = 1

2 (B − L) + TR3 one has

tr
(

eiθY YN
)

= tr
(

eiθY TR3Nsp

)

tr
(

eiθY (B−L)/2
)

= 2

(

cos
θY

2
− 1

)

(

3eiθY /6 + e−iθY /2
)

. (12.13)

Here Nsp is the matrix N for spinons. Note that eqn (12.13) is periodic in θY

with period ∆θY = 12π.
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In addition to the hypercharge the weak charge is also conserved in the Stan-
dard Model above the electroweak transition. The generating function for the
topological invariants which contain the powers of both the hypercharge Y and
the weak isospin TL3 also has the factorized form

tr
(

eiθW TL3eiθY YN
)

= tr
(

eiθW TL3eiθY TR3Nsp

)

tr
(

eiθY (B−L)/2
)

(12.14)

= 2

(

cos
θY

2
− cos

θW

2

)

(

3eiθY /6 + e−iθY /2
)

. (12.15)

The non-zero result of eqn (12.15) shows that the Green function is singular
at the Fermi point p = 0 and p0 = 0, which means that at least some fermions
must be massless if either of the symmetries, U(1)Y or SU(2)L, is exact.

12.3.2 Discrete symmetry and massless fermions

Choosing the parameters θY = 0 and θW = 2π (or θY = 6π and θW = 0) one
obtains the maximally possible value of the generating function:

tr (PN ) = 16 , P = e2πiTL3 . (12.16)

This implies 16-fold degeneracy of the Fermi point which provides the existence
of 16 massless fermions. Thus all 16 fermions of one generation are massless
above the electroweak scale 200 GeV. This also shows that as in the case of the
planar phase, it is the discrete symmetry group, the Z2 group P = e2πiTL3 , which
is responsible for the protection against the mass (mass protection).

Since P = 1 for all right-handed fermions, which are SU(2)L singlets, and
P = −1 for all left-handed fermions, whose isospins TL3 = ±1/2, one ob-
tains that in the relativistic limit P coincides with chirality Ca. That is why
tr (PN ) =

∑

a PaCa =
∑

a CaCa = 16. So, in this limit the discrete symmetry P
is equivalent to the chiral symmetry, the γ5 symmetry which protects the Dirac
fermions from the masses. If the γ5 symmetry is obeyed, i.e. it commutes with
the Dirac Hamiltonian, γ5Hγ5 = H, then the Dirac fermion has no mass. This
is consistent with the non-zero value of the topological invariant: it is easy to
check that for the massless Dirac fermion one has tr

(

γ5N
)

= 2.
This connection between topology and mass protection looks trivial in the

relativistic case, where the absence of mass due to γ5 symmetry can be directly
obtained from the Dirac Hamiltonian. However, it is not so trivial if the interac-
tion is introduced, or if the Lorentz and other symmetries are violated at high
energy, so that the Dirac equation is no longer applicable, and even the chiral-
ity ceases to be a good quantum number. In particular, transitions between the
fermions with different chirality are possible at high energy, see Sec. 29.3.1 for
an example. In such a general case it is only the symmetry-protected topolog-
ical charge, such as eqn (12.16), that gives the information on the gap (mass)
protection of fermionic quasiparticles.

12.3.3 Relation to chiral anomaly

The momentum space topological invariants are related to the axial anomaly in
fermionic systems. In particular, the charges related to the local gauge group
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cannot be created from vacuum, and the condition for that is the vanishing of
some of these invariants (see Chapter 18):

tr (YN ) = tr
(

Y3N
)

= tr
(

(TL3)
2YN

)

= tr
(

Y2TL3N
)

= . . . = 0 . (12.17)

From the form of the generating function in eqn (12.15) it really follows that
all these invariants are zero, though in this equation it is not assumed that the
groups U(1)Y and SU(2)L are local.

12.3.4 Trivial topology below electroweak transition and massive fermions

When the electroweak symmetry U(1)Y ×SU(2)L is violated to U(1)Q, the only
remaining charge – the electric charge Q = Y + TL3 – produces a zero value for
the whole generating function according to eqn (12.15):

tr
(

eiθQQN
)

= tr
(

eiθQYeiθQTL3N
)

= 0 . (12.18)

The zero value of the topological invariants implies that even if the singularity in
the Green function exists in the Fermi point it can be washed out by interaction.
Thus, if the electroweak symmetry-breaking scheme is applicable to the Stan-
dard Model, each elementary fermion in our world must have a mass below the
electroweak transition temperature. The mass would also occur if the Standard
Model is such an effective theory that its electroweak symmetry is not exact at
the fundamental level.

What is the reason for such a symmetry-breaking pattern, and, in particular,
for such choice of electric chargeQ? Why had nature not chosen the more natural
symmetry breaking, such as U(1)Y × SU(2)L → U(1)Y , U(1)Y × SU(2)L →
SU(2)L or U(1)Y ×SU(2)L → U(1)Y ×U(1)T3

? The possible reason is provided
by eqn (12.15), according to which the nullification of all the momentum space
topological invariants occurs only if the symmetry-breaking scheme U(1)Y ×
SU(2)L → U(1)Q takes place with the charge Q = ±Y ± TL3. Only in such
cases does the topological mechanism for the mass protection disappear. This
can shed light on the origin of the electroweak transition. It is possible that
the elimination of the mass protection is the only goal of the transition. This
is similar to the Peierls transition in condensed matter: the formation of mass
(gap) is not the consequence but the cause of the transition. It is energetically
favorable to have masses of quasiparticles, since this leads to a decrease of the
energy of the fermionic vacuum. Formation of the condensate of top quarks,
which generates the heavy mass of the top quark, could be a relevant scenario
for that (see the review by Tait 1999).

Another hint of why it is the charge Q which is the only remnant charge
in the low-energy limit, is that in the G(224) model the electric charge Q =
1
2 (B − L) + TL3 + TR3 is left–right symmetric. For any left–right symmetric
charge Q the topological invariant tr

(

eiθQQN
)

= 0. Such remnant charge does
not prevent the formation of mass, and thus there is no reason to violate the
U(1)Q symmetry.
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12.4 Reentrant violation of special relativity

12.4.1 Discrete symmetry in 3He-A

Now let us consider the peculiarities of the quasiparticle energy spectrum in the
case when the Fermi point has multiple topological charge |N3| > 1 (Volovik
2001a). This happens in the 3He-A vacuum described by eqn (7.54), where the
topological charges of Fermi points are N3 = ±2. Let us discuss the Fermi point,
say, at p = +pF l̂, which has N3 = −2. In the model with two independent
spin projections, Sz = +1/2 and Sz = −1/2, we have actually two independent
flavors of fermions, each with the topological charge N3 = −1. Both flavors have
a p-space singularity situated at the same point in p-space. Near this doubly
degenerate Fermi point, two flavors of left-handed ‘relativistic’ quasiparticles
are described by the following Bogoliubov–Nambu Hamiltonian:

H = c‖p̃z τ̌
3 + c⊥σ

z(τ̌1px − τ̌2py) , p̃z = pz − pF . (12.19)

The question is whether this relativistic physics survives if the interaction
between two populations, Sz = +1/2 and Sz = −1/2, is introduced. Of course,
since the charge of the Fermi point is non-zero, N3 = −2, the singularity in
the Green function will persist, but there is no guarantee that quasiparticles
would necessarily have the relativistic spectrum at low energy. Again, the answer
depends on the existence of the discrete symmetry of the vacuum. The 3He-A
vacuum has the proper discrete symmetry P in eqn (7.56) which couples the
two flavors and forces them to have identical elementary topological charges
N3 = −1, and thus their spectrum is ‘relativistic’. This P = US

x2e
iπ in eqn (7.56)

is the combined symmetry: it is the element US
x2 of the SO(3)S group, the π

rotation of spins about, say, axis x, which is supplemented by the gauge rotation
eiπ from the U(1)N group. Applying this to the Bogoliubov–Nambu Hamiltonian
(12.19), for which the generator of the U(1)N gauge rotation is τ̌3, one obtains

P = eπiτ̌3/2eπiσx/2 = −τ̌3σx, and [P,H] = 0.

12.4.2 Violation of discrete symmetry

The P symmetry came from the ‘fundamental’ microscopic physics at an energy
well above the first Planck scale EPlanck 1 = m∗c2⊥ at which the spectrum be-
comes non-linear and thus the Lorentz invariance is violated. However, from the
trans-Planckian physics of the 3He atoms we know that symmetry P is not exact
in 3He. Due to the spin–orbit coupling the symmetry group of spin rotations
SO(3)S is no longer the exact symmetry of the normal liquid, and this in par-
ticular concerns the spin rotation US

x2 which enters P in eqn (7.56). Since the P
symmetry was instrumental for establishing special relativity in the low-energy
corner, its violation must lead to violation of the Lorentz invariance and also to
mixing of the two fermionic flavors at the very low energy determined by this
tiny spin–orbit coupling.

Let us consider how this reentrant violation of the Lorentz symmetry at low
energy happens in 3He-A. Due to the symmetry violating spin–orbit coupling the
symmetry group of 3He-A, HA = U(1)Lz−N/2 × U(1)Sz

is also not exact. The
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exact symmetry now is the combined symmetry constructed from the sum of two
generators: U(1)Jz−N/2, where Jz = Sz +Lz is the generator of the simultaneous
rotations of spins and orbital degrees of freedom. The spin–orbit coupling does
not destroy the symmetry of the normal liquid under combined rotations. The
order parameter in eqn (7.54) acquires a small correction consistent with the
U(1)Jz−N/2 symmetry:

eµ i = ∆0ẑµ (x̂i + iŷi) + α∆0 (x̂µ + iŷµ) ẑi . (12.20)

The first term corresponds to a Cooper pair state with Lz = 1/2 per atom and
Sz = 0, while the second one is a small admixture of the state with Sz = 1/2
per atom and Lz = 0. Both components have Jz = 1/2 per atom and thus must
be present in the order parameter. Due to the second term the order parameter
is not symmetric under the P operation. The small parameter α ∼ ξ2/ξ2D =
E2

D/E
2
Planck 2 ∼ 10−5 is the relative strength of spin–orbit coupling in eqn (12.5).

The Bogoliubov–Nambu Hamiltonian for fermionic quasiparticles in such a
vacuum is now modified as compared to that in the pure vacuum state with
Lz = 1/2 and Sz = 0 in eqn (7.57):

HA = c‖p̃z τ̌
3 + c⊥σ

z(τ̌1px − τ̌2py) + αc⊥pz(σ
xτ̌1 − σy τ̌2) . (12.21)

12.4.3 Violation of ‘Lorentz invariance’ at low energy

Diagonalization of the Hamiltonian (12.21) gives the following splitting of the
energy spectrum due to spin-orbit coupling in the low-energy corner:

E2
± = c2‖p̃

2
z + c2⊥

(

αpF ±
√

α2p2
F + p2

⊥

)2

. (12.22)

Here we used that pz is close to pF . The + and − branches correspond to gapped
and gapless spectra respectively. For p⊥ ≪ αpF one has

E2
+ ≈ c2‖p̃

2
z + c̃2⊥p

2
⊥ + m̃2c̃4⊥ , (12.23)

E2
− ≈ c2‖p̃

2
z +

p4
⊥

4m̃2
, (12.24)

c̃⊥ =
√

2c⊥ , m̃c2⊥ = αpF c⊥ ∼ E2
D

EPlanck 2
, p⊥ ≪ m̃c⊥ . (12.25)

In this ultra-low-energy corner the gapped branch of the spectrum in eqn (12.23)
is relativistic, but with different speed of light c̃⊥. The gapless branch in eqn
(12.24) is relativistic in one direction E = c‖p̃z, and is non-relativistic, E =
±p2

⊥/2m̃, for the motion in the transverse direction.

12.4.4 Momentum space topology of exotic fermions

What is important here is that the reentrant violation of Lorentz invariance
caused by the violation of discrete symmetry is generic and thus can occur in the
effective RQFT such as the Standard Model. This is because of the topological
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Fig. 12.3. Low-energy memory of the high-energy non-symmetric physics

properties of the spectrum: the mixing of the two fermionic flavors occurs with
the redistribution of the topological chargeN3 = −2 between the two fermions. In
the relativistic domain each of two fermions has the topological charge N3 = −1.
It is easy to check that in the ultra-low-energy corner this is not the case. While
the total topological charge, N3 = −2, must be conserved, it is now redistributed
between the fermions in the following manner: the massive fermion (with energy
E+) acquires the trivial topological charge N3 = 0 (that is why it becomes
massive), while another one (with energy E−) has double topological charge
N3 = −2 (see Fig. 12.3). It is important that only one species of the massless
fermions now has N3 = −2. Thus it cannot split into two fermions each with
N3 = −1. This exotic fermion with N3 = −2 is gapless because of the non-zero
value of the topological charge, but the energy spectrum of such a fermion is not
linear. That is why it cannot be described in relativistic terms.

In the same way as the N3 = ±1 fermions are necessarily relativistic and
chiral in the low-energy corner, the fermions with higher |N3| are in general non-
relativistic, unless they are protected by the discrete symmetry. The momentum
space topology which induces the special relativity if |N3| = 1 becomes incom-
patible with the relativistic invariance if |N3| > 1 and the corresponding discrete
symmetry is not exact. Thus the Lorentz symmetry, if it is effective, may be
violated at very low energy. Properties of the fermionic systems with multiple
zeros, |N3| > 1, including the axial anomaly in its non-relativistic version, were
discussed by Volovik and Konyshev (1988).

The energy scale at which the non-relativistic splitting of the energy spectrum
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occurs is EReentrant = E2
D/EPlanck 2 which is much less than the second and even

the first Planck scale in 3He-A, EPlanck 1 = m∗c2⊥. Thus the relativistic region
for the 3He-A fermions, EReentrant ≪ E ≪ EPlanck 1, is sandwiched by the non-
relativistic regions at the high and low energies.

The 2D version of eqn (12.24) – exotic gapless fermions with quadratic spec-
trum E2 = p4/4m̃2 – was discussed for bilayer graphene (Volovik 2007a).

12.4.5 Application to RQFT

The above example of 3He-A shows that the special relativity in the low-energy
corner is produced by the combined effect of the degenerate Fermi point and the
discrete symmetry between the fermionic species. If the discrete symmetry is ap-
proximate, then in the ultra-low-energy corner the redistribution of the momen-
tum space topological charges occurs between the fermions with the appearance
of exotic fermions with higher topological charge |N3| > 1. This topological tran-
sition leads to strong modification of the energy spectrum which again becomes
essentially non-relativistic, but now at the ultra-low energies.

In principle, such a topological transition with the appearance of the exotic
fermions with N3 = ±2 can occur in the relativistic theories too, if these theories
are effective. In the effective theory the Lorentz invariance (and thus the special
relativity) appears in the low-energy corner as an emergent phenomenon, while
it can be violated at high energy approaching the Planck scale. At low energy,
the fermions are chiral and relativistic, if there is a symmetry between the fla-
vors of the fermions. If such symmetry is violated, spontaneously or due to the
fundamental physics well above the Planck scale, then in the extreme low-energy
limit the asymmetry between the fermionic flavors becomes important, and the
system starts to remember its high-energy non-relativistic origin. The rearrange-
ment of the topological charges N3 between the fermionic species occurs and the
special relativity disappears again. This can serve as a low-energy window for
the trans-Planckian physics.

This scenario can be applied to the massless neutrinos. The violation of the
horizontal symmetry between the left-handed neutrino flavors can lead to the
reentrant violation of Lorentz invariance at the very low energy. If neutrinos
remain massless at such an ultra-low-energy scale, then below this scale, two
flavors – electronic and muonic left-handed neutrinos each with N3 = −1 –
hybridize and produce the N3 = 0 fermion with the gap and the exotic gapless
N3 = −2 fermion with the essentially non-linear non-relativistic spectrum. This
is another example of violation of the special relativity, which can also give rise
to neutrino oscillations (the scenario in which the ultrahigh-energy Lorentz vio-
lation reenters at ultralow energy and this energy scale determines the Lorentz
noninvariance in the neutrino sector has been recently discussed by Klinkhamer
(2006)). The previously considered effect of the violation of the special rela-
tivity on neutrino oscillations was related by Coleman and Glashow (1997) and
Glashow et al. (1997) to the different speeds of light for different neutrino flavors.
The related effect is the violation of the weak equivalence principle: different fla-
vors are differently coupled to gravity (Majumdar et al. 2001; Gago et al. 2001).
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Topological defects





13

TOPOLOGICAL CLASSIFICATION OF DEFECTS

We have seen that the effective metric and effective gauge fields are simulated in
superfluids by the inhomogeneity of the superfluid vacuum. In superfluids many
inhomogeneous configurations of the vacuum are stable and thus can be experi-
mentally investigated in detail, since they are protected by r-space topology. In
particular, the effect of the chiral anomaly, which will be discussed in Chapter
18, has been verified using such topologically stable objects as vortex-skyrmions
in 3He-A and quantized vortices in 3He-B. Other topological objects can produce
non-trivial effective metrics. In addition many topological defects have almost
direct analogs in some RQFT. That is why we discuss here topologically stable
objects in both phases of 3He.

13.1 Defects and homotopy groups

The space-dependent configurations of the order parameter can be distributed
into large classes, defined by their distinct topological invariants, or topologi-
cal ‘charges’. Due to conservation of topological charge, configurations from a
given topological class cannot be continuously transformed into a configuration
belonging to a different class, while continuous deformation between configura-
tions within the given class is allowed by topology. The homogeneous state has
zero topological charge (in r-space) and therefore configurations with non-zero
charge are topologically stable: they cannot dissolve into the uniform vacuum
state in a continuous manner.

In the broken-symmetry phase below Tc the system acquires a set R of de-
generate equilibrium states. This set is the same in the entire temperature range
0 ≤ T < Tc, unless there is an additional symmetry breaking. That is why this set
is called the vacuum manifold, referring to the T = 0 case. The space-dependent
configurations of the order parameter define a mapping of the relevant part X
of the coordinate space r (or space time xµ = (r, t)) into the vacuum manifold
R of the degenerate states. The relevant part of space (or of spacetime) depends
on which type of configurations we are interested in.

In the case of vortices – and other linear defects – the relevant subspace X is a
circle S1 that encloses the defect line. Then the topological classes are defined by
the elements of the first (fundamental) homotopy group, π1(R). They describe
the classes of continuous mappings S1 → R of the closed circle S1 around the
defect line to the closed contour in the vacuum manifold.

In the same manner the point defects in 3D space (or the defects of co-
dimension dc = 3 in multi-dimensional space) are determined by classes of map-
ping S2 → R of a closed surface S2 embracing the defect point into the vacuum
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manifold. These topological classes form the second homotopy group π2(R).
The non-singular point-like topological objects in 3D space – skyrmions –

are determined by classes of mapping S3 → R, where S3 is the compactified 3D
space. The latter is obtained if the order parameter at infinity is homogeneous
and thus the whole infinity is equivalent to one point. The topological classes form
the third homotopy group π3(R). Such skyrmions are observed in liquid crystals
(see the book by Kleman and Lavrentovich 2003). In RQFT with non-Abelian
gauge fields this topological charge marks topologically different homogeneous
vacua.

The same group π3(R) determines the point defects in spacetime – instantons
(Belavin et al. 1975), and defects of co-dimension dc = 4 in multi-dimensional
space. Here the closed surface S3 is around the point in 3+1 spacetime. The
instanton represents the process of transition between two vacuum states with
different topological charge (in RQFT), or the process of nucleation of the non-
singular point-like topological object (in condensed matter). Usually in the lit-
erature it is assumed that the instanton is the quantum tunneling through the
energy barrier. But in condensed matter this can be the classical process without
any energy barrier.

The relevant subspaces X can be more complicated in the case of configura-
tions described by the relative homotopy groups, such as solitons (Sec. 16.1.1);
defects on surface (boojums) (Sec. 17.3); etc. The subspace is not closed, but
has boundary ∂X. Due to, say, boundary conditions, the mapping X → R is
accompanied by the mapping ∂X → R̃, where R̃ is the subspace of the vacuum
manifold R constrained by the boundary conditions.

13.1.1 Vacuum manifold

In the simplest cases the vacuum manifold R is fully determined by two groups,
G and H. The first one is the symmetry group of the disordered state above Tc.
This symmetry G is broken in the ordered state below Tc. Typically this group
is broken only partially, which means that the vacuum remains invariant under
some subgroup H of G, called the residual symmetry. Then the vacuum manifold
R is the so-called coset space G/H.

This can be viewed in the following way. Let A0 be the order parameter in
some chosen vacuum state. Then all the degenerate vacuum states in the vacuum
manifold can be obtained by symmetry transformations, i.e. through the action
on A0 of all the elements g of the group G: A = gA0. However, A0 is invariant
under the action of the elements h of the residual symmetry group H: A0 = hA0.
Thus all the elements h must be identified with unity, so that the actual space
of the degenerate vacuum states – the vacuum manifold – is the factor space

R = G/H . (13.1)

13.1.2 Symmetry G of physical laws in 3He

For the superfluid 3He the relevant group G is the symmetry of the Theory of
Everything of this quantum liquids, i.e. the symmetry of the Hamiltonian in eqn
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(3.2) which contains all the symmetries allowed in non-relativistic condensed
matter. These include all the symmetries of the physical laws in non-relativistic
physics, except for the Galilean invariance which is broken by the liquid: liquid
has a preferred reference frame, where it is stationary. The normal liquid 3He
above the critical phase transition temperature Tc has the same symmetry G
which thus contains the following subgroups.

The group of solid rotations of coordinate space, which we denoted as SO(3)L
to separate it from the spin rotations.

The spin rotations forming the group SO(3)S can be considered as a sepa-
rate symmetry operation if one neglects the spin–orbit interaction: the magnetic
dipole interaction between the nuclear spins is about five orders of magnitude
smaller in comparison to the energies characterizing the superfluid transition.

The group U(1)N of the global gauge transformations, which stems from
the conservation of the particle number N for the 3He atoms. U(1) is an exact
symmetry if one neglects extremely rare processes of the excitations or ionization
of the atom, as well as the transformation of 3He nuclei under external radiation.

In addition there is the translational symmetry, in which we are not interested
at the moment: it is not broken in the superfluid state but becomes broken under
rotation. We also ignore discrete symmetries for the moment, the space and time
inversion, P and T.

Thus the continuous symmetries, whose breaking is relevant for the topologi-
cal classification of the defects in the superfluid phases of 3He, form the symmetry
group

G = SO(3)L × SO(3)S × U(1)N . (13.2)

The broken-symmetry states of spin-triplet p-wave superfluidity below Tc are
characterized by the order parameter, the 3×3 matrix A = eαi, which transforms
as a vector under a spin rotation for given orbital index (i ), and as a vector under
an orbital rotation for given spin index (α). The transformation of eαi under the
action of the elements of the group G (see e.g. eqn (7.47)) can be written in the
following symbolic form:

GA = e2iαRSAR
−1
L , (13.3)

where α is the parameter of the global gauge transformation; RS and RL are
matrices of spin and orbital rotations.

13.1.3 Symmetry breaking in 3He-B

In 3He-B the symmetry G in eqn (13.2) is broken in the following way: the U(1)
group is broken completely, while the product of two other groups breaks down
to the diagonal subgroup:

G = SO(3)L × SO(3)S × U(1)N → HB = SO(3)S+L . (13.4)

The residual symmetry group HB of 3He-B is the symmetry under simultaneous
rotations of spin and orbital spaces.
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For the triplet p-wave pairing, this is the only possible superfluid phase which
has an isotropic gap in the quasiparticle spectrum and thus no gap nodes. The
order parameter is isotropic: in the simplest realization it has the form

e
(0)
αi = ∆0δαi . (13.5)

All other degenerate states of the B-phase vacuum in eqn (7.47) are obtained by
the action of the symmetry group G:

(GA(0))αi = ∆0e
iΦRαi . (13.6)

Here Φ is the phase of the order parameter, which manifests the breaking of
the U(1)N group. Rαi is the real 3 × 3 matrix obtained from the original unit
matrix in eqn (13.5) by spin and orbital rotations: Rαi = (RSR

−1
L )αi. Matrices

Rαi characterizing the vacuum states span the group SO(3) of rotations. They
can be expressed in terms of the direction n̂ of the rotation axis, and angle θ of
rotation about this axis:

Rαi(n̂, θ) = (1 − cos θ)δαi + n̂αn̂i cos θ − εαikn̂k sin θ . (13.7)

The vacuum manifold of 3He-B is thus the product of the SO(3)-space of
matrices and of the U(1)-space of the phase Φ: RB = SO(3) × U(1), which
reflects the general relation in eqn (13.1),

RB = G/HB = SO(3) × U(1) . (13.8)

3He-B has four Goldstone bosons: one propagating mode of the phase Φ
(sound) and three propagating modes of the matrix Rαi (spin waves). The num-
ber of Goldstone bosons corresponds to the dimension of the vacuum manifold
RB. This is a general rule which, however, can be violated in the presence of
hidden symmetry discussed in Sec. 9.3.3.

13.2 Analogous ‘superfluid’ phases in high-energy physics

There are several models in high-energy physics with a similar pattern of sym-
metry breaking. Each of the discussed groups G contains U(1) and the product
of two similar groups (SU(2)×SU(2), SU(3)×SU(3), etc.). In the phase transi-
tion the U(1) group is broken completely, while the product of two other groups
breaks down to the diagonal subgroup.

13.2.1 Chiral superfluidity in QCD

The analogy between the chiral phase transition in QCD and the superfluid
transition to 3He-B has been discussed in the book by Vollhardt and Wölfle
(1990), pages 172–173. In both systems the rotational symmetry is doubled when
small terms in the Lagrangian are omitted. In 3He, the exact symmetry is the
rotational symmetry SO(3)J, where J = L + S. Since the spin–orbit interaction
is very small, the group SO(3)J can be extended to the group SO(3)L ×SO(3)S
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of separate orbital and spin rotations, which is an approximate symmetry. After
the phase transition to the broken-symmetry state the approximate extended
symmetry is spontaneously broken back to SO(3)J. But at the end of this closed
route SO(3)J → SO(3)L × SO(3)S → SO(3)J one obtains: (i) the gap in the
fermionic spectrum; (ii) Goldstone and/or pseudo-Goldstone bosons with small
gap dictated by the spin–orbit interaction (see the book by Weinberg 1995);
and (iii) topological defects – solitons terminating on strings (Sec. 14.1.5). The
source of all these is the small parameter E2

D/E
2
Planck, the relative magnitude of

the spin–orbit interaction.
Exactly the same thing occurs in the effective theory of nuclear forces arising

in the low-energy limit of QCD. There exists an ‘exact’ global group SU(2) –
the symmetry of nuclear forces with respect to the interchange of the proton
and neutron – called the isotopic spin symmetry (not to be confused with the
local group SU(2)L of weak interactions). The proton and neutron form the
isodoublet of this global group. It appears that this symmetry can be extended
to the approximate symmetry which is the product of two global groups SU(2)L×
SU(2)R of separate isorotations of left and right quarks. The reason for that is
that the ‘bare’ masses of u and d quarks (mu ∼ 4 MeV and md ∼ 7 MeV) are
small compared to the QCD scale of 100−200 MeV. If the masses are neglected,
one obtains two isodoublets of chiral quarks, left (uL, dL) and right (uR, dR),
which can be independently transformed by the SO(3)L and SO(3)R groups.

As in 3He-B, the symmetry-breaking scheme in low-energy QCD also con-
tains the global U(1) symmetry appropriate for the massless quarks: (uL, dL) →
(uL, dL)eiα, (uR, dR) → (uR, dR)e−iα. This chiral symmetry, denoted U(1)A, is
approximate and is violated by the chiral anomaly. This is somewhat similar
to 3He, where strictly speaking the U(1)N symmetry is approximate, since the
number of 3He atoms is not conserved because of the possibility of chemical
and nuclear reactions. Thus in this model the extended approximate group of
low-energy QCD is the global group (see the book by Weinberg 1995)

G = SU(2)L × SU(2)R × U(1)A . (13.9)

It is assumed that in the chiral phase transition, which occurs at Tc ∼100−200
MeV, the U(1)A symmetry is broken completely, while the SU(2)L × SU(2)R
symmetry is broken back to their diagonal subgroup SU(2)L+R. This fully re-
produces the symmetry-breaking pattern in 3He-B:

SU(2)L × SU(2)R × U(1)A → SU(2)L+R . (13.10)

This symmetry breaking gives rise to pseudo-Goldstone bosons – pions, and
topological defects – strings and domain walls terminating on strings. Mixing the
left and right quarks by the order parameter generates the quark masses, which
are larger than their original masses generated in the electroweak transition and
ignored in this theory.

The quark–antiquark chiral condensates in the state with chiral superfluidity,
〈uLūR〉, 〈dLd̄R〉, 〈uLd̄R〉, 〈dLūR〉, form the 2 × 2 matrix order parameter. Its
simplest form and the general form obtained by symmetry transformations are
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A(0) = ∆τ0 , (13.11)

A = gA(0) =
(

στ0 + iπb · τb
)

eiη , σ2 + ~π2 = ∆2 (13.12)

Here τ0 and τb with b = (1, 2, 3) are the Pauli matrices in isospin space; ∆ is
the magnitude of the order parameter, which determines the dressed mass of u
and d quarks; and η is the phase of the chiral condensate: η → η + 2α under
transformations from the chiral symmetry group U(1)A. In the hypothetic ideal
case, when the initial symmetry G is exact, the situation is similar to 3He-B
with four Goldstone bosons: the η mode – the so-called η′ meson – is analogous
to sound waves in 3He-B; and three pions ~π, analogs of three spin waves in
3He-B. Since the original symmetry G is approximate, the Goldstone bosons are
massive. The masses of these pseudo-Goldstone modes are small, since they are
determined by small violations of G, except for the η′ meson, whose mass is
bigger due to chiral anomaly. This is similar to one of the spin-wave modes in
3He-B which has a small gap due to the spin–orbit interaction violating G.

13.2.2 Chiral superfluidity in QCD with three flavors

The extended SU(3)Flavur model of the chiral QCD transition includes three
quark flavors u, d and s, assuming that the mass of the strange quark s is also
small enough. Now SU(3)L × SU(3)R is spontaneously broken to the diagonal
subgroup SU(3)Flavor:

SU(3)L × SU(3)R → SU(3)Flavor . (13.13)

13.2.3 Color superfluidity in QCD

The similar symmetry-breaking pattern for the color superfluidity of the quark
condensate 〈qq〉 in dense baryonic matter was discussed by Ying (1998), Alford
et al. (1998) and Wilczek (1998). As distinct from the 〈qq̄〉 condensates discussed
above the Cooper pairs 〈qq〉 carry color, whence the name color superconduc-
tivity. The original approximate symmetry group above the superfluid phase
transition can be, for example,

G = SU(3)C × SU(3)Flavor × U(1)B , (13.14)

where SU(3)C is the local group of QCD, and U(1)B corresponds to the conser-
vation of the baryon charge. In the symmetry-breaking scheme

SU(3)C × SU(3)Flavor × U(1)B → SU(3)C+F , (13.15)

the breaking of the baryonic U(1)B group manifests the superfluidity of the
baryon charge in the baryonic quark matter, while the breaking of the color
group of QCD manifests the superfluidity of the color. In the more extended the-
ories, eqn (13.13) and eqn (13.15) are combined: SU(3)L×SU(3)R×SU(3)C →
SU(3)C+L+R.
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VORTICES IN 3He-B

14.1 Topology of 3He-B defects

14.1.1 Fundamental homotopy group for 3He-B defects

The homotopy group describing the linear topological defects in 3He-B is

π1(G/HB) = π1(U(1)) + π1(SO(3)) = Z + Z2 . (14.1)

Here Z is the group of integers, and Z2 contains two elements, 1 and 0, with the
summation law 1+1 = 0. These elements describe the defects with singular core,
which means that inside this core of coherence length ξ the order parameter is
no longer in the vacuum manifold of 3He-B. Such a core is also called the hard
core to distiguish it from the smooth or soft cores of continuous structures. Since
π2(G/HB) = 0, in 3He-B there are no topologically stable hard-core point defects
– hedgehogs. The hedgehogs with non-singular (soft) core will be discussed later
in Sec. 14.2.5.

14.1.2 Mass vortex vs axion string

The group Z of integers in eqn (14.1) describes the conventional singular vortices
with integer winding number n1 of the phase Φ of the order parameter (13.6)
around the vortex core. The simplest realization of such vortices is Φ(r) = n1φ,
where φ is an azimuthal angle in the cylindrical coordinate frame. In superfluid
3He-B, the superfluid velocity vs = (h̄/2m)∇Φ characterizes the superfluidity of
mass carried by 3He atoms: the mass flow of the superfluid vacuum is P = mnvs.
Thus the vortices of the Z group have circulating mass flow around the core and
are called the mass vortices. The mass vortex carries the quantized circulation
κ =

∮

dr · vs = n1κ0, with κ0 = πh̄/m. Mass vortices with n1 = 1 form a
regular array in the rotating vessel (see the cluster of mass vortices in Fig. 14.1).
Within the cluster the average superfluid velocity obeys the solid-body rotation
〈vs〉 = vn = Ω×r, where Ω is the angular velocity of rotation. The areal density
of circulation quanta in the cluster has a value

nv =
1

Sκ0

∫

S

dS · (∇× vs) =
2Ω

κ0
, (14.2)

In the chiral condensate phase of QCD, the mass vortices are equivalent to the
η′-vortices or axion strings around which the supercurrent of chiral charge is cir-
culating (see e.g. Zhang et al. 1998) Defect formation during the non-equilibrium
phase transition into the state with the broken chiral symmetry was discussed by
Balachandran and Digal (2002). This is analogous to the mechanism of vortex
formation in 3He-B which will be discussed in Chapter 28.
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Fig. 14.1. Vortices in rotating 3He-B. Mass vortices form a regular structure
like Abrikosov vortices in an applied magnetic field. If the number of vortices
is less than equilibrium number for given rotation velocity, vortices are col-
lected in the vortex cluster. Within the cluster the average superfluid velocity
〈vs〉 = vn. On the periphery there is a region void of vortices – the coun-
terflow region, where 〈vs〉 6= vn. Spin–mass vortices with n1 = 1, ν = 1 can
be created and stabilized in the rotating vessel. The confining potential pro-
duced by the soliton wall is compensated by logarithmic repulsion of vortices
forming the vortex pair – the doubly quantized vortex with n1 = 2, ν = 0
inside the cluster. A single spin–mass vortex is stabilized at the periphery of
the cluster by the combined effect of soliton tension and Magnus force in eqn
(18.26).

14.1.3 Spin vortices vs pion strings

The Z2 group in 3He-B describes the singular spin vortices, with the summation
rule 1 + 1 = 0 for the topological charge ν. This summation rule means that
unlike vortices of the Z group, the Z2-vortex coincides with its antivortex, in
other words it is unoriented. In the simplest realization of spin vortices, the
orthogonal matrix of the B-phase vacuum (13.6) has the following form far from
the vortex core:

Rαi(φ) = (1 − cos θ(φ))ẑα ẑi + δαi cos θ(φ) − εαikẑk sin θ(φ) (14.3)

=





1 0 0
0 cos θ(φ) − sin θ(φ)
0 sin θ(φ) cos θ(φ)



 . (14.4)

Here θ(φ) = νφ with integer ν. Around such a vortex there is a circulation of
the spin current ∝ ∇θ, hence the name spin vortex. The topologically stable
vortex corresponds to ν = 1, i.e. to 2π rotation around the string axis. The rule
1 + 1 = 0 means that the spin vortex with winding number ν = 2 (i.e. with 4π
rotation around the string), or with any even ν, is topologically unstable and can



TOPOLOGY OF DEFECTS IN B-PHASE 167

be continuously unwound. Spin vortices with odd ν can continuously transform
to the ν = 1 spin vortex.

In the chiral condensate, where the groups SU(2) substitute the groups SO(3)
of 3He, the homotopy group π1(G/H) = π1(U(1)) = Z supports the topological
stability only for the η′-vortices. There is no additional Z2 group. This is because
in the SO(3) group the 2π rotation is the identity transformation, while in the
SU(2) group the identity transformation is the 4π rotation. But the string with
4π rotation around the core is equivalent to the topologically unstable ν = 2 spin
vortex in 3He-B and can be continuously unwound. This means that any pion
vortex, with any winding of the ~π-field around the core, is topologically unstable.
The topologically unstable pion strings, nevertheless, can survive under special
conditions, see e.g. Zhang et al. (1998). In the simplest realization of the pion
string the order parameter in eqn (13.12) is

π1 = π2 = 0 , σ + iπ3 =
∆(r)√

2
eiφ . (14.5)

Such a solution can be locally stable due to its symmetry, but this stability is
rather ephemeral since it is not supported by the topology.

14.1.4 Casimir force between spin and mass vortices and composite defect

Mass vortices are stabilized by rotation of the liquid forming the vortex cluster,
and thus can be investigated experimentally. This is not the case for spin vortices:
there is no such external field as rotation in superfluids, or magnetic field in
superconductors, which can regulate the position of the spin vortex in the sample.
However, the spin vortex has been observed because of its two unique properties:
one of them is that the spin vortex can be pinned by the mass vortex.

Mass and spin vortices do not interact significantly – they ‘live in different
worlds’, since they are described by non-interacting Φ and θ fields, respectively.
Let us for simplicity fix the Goldstone variable n̂ in eqn (13.7), leaving only
two Goldstone fields Φ and θ. Then from the gradient energy in eqn (10.3) one
obtains the following London energy density for the remaining Goldstone fields:

ELondon = ns
h̄2

8m
(∇Φ)2 + nspin

s

h̄2

8m
(∇θ)2 . (14.6)

Here nspin
s is spin rigidity, which enters the spin current h̄2

4mn
spin
s ∇θ.

Let us consider two rectilinear defects of length L: the mass vortex with
charge n1 (i.e. Φ = n1φ) and the spin vortex with charge ν (i.e. θ = νφ; since
n̂ is fixed the spin vortex in eqn (14.4) can have any integer winding number).
Equation (14.6) contains no interaction term between the two defects, so the
total energy of two defects is simply the sum of two energies:

E(n1, ν) = E(n1) + E(ν) = L
(

n2
1ns + ν2nspin

s

) πh̄2

4m
ln
R0

ξ
. (14.7)

Here R0 is the external (infrared) cut-off of the logarithmically divergent integral,
which is given by the size of the vessel, and the coherence length ξ is the core
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size which provides the ultraviolet cut-off. The London energy is valid only for
scales above ξ, while in the core the deformations with the scale of order ξ drive
the system out of the vacuum manifold of the B-phase.

The most surprising property of the energy (14.7) is that it does not depend
on the distance between the vortices. It is very similar to the case when two par-
ticles are charged, but their charges correspond to different gauge fields. Another
analog corresponds to electrons of two kinds: one is the conventional electron,
while the other one belongs to mirror matter, which can exist if the parity is
an unbroken symmetry of nature (Silagadze 2001; Foot and Silagadze 2001).
The electron and mirror electron interact gravitationally, and also through the
Casimir effect.

In our case it is the Casimir effect that is important. Each string disturbs the
vacuum, and this disturbance influences another string. Such Casimir interaction
can be described by the higher-order gradient term ∼ ns(h̄

2ξ2/m)(∇Φ)2(∇θ)2.
Then the Casimir interaction and the Casimir force between spin and mass vor-
tices, parallel to each other, are

ECasimir(R) = E(n1, ν) − E(n1) − E(ν) ∼ −n2
1ν

2L
nsh̄

2ξ2

mR2
, (14.8)

FCasimir(R) = −∂RECasimir ∼ −n2
1ν

2L
E2

F

∆2
0

h̄vF

R3
, (14.9)

where R is the distance between the vortex lines. If one disregards the difference
between Planck scales in superfluid 3He, i.e. assumes that vF = c in eqn (7.48),
one obtains FCasimir ∼ −n2

1ν
2Lh̄c/R3. This is reminiscent of the Casimir force

between two conducting plates, FCasimir ∼ −L2h̄c/R4, where L2 is the area of
the plates.

For comparison, the Casimir force between two point defects (hedgehogs or
global monopoles) ‘living in different worlds’, i.e. described by different fields,
would be FCasimir(R) ∝ −h̄c/R2, which has the same R-dependence as the grav-
itational attraction between two point particles.

The Casimir attraction between spin and mass vortices is small at large
distances, but becomes essential when R is of order of the core size ξ. It is en-
ergetically preferable for the two defects to form a common core: according to
Thuneberg (1987a) by trapping the spin vortex on a mass vortex the combined
core energy is reduced. As a result the two strings form a composite linear defect
– the spin–mass vortex – characterized by two non-zero topological quantum
numbers, n1 = 1 and ν = 1. Because of the mass-vortex constituent of this
composite defect, it is influenced by the Magnus force in eqn (18.26). It is sta-
bilized in a rotating vessel due to another peculiar property of the spin-vortex
constituent.

14.1.5 Spin vortex as string terminating soliton

Since both the SO(3)S part of the group G in 3He and the global SU(2) or
SU(3) groups of chiral symmetries in QCD are approximate, some or all of the
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Fig. 14.2. Spin vortex as the termination line of soliton in 3He-B. Left: The
field of the vector n̂θ, whose direction shows the axis of rotation, and the
magnitude – the angle of rotation. In the core of the soliton the angle θ
deviates from its ‘magic’ value θL ≈ 104o. Right: The SO(3) space of the
vector n̂θ. Solid line Γ is the contour drawn by the vector n̂θ when circling
around the spin vortex along the contour γ. Γ is closed since vectors n̂θ and
−n̂θ are identical in the SO(3) space of rotations.

Goldstone bosons in these systems have a mass. In 3He-B the spin–orbit (dipole–
dipole) energy explicitly depends on the degeneracy parameter θ in eqn (14.3):

FD = gD

(

cos θ +
1

4

)2

. (14.10)

It fixes the value of θ at the ‘magic’ Leggett angle θL ≈ 104o, and as a result
the θ-boson – the spin-wave mode in which θ oscillates – acquires the mass.
The spin–orbital energy reduces the vacuum manifold SO(3) of the matrix Rαi

in eqn (13.7) to the spherical surface S2 = SO(3)J/SO(2)J3
of unit vector n̂.

The parameter gD is connected with the dipole length ξD in eqn (12.5) as gD ∼
nsh̄

2/mξ2D ∼ nsM , where M is the Dirac mass of chiral fermions in the planar
state in eqn (12.5) induced by the spin–orbit interaction.

The ‘pion’ mass term in eqn (14.10) essentially modifies the structure of the
spin vortex: the region where θ deviates from the Leggett angle shrinks to the
soliton – the planar object terminating on the spin vortex (Fig. 14.2 left). The
closed path γ around the spin vortex in Fig. 14.2 left is mapped to the contour Γ
in SO(3) space of the vector n̂θ, whose direction shows the axis of rotation, and
the magnitude – the angle of rotation (Fig. 14.2 right). This contour Γ is closed
since the pair of points n̂π and −n̂π are identical: they correspond to the same
matrix Rαi of the 3He-B order parameter in eqn (13.7). The contour Γ cannot
be shrunk to a point by smooth perturbations of the system; this demonstrates
the topological stability of the spin vortex with ν = 1.
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Let us now discuss the topological stability of the soliton. On the arc γ2 of the
contour γ in the region outside the soliton, the system is in the vacuum manifold
S2 determined by the minimum of eqn (14.10). This arc is thus mapped to the
arc Γ2 of Γ along the spherical surface S2 of radius θL. On the arc γ1 crossing
the soliton, the order parameter leaves the S2 sphere and varies in the larger
SO(3) space. For a given field configuration, γ1 maps to the horizontal segment
Γ1. Though the segment Γ1 is not closed, the mapping γ1 → Γ1 is non-trivial:
Γ1 cannot shrink to a point because of the requirement that the segment Γ1

must terminate on the sphere S2 of the vacuum manifold outside the soliton.
As a result the soliton is stable. This is an illustration of the non-triviality of
the relative homotopy group π1(SO(3), S2) = Z2, which provides the topological
stability of solitons in 3He-B. More on topological solitons and on the relative
homotopy groups will be given in Sec. 16.1.2.

The topologically similar phenomenon of cosmic walls bounded by cosmic
strings was discussed by Hindmarsh and Kibble (1995) (see also Chapter 17).

14.1.6 Topological confinement of spin–mass vortices

In Sec. 14.1.4 we found that spin and mass vortices attract each other by Casimir
forces and form a composite defect – the spin–mass vortex with n1 = 1 and ν = 1.
Since this object contains the spin vortex, according to the results of the previous
section 14.1.5 it has a solitonic tail. Such a topological confinenment of the linear
defect (the mass vortex) and the planar defect (the soliton) allows us to stabilize
the composite object under rotation.

Two configurations containing the spin–mass vortex–soliton were experimen-
tally observed by Kondo et al. (1992). In the first configuration (Fig. 14.1 bottom)
two spin–mass vortices form the vortex pair, with the confining potential pro-
duced by the tension of the soliton wall between them. The confining potential
is proportional to the distance R between the spin–mass vortices. On the other

hand there is a logarithmic interaction of the vortex ‘charges’: the n
(1)
1 charge of

the first vortex interacts with the n
(2)
1 of the second one, and the same logarith-

mic interaction exists between the ν charges of vortices. In the simplest case of
fixed variable n̂ the total interaction between the two spin–mass vortices is

E(n
(1)
1 , ν(1);n

(2)
1 , ν(2)) − E(n

(1)
1 , ν(1)) − E(n

(2)
1 , ν(2))

= βLR − L
(

n
(1)
1 n

(2)
1 ns + ν(1)ν(2)nspin

s

) πh̄2

2m
ln
R

ξ
, β ∼ gDξD . (14.11)

In the experimentally observed vortex pairs, the spin–mass vortices have charges

(n
(1)
1 , ν(1)) = (1, 1) and (n

(2)
1 , ν(2)) = (1,−1). Since ns > nspin

s the repulsion
of like charges n1 prevails over the attraction of unlike charges ν. The overall
logarithmic repulsion of charges and the linear attractive potential due to the
soliton produce the equilibrium distance R between spin–mass vortices in the
molecule, which is about several ξD. The molecule as a whole has topological
charges n1 = 2 and ν = 0, which means that it represents the doubly quantized
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mass vortex. As a vortex, in the rotating sample it finds its position among the
other vortices within the vortex cluster (Fig. 14.1 top).

In the other experimental realization of the composite defect (Fig. 14.1
left), the position of the spin–mass vortex is stabilized at the edge of the vortex
cluster, while the second end of the soliton is attached to the wall of the vessel.
In this case the Magnus force acting on the mass-vortex part of the object pushes
the vortex toward the cluster, and thus compensates the soliton tension which
attracts the vortex to the wall of the container. The soliton cannot be unpinned
from the wall of the vessel, since this requires nucleation of a singularity – spin
or spin–mass vortex. In superfluid 3He, processes forming singular defects are
highly suppressed because of huge energy barriers as compared to temperature
(see Sec. 26.3.2).

14.2 Symmetry of defects

14.2.1 Topology of defects vs symmetry of defects

The first NMR measurement on rotating 3He-B by Ikkala et al. (1982) revealed a
first order phase transition in the vortex core structure. Other transitions related
to the change of the structure (and even topology) of the individual topological
defects have been identified in 3He-A since then, but the B-phase transition
remains the most prominent one. The first-order phase transition line in Fig. 14.3
separates two regions in the phase diagram. In both regions the vortex with the
lowest energy has the same winding number n1 = 1, i.e. the same topology. But
the symmetry of the core of the vortex is different in the two regions. This was
later experimentally verified by Kondo et al. (1991) who observed the Goldstone
mode in the core of the vortex in the low-T part of the phase diagram. The
Goldstone boson arises from the breaking of continuous symmetry; in a given
case it is the axial symmetry which is spontaneously broken in the core: the
core becomes anisotropic and the direction of the anisotropy axis is the soft
Goldstone variable. This discovery illustrated that in 3He-B the mass vortices
have a complex core structure, unlike in superfluid 4He or conventional s-state
superconductors, where the superfluid order parameter amplitude goes to zero
on approaching the center of the vortex core.

This observation required fine consideration of the vortex core structure. The
resulting general scheme of defect classification in the ordered media, which in-
cludes the symmetry of defects, has three major steps. The first step is the
symmetry classification of possible homogeneous ordered media in terms of the
broken symmetry. This actually corresponds to the enlisting of the possible sub-
groups H of the symmetry group G. For instance, to enumerate all the possible
crystal and liquid-crystal states, it is sufficient to find all the subgroups of the
Euclidean group. In the case of superconductivity, where in addition the elec-
tromagnetic U(1)Q group is broken, the classification of the superconductivity
classes in crystals was carried out by Volovik and Gor‘kov (1985).

At the second stage, for a given broken-symmetry state, i.e. for given sym-
metry H, the topological classification of defects is made using the topological
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Fig. 14.3. Top: Experimental phase diagram of vortex core states in 3He-B.
Both vortices have winding number n1 = 1, but the low-T vortex has bro-
ken axisymmetry in the core which was verified by observation by Kondo et
al. (1991) of the Goldstone mode related to broken axial symmetry. Bottom:
Normalized amplitude of the order parameter in the core of symmetric (right)
and asymmetric (left) vortices according to calculations by Thuneberg (1986)
in the Ginzburg–Landau region. Note that the order parameter is nowhere
zero. Schematic illustration of the core structure can be also found in Fig.
14.5.

properties of the vacuum manifold R = G/H. This topological classification dis-
tributes configurations into big classes. Such a classification is too general and
does not exhibit much information on the distribution of the order parameter
outside or inside the core. Within a given topological class one can find many dif-
ferent solutions, and even the phase transitions between different configurations
with the same topological charge as in Fig. 14.3.

Such a phase transition between the defects can also be described in terms
of the symmetry breaking, and here it is the symmetry of the defect that is
important. The third step is thus the fine classification of defects in terms of the
symmetry group.

To get an idea of how the symmetry classification of defects works, let us
consider two examples: symmetry of the vortex in superfluid 4He or 3He-B (see
the review by Salomaa and Volovik 1987); and symmetry of hedgehogs in ferro-
magnets or, which is similar, the symmetry of the ’t Hooft–Polyakov magnetic
monopoles in the SU(2) theory (Wilkinson and Goldhaber 1977). The symmetry
classification of disclination lines in liquid crystals has been considered in detail
by Balinskii et al. (1984).
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14.2.2 Symmetry of hedgehogs and monopoles

In the homogeneous phase transition of a paramagnetic material to the ferro-
magnetic state with spontaneous magnetization M = Mm̂, the G = SO(3)S
symmetry of global spin rotations is broken to its subgroup H = SO(2) ≡ U(1)
of rotations around the direction m̂ of spontaneous magnetization. The vacuum
manifold R = G/H = S2 is the spherical surface of unit vector m̂. It has non–
trivial second homotopy group π2(S

2) = Z describing hedgehogs with integer
topological charges n2:

n2 =
1

8π
eijk

∫

σ2

dSk m̂ ·
(

∂m̂

∂xi
× ∂m̂

∂xj

)

. (14.12)

It is the winding number of mapping of the sphere σ2 around the singular point
in r-space to the 2-sphere of unit vector m̂.

In the simplest model of the ’t Hooft–Polyakov magnetic monopoles, one has
an analogous scheme of symmetry breaking G = SU(2) → H = U(1)Q. This
leads to the stable hedgehogs. Since the SU(2) group under consideration is
local, the hedgehog represents topologically stable magnetic monopoles in the
emerging U(1)Q electrodynamics.

To discuss the possible symmetries of hedgehogs (or magnetic monopoles) we
must consider the phase transition from the paramagnetic state to a ferromag-
netic state in which a single hedgehog (or magnetic monopole) is present. In the
presence of the space-dependent texture the space itself becomes inhomogeneous
and anisotropic, i.e. the group SO(3)L of the rotations in the coordinate space
is broken by the hedgehog/monopole. Thus both the group SO(3)S of rotations
in ‘isotopic’ space and the group SO(3)L of rotations in coordinate space are
broken in the state with the defect.

What is left? This can be seen from the simplest ansatz for the hedgehog
with n2 = 1 far from the core, where M = M0 and m̂(r) = r̂. This configura-
tion has the symmetry group SO(3)L+S. Thus in the presence of the simplest
hedgehog/monopole the symmetry-breaking scheme is

G′ = SO(3)L × SO(3)S → SO(3)S+L . (14.13)

SO(3)L+S represents the maximum possible symmetry of the asymptote of the
order parameter far from the core of the hedgehog/monopole. Since this sym-
metry is the maximum possible, it can be extended to the core region. In other
words, among all the possible solutions of the corresponding Euler–Lagrange
equations there always exists the solution with the most symmetric configura-
tion of the core. This spherically symmetric solution for the magnetization vector
M(r) has the form M(r) = M(r)r̂ with M(r = 0) = 0 and M(r = ∞) = M0.
Other degenerate solutions are obtained by rotation in spin space (in isotopic
spin space in the case of the SU(2) ’t Hooft–Polyakov magnetic monopole).
Though the most symmetric solutions are always the stationary points of the
energy functional, they do not necessarily represent the local minimum of the
energy. They can be the saddle point, and in this case the energy can be reduced
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by spontaneous breaking of the maximal symmetry SO(3)L+S. In nematic liquid
crystals, in some region of external parameters of the system, the symmetric
hedgehog becomes unstable. It loses the spherical symmetry and transforms, for
example, to a small disclination loop with the same global charge n2 = 1 (see
Lubensky et al. (1997); the book by Mineev (1998); and the book by Kleman

and Lavrentovich (2003)). Similarly, the d̂-hedgehog in 3He-A (Sec. 15.2.1) can
be unstable toward the loop of the Alice string – the half-quantum vortex in
Secs 15.3.1 and 15.3.2. Also the breaking of the maximum possible symmetry
group can occur in the core of magnetic monopoles (Axenides et al. 1998; Bais
2005 and references therein).

14.2.3 Spherically symmetric objects in superfluid 3He

In superfluid 3He the relevant symmetry group G′ for the point defects coincides
with the group G in eqn (13.2): G′ = G. This is because the group SO(3)L
of coordinate rotations is already included in G. The general structure of the
spherically symmetric object in superfluid 3He, i.e. the object with the symmetry
SO(3)L+S, is (up to a constant rotation in spin space)

eαi(r) = a(r)(δαi − r̂αr̂i) + b(r)r̂αr̂i − c(r)εαik r̂k , (14.14)

where a(r), b(r) and c(r) are arbitrary functions of radial coordinate. However,
neither the A-phase nor the B-phase have stable hedgehogs with such symme-
try. 3He-A is too anisotropic: one cannot construct the spherically symmetric
object which has the A-phase vacuum far from the core. One can construct the
spherically symmetric object in the isotropic 3He-B vacuum, but such an object
is topologically unstable in 3He-B since the second homotopy group is trivial
there, π2(RB) = 0. However, the spin–orbit interaction modifies the B-phase
topology at large distances and gives rise to the topologically stable hedgehog
with the soft core of the dipole legth ξD (Sec. 14.2.5). The spherically symmetric
hedgehog with the hard core can exist in the planar phase. The core matter
there has a very peculiar property, so let us discuss this object.

14.2.4 Enhanced superfluidity in the core of hedgehog. Generation of Dirac
mass in the core

The order parameter in the planar phase of superfluid 3He in eqn (7.61) is con-
sistent with the spherically symmetric ansatz in eqn (14.14), if we choose the fol-
lowing asymptotes far from the core: a(r = ∞) = ∆0, b(r = ∞) = c(r = ∞) = 0.
Then one has eαi(r → ∞) = ∆0(δαi − r̂αr̂i), which represents the spherically
symmetric hedgehog in the planar phase. It has two discrete symmetries, space
inversion P and time inversion T. In the most symmetric hedgehog these sym-
metries persist in the core. Because of P symmetry the function c(r) = 0 every-
where in the core, and due to T symmetry the other two functions are real: they
represent the transverse and longitudinal gaps in the quasiparticle spectrum,
a(r) = ∆⊥(r) and b(r) = ∆‖(r) (Fig. 14.4 bottom center).

The evolution of the gap in the quasiparticle spectrum in the hard core of
coherence length ξ is shown in Fig. 14.4. In the center of the spherically sym-
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Fig. 14.4. Top: Schematic evolution of the order parameter in the hard core of
the hedgehog in planar phase of superfluid 3He. In the center of the hedge-
hog the isotropic B-phase appears. Bottom: Parameters a(r) = ∆⊥(r) and
b(r) = ∆‖(r) in eqn (14.14) are transverse and longitudinal gaps in the quasi-
particle spectrum. Far from the core one has a pure planar state with ∆‖ = 0
and thus with gap nodes – the marginal Fermi points with N3 = 0 – on
poles. In the core the gap ∆‖ appears and fermions acquire the Dirac mass.
Finally the order parameter develops to the isotropic 3He-B in the center of
the hedgehog.

metric core the two gaps must coincide to prevent the discontinuity in the order
parameter: a(r = 0) = b(r = 0). This means that the isotropic superfluid phase
– 3He-B – arises in the center of the hedgehog (Fig. 14.4 bottom left). The su-
perfluid order parameter eαi is thus nowhere zero throughout the core: the core
matter is superfluid. This is typical for defects in systems with multi-component
order parameter. It is not advantageous to nullify all the components of the order
parameter simultaneously, since below Tc the system prefers the superfluid state.

Far from the core of the hedgehog, i.e. in a pure planar phase with ∆‖ = 0,
∆⊥ = ∆0 (Fig. 14.4 bottom right), the energy spectrum has two Fermi points
in the directions parallel and antiparallel to the radius vector, p(a) = ±pF r̂.
Quasiparticles in the vicinity of nodes are massless ‘Dirac’ fermions (see Sec.
12.1). Since the Fermi points in the planar phase are marginal, perturbations
caused by the inhomogeneity of the order parameter in the core destroy the
Fermi points, and fermions become massive. The gap – the Dirac mass M = ∆‖

in eqn (7.64) – gradually appears in the core region. Deeper in the core the order
parameter develops into the isotropic 3He-B in the center of the hedgehog, and
the fully gapped fermionic spectrum becomes isotropic. This is just the opposite
of the common wisdom according to which the massive fermions in the bulk
become massless in the core of defect. The system here naturally prefers to have
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the isotropic superfluid state in the core with massive fermions, rather than the
isotropic normal state with massless fermions.

14.2.5 Continuous hedgehog in B-phase

The spherically symmetric object (obeying eqn (14.14)) can be stabilized in 3He-
B by the spin–orbit interaction in eqn (14.10), which tries to fix the angle θ in
the rotation matrix Rαi(n̂, θ) in eqn (13.7) at the magic value cos θL = −1/4
(the Leggett angle). The axis of rotation n̂ is not fixed by this interaction, that
is why the vacuum manifold reduced by the spin–orbit interaction becomes R̃ =
S2 × U(1), where S2 is the sphere of unit vector n̂. It has a non-trivial second
homotopy group π2(R̃) = Z, and thus there are hedgehogs in the field of rotation
axis n̂. The most symmetric hedgehog with the winding number ñ2 = 1 has n̂ = r̂

and the following structure of the core consistent with eqn (14.14):

Rαi(r) = δαi cos θ(r) + (1 − cos θ(r))r̂α r̂i − εαik r̂k sin θ(r) . (14.15)

It has the soft core within which the spin–orbit interaction is not saturated,
and θ deviates from its magic value. At the origin one has θ(r = 0) = 0, which
means that the sphere S2 shriks to the point, and the symmetry broken in the
bulk is restored in the core in agreement with common wisdom. The size of the
soft core of this hedgehog is on order of the dipole length ξD, i.e.it has the same
size as the thickness of the soliton in Fig. 14.2.

14.2.6 Symmetry of vortices: continuous symmetry

From the above examples we can see that the symmetry classification of defects
is based on the symmetry-breaking scheme of the transition from the normal
state to the ordered state with a given type of defect (point, line or wall). The
initial large symmetry group G is extended to the group G′ = G × SO(3)L to
include the space rotation. One must look for those subgroups of the group G′

which are consistent with (i) the geometry of defect; (ii) the symmetry group
H of the superfluid phase far from the core; and (iii) the topological charge of
the defect. For each maximum symmetry subgroup there is a stationary solution
for the order parameter everywhere in space including the core of defect. The
phase transition in the core can occur as the spontaneous breaking of one of
the maximal symmetries, or as the first-order transitions between core states
corresponding to different maximum symmetry subgroups.

Let us now turn to the symmetry of linear defects. We shall start with vortices
in superfluid 4He, whose order parameter is a complex scalar Ψ = |Ψ|eiΦ. In
the homogeneous phase transition of normal liquid 4He to the superfluid state,
the U(1)N symmetry is broken completely, while the system remains invariant
under space rotations SO(3)L. The symmetry-breaking pattern is different if one
considers the transition from the normal liquid 4He to the superfluid state with
one vortex line. In this case the group SO(3)L must be broken too, since the
direction of the vortex line appears as the axis of spontaneous anisotropy. One
can easily find out what the rest symmetry of the system is by inspection of the
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asymptote of the order parameter Ψ far from the vortex with winding number
n1:

Ψ(ρ→ ∞, φ) ∝ ein1φ . (14.16)

One finds that the symmetry-breaking scheme is now

G′ = U(1)N × SO(3)L → H′ = U(1)Q . (14.17)

Here the remaining symmetry U(1)Q is the symmetry of the order parameter in
eqn (14.16). It is rotation by angle θ, which transforms φ→ φ+ θ, accompanied
by the global phase rotation Φ → Φ + α, with α = −n1θ. The generator of such
U(1)Q transformations is

Q = Lz − n1N . (14.18)

Vortices with the symmetry U(1)Q are axisymmetric, since according to this
symmetry the modulus of the order parameter |Ψ| does not depend on φ: from the
symmetry condition Q|Ψ| = 0 it follows that ∂φ|Ψ| = iLz|Ψ| = i(Lz −n1N)|Ψ| =
iQ|Ψ| = 0.

For the s-wave superconductors, as well as for superfluid 3He, the order pa-
rameter corresponds to the vev of the annihilation operator of two particles. Thus
the corresponding scalar order parameter in s-wave superconductors, Ψ, trans-
forms under (global) gauge transformation generated by N as Ψ → Ψe2iα. That
is why the generator Q of the axial symmetry in eqn (14.18) must be modified
to

Q = Lz − n1

2
N . (14.19)

The phase transition into the vortex state has the same pattern of the sym-
metry breaking as the phase transition from normal 3He to the homogeneous
3He-A in eqn (7.53), if we are interested only in the orbital part of the order
parameter in 3He-A. Thus the homogeneous 3He-A corresponds to the vortex
in s-wave superfluid with winding number n1 = 1, while the l̂-vector of 3He-A
corresponds to the direction of the vortex axis. This suggests also that the total
angular momentum of both systems, the homogeneous 3He-A and n1 = 1 vortex
in s-wave superfluid (or in 3He-B), is the same, with h̄/2 per particle (see the
discussion of the orbital angular momentum in 3He-A in Sec. 20.2).

The same symmetry-breaking scheme occurs in electroweak transitions, where
the generator Q is the electric charge (Secs 12.2 and 15.1.2).

14.2.7 Symmetry of vortices: discrete symmetry

There are also two discrete symmetries of the order parameter in eqn (14.16). One
of them is the parity P, which transforms φ→ φ+ π (for odd n1 this operation
must be accompanied by gauge transformation from U(1)N ). The time reversal
operation T transforms the order parameter to its complex conjugate, i.e. the
phase Φ changes sign: TΦ = −Φ. This means that the time reversal symmetry
is broken by the vortex. However, the combined symmetry TU2 is retained,
where U2 is rotation by π about the axis perpendicular to the vortex axis. Since
U2φ = −φ this compensates the complex conjugation.
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Fig. 14.5. Schematic illustration of the core structure of B-phase vortices with
n1 = 1. The most symmetric vortex core state with vanishing order parameter
(top left) is never realized in 3He-B. The vortex with the A-phase core (top
right) is realized in the high-T part of the phase diagram in Fig. 14.3. Fermi
points arising in the core of this vortex are shown in Fig. 23.4 bottom. The
vortex with asymmetric core (bottom), which can be represented as a pair of
half-quantum vortices, is realized in the low-T part of the phase diagram in
Fig. 14.3.

U(1)Q × P × TU2 is the maximum possible symmetry of the vortex with
winding number n1. This means that one can always find the solution where this
symmetry is extended to the core region. This does not mean that the solution
with the symmetric core is the local minimum of the energy: it can be the saddle
point and the energy can be reduced by spontaneous breaking of P, TU2 or even
continuous Q-symmetry.

14.3 Broken symmetry in B-phase vortex core

14.3.1 Most symmetric vortex and its instability

The simplest possible vortex with n1 = 1 in 3He-B is, of course, the most sym-
metric mass vortex, i.e. the vortex whose order parameter distribution has the
same maximum symmetry as the asymptote:

Hmax = U(1)Q × P × TU2 , Q = Jz − n1

2
N , Jz = Lz + Sz . (14.20)

For the maximum symmetric vortex with n1 = 1, the symmetry requires that all
the order parameter components become zero on the vortex axis as is illustrated
in Fig. 14.5 top left; actually the most symmetric vortex in 3He-B is somewhat
more complicated than in the figure: it has three non-zero components, but all
of them behave in the same manner as in Fig. 14.5 top left; the details can be
found in the review by Salomaa and Volovik (1987).
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Though the maximum symmetric vortex necessarily represents the solution
of, say, Ginzburg–Landau equations, it is never realized in 3He-B. The corre-
sponding solution represents the saddle point of thr Ginzburg–Landau free en-
ergy functional, rather than a local minimum. It is energetically favorable to
break the symmetry in order to escape the vanishing of the superfluidity in the
vortex core. This is actually a typical situation for superfluids/superconductors
with a multi-component order parameter: the superfluid/superconductor does
not tolerate a full suppression of the superfluid fraction in the core, if there is a
possibility to escape this by filling the core with other components of the order
parameter.

In 3He-B there are two structures of the vortex with the same asymptote
of the order parameter as the maximum symmetric vortex, but with broken
symmetry in the vortex core. These are the vortex with ferromagnetic core in
the higher-T region of the phase diagram in Fig. 14.3 and the non-axisymmetric
vortex in the lower-T region.

14.3.2 Ferromagnetic core with broken parity

In the region of the 3He-B phase diagram, which has a border line with 3He-
A, the neighborhood (proximity) of the 3He-A is felt: the core of the n1 = 1
vortex there is filled by the A-phase order parameter components (Fig. 14.5 top
right). This vortex structure is doubly degenerate: the vortex with opposite sign
of the A-phase order parameter in the core has the same energy. This reflects the
broken discrete Z2 symmetry. In a given case parities P and TU2 are broken in
the core of the 3He-B vortex while their combination PTU2 persists (see details
in the review paper by Salomaa and Volovik 1987).

The core of this 3He-B vortex displays the orbital ferromagnetism of the A-
phase component, and in addition there is a ferromagnetic polarization of spins
in the core (Salomaa and Volovik 1983). This core ferromagnetism was observed
by Hakonen et al. (1983b) in NMR experiments as the gyromagnetism of the
rotating liquid mediated by quantized vortices: rotation of the cryostat produces
the cluster of vortices with ferromagnetically oriented spin magnetic momenta of
their cores. This net magnetic moment interacts with the external magnetic field,
which leads to the dependence of the NMR line shape on the sense of rotation
with respect to the magnetic field.

Similar, but antiferromagnetic, cores have been discussed for vortices in high-
Tc superconductors within the popular SO(5) model for the coexistence of super-
conductivity and antiferromagnetism (for the SO(5) model see e.g. Mortensen et
al. (2000) and references therein). It has been shown by Arovas et al. (1997) and
Alama et al. (1999) that in the Ginzburg–Landau regime, in certain regions of
the parameter values, a solution corresponding to the conventional vortex core
is unstable with respect to that with the antiferromagnetic core.

14.3.3 Double-core vortex as Witten superconducting string

On the other side of the phase transition line in Fig. 14.3, the B-phase vor-
tices have non-axisymmetric cores, i.e. the axial U(1)Q symmetry in eqn (14.20)
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is spontaneously broken in the core (Fig. 14.5 bottom right). This was demon-
strated in experiments by Kondo et al. (1991) and calculations in the Ginzburg–
Landau region by Volovik and Salomaa (1985), Thuneberg (1986) and Salomaa
and Volovik (1986). The core with broken rotational symmetry can be considered
as a pair of half-quantum vortices, connected by a non-topological soliton wall
(Thuneberg 1986, 1987b; Salomaa and Volovik 1986, 1988, 1989). The separa-
tion of the half-quantum vortices increases with decreasing pressure and thus the
double-core structure is most pronounced at zero pressure (Volovik 1990b). This
is similar to the half-quantum vortices in momentum space in Fig. 8.8 connected
by the non-topological fermionic condensate.

Related phenomena are also possible in superconductors. The splitting of the
vortex core into a pair of half-quantum vortices confined by the non-topological
soliton has been discussed in heavy-fermionic superconductors by Luck’yanchuk
and Zhitomirsky (1995) and Zhitomirsky (1995). In fact a vortex core splitting
may have been observed in high-Tc superconductors (Hoogenboom et al. 2000).
The observed double core was interpreted as tunneling of a vortex between two
neighboring sites in the potential wells created by impurities. However, the phe-
nomenon can also be explained in terms of vortex core splitting (Hlubina 2008).

In the physics of cosmic strings, an analogous breaking of continuous sym-
metry in the core was first discussed by Witten (1985), who considered the
spontaneous breaking of the electromagnetic gauge symmetry U(1)Q. Since the
same symmetry group is broken the condensed matter superconductors, one can
say that in the core of the cosmic string there appears the superconductivity of
the electric charges, hence the name ‘superconducting cosmic strings’. For the
closed string loop one can have quantization of magnetic flux inside the loop pro-
vided by the electric supercurrent along the string. In a sense, a superconducting
cosmic string is analogous to a closed superconducting wire, where the phase of
the order parameter Φ changes by 2πn1. The instability toward the breaking of
the U(1)Q symmetry in the string core can be triggered, for example, by fermion
zero modes in the core of cosmic strings as was found by Naculich (1995). Ac-
cording to Makhlin and Volovik (1995) the same mechanism can take place in
condensed matter vortices too.

14.3.4 Vorton – closed loop of the vortex with twisted core

For the 3He-B vortices, the spontaneous breaking of the U(1)Q symmetry (eqn
(14.20)) in the core leads to the Goldstone bosons – the mode in which the
degeneracy parameter, the axis of anisotropy of the vortex core, is oscillating.
The vibrational Goldstone mode is excited by a special type of B-phase NMR
mode, called homogeneously precessing domain, in which the magnetization of
the 3He-B precesses coherently. In experiments by Kondo et al. (1991) it was
possible also to rotate the core around its axis with constant angular velocity,
and in addition, since the core was pinned on the top and the bottom of the
container, it was possible even to screw the core (Fig. 14.6). Since the Goldstone
field α – the angle of the anisotropy axis – has a gradient ∇α along the string,
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α

Fig. 14.6. Twisted core of non-axisymmetric vortex in 3He-B. The gradient of
the Goldstone field ∇α along the string corresponds to the superconduct-
ing current along the superconducting cosmic string. The closed loop of the
twisted vortex is called the vorton.

such a twisted core corresponds to the Witten superconducting string with the
supercurrent along the core.

If the vortex line with the twisted core is closed, one obtains the analog of
the string loop with the quantized supercurrent along the loop. Such a closed
cosmic string, if it can be made energetically stable, is called a vorton (see Carter
and Davis 2000). The stability can be provided by conservation of the winding
number n of the phase of the superconducting order parameter along the loop.
When the loop is shrinking due to the string tension, the conservation of n leads
to an increase of supercurrent and its energy. This opposes the string tension
and can even stabilize the loop if the parameters of the system are favorable.
Vortons can have cosmological implications, since they can survive after creation
during the cosmological phase transition.

Estimates show that in 3He-B vortons cannot be stabilized.
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SYMMETRY BREAKING IN 3He-A AND SINGULAR

VORTICES

15.1 3He-A and analogous phases in high-energy physics

15.1.1 Broken symmetry

In the phase transition from the normal liquid 3He to the A-phase of 3He, the
symmetry G in eqn (13.2) is broken to the following subgroup:

HA = U(1)Sz
× U(1)Lz−

1
2
N × Z2 . (15.1)

We recall that the vacuum state corresponding to this residual symmetry is

e
(0)
αi = ∆Aẑα(x̂i + iŷi) , (15.2)

while the general form of the degenerate states, obtained by action of the sym-
metry group G, is

eαi = ∆0d̂α(m̂i + in̂i) . (15.3)

The SO(3)S group of spin rotations is broken to its U(1)Sz
subgroup: these are

spin rotations about axis d̂, which do not change the order parameter. The other
two groups are broken in the way it happens in the Standard Model. We also
explicitly introduce the discrete Z2 symmetry P (7.56), which plays the role of the
parity in the effective theory. This symmetry is important for the classification
of the topological defects.

15.1.2 Connection with electroweak phase transition

The group of orbital rotations and the global U(1)N group are broken to their
diagonal subgroup

SO(3)L × U(1)N → U(1)Lz−
1
2
N . (15.4)

The vacuum state in eqn (15.3) remains invariant under the orbital rotation

SO(2)Lz
about axis l̂ = m̂ × n̂ if it is accompanied by the proper global trans-

formation from the U(1)N group. The l̂-vector marks the direction of the spon-
taneous orbital momentum 〈vac|L|vac〉 in the broken-symmetry state.

A very similar symmetry-breaking pattern occurs in the Standard Model of
the electroweak interactions

SU(2)L × U(1)Y → U(1)Q , (15.5)

where SU(2)L is the group of the weak isotopic rotations with the generator
T; Y is the hypercharge; and Q = T3 + Y is the generator of electric charge in



A-PHASE AND ANALOGOUS PHASES IN HIGH-ENERGY PHYSICS 183

the remaining electromagnetic symmetry (see Sec. 12.2; note that in standard
notations the hypercharge Y is two times larger and thus the electric charge
has the form Q = T3 + (1/2)Y , which makes the analogy even closer). In this

analogy the l̂-vector corresponds to the direction of the spontaneous isotopic spin
〈vac|T|vac〉 in the broken-symmetry state.

The Higgs field in the electroweak model, which is the counterpart of the
orbital vector m̂ + in̂ of the order parameter in 3He-A, is the spinor

Φew =

(

φ1

φ2

)

, (15.6)

which is normalized by Φ†
ewΦew = |φ1|2 + |φ2|2 = η2

ew/2 in the vacuum where
ηew ∼ 250 GeV. The amplitude of the order parameter is 18 orders of magnitude
larger than the corresponding ∆0 ∼ 10−7 eV in 3He-A. The l̂-vector, i.e. the
direction of spontaneous isotopic spin 〈vac|T|vac〉, is given by

l̂ew = −Φ†
ew~τΦew

Φ†
ewΦew

, (15.7)

where ~τ are the Pauli matrices in the isotopic space. Isotopic rotation about l̂ew,
together with the proper U(1)Y transformation induced by the hypercharge op-
erator, is the remaining electromagnetic symmetry U(1)T3+Y/2 of the electroweak
vacuum in the broken-symmetry state. This can be seen using the simplest rep-
resentation of the order parameter, in which only the component with the isospin
projection T3 = −1/2 on the l̂ew-vector is present:

Φew =

(

0
φ2

)

. (15.8)

This form can be obtained from the general eqn (15.6) by SU(2) rotations. It is
invariant under U(1)Y gauge transformation Φ → Φeiα, if it is accompanied by
rotation Φ → Φe2iT3α.

This spinor Higgs field is also very similar to the order parameter of 2-
component Bose–Einstein condensate in laser-manipulated traps (see Sec. 16.2.2).

15.1.3 Discrete symmetry and vacuum manifold

The residual Z2 symmetry P in eqn (15.1) plays an important role in 3He-A.
It is this symmetry which couples two fermionic species living in the vicinity of
the doubly degenerate Fermi point and gives rise to the effective SU(2) gauge
field in Sec. 9.3.1. In the world of topological defects, the P symmetry leads to
exotic half-quantum vortices. Let us recall that according to eqn (7.56), P is the
symmetry of the vacuum under spin rotation by π about an axis perpendicular
to d̂ combined with the orbital rotation about l̂ by π.
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The vacuum manifold of 3He-A can be found as the factor space

RA = G/HA =
(

SO(3) × S2
)

/Z2 . (15.9)

It consists of the sphere S2 of unit vector d̂, and of the space SO(3) of solid
rotations of m̂ and n̂ vectors. The symmetry P identifies on S2 × SO(3) the

pairs of points d̂, m̂ + in̂ and −d̂, −(m̂ + in̂).

15.2 Singular defects in 3He-A

15.2.1 Hedgehog in 3He-A and ’t Hooft–Polyakov magnetic monopole

The A-phase manifold in eqn (15.9) has non-trivial homotopy groups

π1(G/HA) = π1

(

(SO(3) × S2)/Z2

)

= Z4 , π2(G/HA) = Z . (15.10)

Now the second homotopy group is non-trivial. It comes from the sphere S2 of
unit vector d̂. The winding number of the mapping of the spherical surface σ2

around the hedgehog to S2 provides integer topological charge n2 in eqn (14.12)

now describing topologically stable hedgehogs in the field of unit vector d̂:

n2 =
1

8π
eijk

∫

σ2

dSk d̂ ·
(

∂d̂

∂xi
× ∂d̂

∂xj

)

. (15.11)

The simplest hedgehogs with the winding number n2 = ±1 are given by radial
distributions: d̂ = ±r̂. Note that the P symmetry transforms d̂ to −d̂, and thus
in the P-symmetric vacuum point defects with n2 = ±1 are equivalent. Indeed
they can be transformed to each other by circling around the Alice string (see
below, Sec. 15.3.2).

Let us recall now that there are two types of analogies between 3He-A and
the Standard Model; they correspond to the GUT and anti-GUT schemes. The
anti-GUT analogy is based on p-space topology, where the common property
is the existence of Fermi points leading to RQFT in the low-energy corner of
3He-A. In this analogy, the d̂-vector plays the role of the quantization axis for
the weak isospin of quasiparticles. Quasiparticles in eqn (9.1) with ‘isospin’ pro-

jection 1/2(σµd̂µ) = +1/2 and −1/2 correspond to the left neutrino and left

electron respectively (Sec. 9.1.5). Thus the d̂-hedgehog presents the 3He-A real-
ization of the original ’t Hooft–Polyakov magnetic monopole arising within the
symmetry-breaking scheme SU(2) → U(1). This monopole has no Dirac string:

the d̂-hedgehog is an isolated point object (Fig. 17.2 bottom left). As in nemat-
ics (Lubensky et al. 1997; Mineev 1998; Kleman and Lavrentovich 2003), the

d̂-hedgehog in 3He-A can be transformed into the loop of the Alice string –
the half-quantum vortex in Secs 15.3.1 and 15.3.2. On similar deformation of
magnetic monopole see Bais (2005) and reference therein.

Another type of analogy is based on the GUT scheme. It exploits the simi-
larity in broken-symmetry patterns, SU(2)L × U(1)Y → U(1)Q in the Standard
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Model and SO(3)L × U(1)N → U(1)Lz−N/2 in the orbital part of 3He-A, which

leads to similar r-space topology of defects. In this analogy, it is now the l̂-
vector which corresponds to the quantization axis l̂ew of the weak isospin in
the Standard Model. There are no isolated point defects in the l̂-field, since the
corresponding second homotopy group is trivial: π2(SU(2)L × U(1)Y /U(1)Q) =

π2(SO(3)L ×U(1)N/U(1)Lz−N/2) = 0. The hedgehog in the l̂-field is always the
termination point of the physical string playing the part of the Dirac strings.
In the Standard Model it is called the electroweak magnetic monopole (Fig. 17.2
bottom right). In Sec. 17.1 we shall discuss different types of monopoles.

15.2.2 Pure mass vortices

The fundamental homotopy group π1(G/HA) contains four elements, i.e. there
are four topologically distinct classes of linear defects in 3He-A. Each can be
described by the topological charge which takes only four values, chosen to be
0, ±1/2 and 1 with summation modulo 2 (i.e. 1+1=0). We denote this charge
as n1, according to the circulation winding number of the simplest vortex rep-
resentatives of these topological classes. Defects with n1 = ±1/2 represent the
fractional vortices – half-quantum vortices (Volovik and Mineev 1976b; Cross
and Brinkman 1977) also called the Alice strings (Sec. 15.3.1 below).

Let us start with the simplest representatives of classes n1 = 1 and n1 =
2 ≡ 0. Let us first fix the vector l̂ along the axis of the vortex, and also fix the
d̂-vector. Then the only remaining degree of freedom is the rotation of m̂ and
n̂ around l̂ which is equivalent to the phase rotation of group U(1)N . Under
this constraint the defects are pure mass vortices with integer winding number
n1 and with the following structure of the orbital part of the order parameter
outside the core:

m̂ + in̂ = ein1φ(x̂ + iŷ) . (15.12)

The circulation of superfluid velocity around such a vortex is
∮

dr · vs = κ0n1,

where the superfluid velocity vs = (κ0/2π)m̂i~∇n̂i = (n1κ0/2π)φ̂, and the ele-
mentary circulation quantum is κ0 = 2πh̄/(2m). We must keep in mind that
circulation is quantized here only because we have chosen the fixed orientation
of the l̂-vector: l̂ = ẑ. For the general distribution of the l̂-field, the vorticity
can be continuous according to the Mermin–Ho relation in eqn (9.17), and thus
circulation is not quantized in general.

Now let us allow the l̂-field to vary. Then one finds that for vortices with even
n1 in eqn (15.12) the singularity in their cores can be continuously washed out.
This is because they all belong to the same class as homogeneous state n1 = 0.
As a result one obtains the continuous textures of the l̂-field with distributed
vorticity, which we shall discuss later on in Chapter 16.

Mass vortices with odd n1 in eqn (15.12) all belong to the same class as
the mass vortex with n1 = 1. They can continuously transform to each other,
but they always have the singular core, where the order parameter leaves the
vacuum manifold of 3He-A. The simplest of the strings of this class is the pure
mass vortex with n1 = 1 circulation quanta. However, it is not the defect with
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the lowest energy within the class n1 = 1. Let us consider other defects of the
class n1 = 1, the disclinations.

15.2.3 Disclination – antigravitating string

The linear defect of the class n1 = 1, which will be discussed in Sec. 30.2 as
an analog of an antigravitating cosmic string, has the following structure (Fig.
30.1). Around this defect one of the two orbital vectors, say n̂, remains constant,
n̂ = ẑ, while the m̂-vector is rotating by 2π:

m̂(r) = φ̂ , l̂(r) = m̂(r) × n̂ = ρ̂ . (15.13)

Here, as before, z, ρ, φ are the cylindrical coordinates with the axis ẑ being along
the defect line. There is no circulation of superfluid velocity around this defect,
since vs = (κ0/2π)m̂i~∇n̂i = 0, while the field of anisotropy axis l̂ is reminiscent of
defects in nematic liquid crystals, where such defect lines are called disclinations.
Equation (15.13) describes radial disclination, i.e. with radial distribution of the

anisotropy axis. Tangential disclination, with m̂(r) = −ρ̂ and l̂(r) = φ̂, is also
the configuration which belongs to the class n1 = 1 of linear defects.

The linear defect which has minimal energy within the class n1 = 1 and was
observed experimentally by Parts et al. (1995a) has a more complicated onion
structure. It is the mass vortex at large distances, the vortex texture in the soft
core and approaches the structure of the disclination near the hard core.

15.2.4 Singular doubly quantized vortex vs electroweak Z-string

The pure vortex with phase winding n1 = 2 (as well as with any other even n1)
belongs to the topologically trivial class: it is topologically unstable and can be
continuously unwound. This vortex can be compared to the electroweak strings.
The electroweak vacuum manifold in the broken-symmetry state

Rew = (SU(2)L × U(1)Y )/U(1)T3+Y = SU(2) , (15.14)

does not support any topologically non-trivial linear defects, since it has trivial
fundamental homotopy group: π1(Rew) = 0. However, there exist solutions of the
Yang–Mills–Higgs equation which describe non-topological vortices with integer
winding number. These are Nielsen–Olesen (1973) strings. An example of such a
string in the Standard Model is the Z-strings in Fig. 15.1, in which the isotopic
spin l̂ew is uniform and directed along the string axis:

Φew(r) = f(ρ)

(

0
eiφ

)

. (15.15)

The order parameter exhibits the 4π rotation in isotopic space when circling
around the core, and this is equivalent to the 4π winding around the singular
vortices in 3He-A with n1 = 2. Both 4π defects, the Z-string and the mass vortex
with n1 = 2 in 3He-A, are topologically unstable. They can either completely or
partially transform to a continuous texture. In case of partial transformation one
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obtains a piece of defect line terminating on a point defect – the electroweak
monopole which we shall discuss in Sec. 17.1. In spite of the topological insta-
bility, the Z-string and the n1 = 2 vortex can be stabilized energetically under
favorable conditions.

Another realization of the topologically unstable defect in 3He-A is the 4π
disclination in the l̂ field:

eαi = ∆Aẑα (ẑi + i(x̂i cos 2φ+ ŷi sin 2φ)) , l̂i = ŷi cos 2φ− x̂i sin 2φ . (15.16)

Its l̂-field corresponds to the W -string solution in the electroweak model (Volovik
and Vachaspati 1996).

There is, however, an important difference between vortices in 3He-A and
in the Standard Model, which follows from the fact that the relevant symmetry
groups are global in 3He-A and local in the Standard Model. That is why the
gauge field is instrumental for the structure of strings in the Standard Model,
in the same way as the coupling with magnetic field is important for Abrikosov
vortices in superconductors. Let us now compare the Nielsen–Olesen string and
Abrikosov vortex.

15.2.5 Nielsen–Olesen string vs Abrikosov vortex

Superconductivity is the superfluidity of electric charge which interacts with
the electromagnetic field – the U(1)Q gauge field. The gauge field screens the
electric current due to the Meissner effect. In superconductors, the corresponding
vortex with n1 = 1 is the Abrikosov vortex (Abrikosov 1957). It is shown in
Fig. 15.1 top right for a type-2 superconductor where the screening length of
magnetic field called the London penetration length is larger than the coherence
length determining the core size: λ > ξ. The magnetic flux carried by Abrikisov
vortex is concentrated in the region ρ ∼ λ. At ρ > λ the electric current j =
ens

(

vs − e
mcA

)

circulating around the vortex decays exponentially. Then the
total magnetic flux trapped by the Abrikosov vortex with n1 winding number is

Φ =

∫

dS ·B =

∮

dr ·A =
mc

e

∮

dr · vs = n1
hc

2e
≡ n1

2
Φ0 . (15.17)

Here we introduce the flux quantum Φ0 = hc/e which coincides with the mag-
netic flux from the Dirac magnetic monopole; the conventional Abrikosov vortex
with n1 = 1 traps half of this quantum.

The same structure (Fig. 15.1 top left) with two coaxial cores of dimensions
ξ and λ characterizes the local cosmic strings – Nielsen–Olesen vortices (Nielsen
and Olesen 1973). The penetration length of the corresponding gauge field, say, of
the hypermagnetic field, is determined by the inverse mass of the corresponding
gauge boson, say the Z-boson: λ = h̄c/MZ . The healing length of the order
parameter – the Higgs field – is determined by the inverse mass of the Higgs
boson: ξ = h̄c/MH .

In both structures the order parameter is suppressed in the core of size ξ.
In superconductors, the gap in the spectrum of Bogoliubov quasiparticles is
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Fig. 15.1. Singular vortex and cosmic string. Top: The Abrikosov vortex in a
superconductor (Abrikosov 1957) is the analog of the Nielsen–Olesen (1973)
cosmic string. The role of the penetration length λ is played by the inverse
mass of the Z-boson. If λ≫ ξ, the core size, within the region of dimension
λ the Abrikosov vortex has the same distribution of the current as the vortex
in neutral superfluids, such as 3He-B, where the circulation of the superfluid
velocity is quantized. At ρ≫ λ the current is screened by the magnetic field
concentrated in the region ρ < λ. Bottom: Masses of quarks and the gap of
quasiparticles in superconductors, are suppressed in the vortex core. The core
serves as a potential well for fermions which are bound in the vortex forming
fermion zero modes.

proportional to the order parameter and thus vanishes on the vortex axis. This
leads to fermion zero modes – bound states of quasiparticles in the potential well
produced by the gap profile in the core of a vortex (Fig. 15.1 bottom) which will
be discussed in Chapter 23. In the Standard Model, masses of quarks and leptons
are also proportional to the order parameter (Higgs field φ2 in eqn (15.15)), and
thus also vanish on the string axis leading to fermion zero modes in the core of
the cosmic string.
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Thus the physics of vortices is in many respect the same for different superflu-
ids, whose non-dissipative supercurrents carry mass, spin and electric charge in
condensed matter systems, and chiral, color, baryonic, hyper- and other charges
in high-energy physics.

15.3 Fractional vorticity and fractional flux

15.3.1 Half-quantum vortex in 3He-A

The asymptotic form of the order parameter in vortices with fractional circula-
tion numbers n1 = ±1/2 (or, simply, half-quantum vortices) is given by

eαj = ∆0 e
±iφ/2d̂α(x̂j + iŷj) , d̂ = x̂ cos

φ

2
+ ŷ sin

φ

2
. (15.18)

On circumnavigating such a vortex, the vector d̂ changes its direction to the
opposite (Fig. 15.2 left). The change of sign of the order parameter in eqn (15.18)
is compensated by the winding of the phase around the string by π or −π. The
latter means that the winding number of the vortex is n1 = ±1/2, i.e. the
circulation

∮

vs · dr = n1πh̄/m of the superfluid velocity around this string is
one-half of the circulation quantum κ0 = πh̄/m. It is the half-quantum vortex.

In a sense, the half-quantum vortex is the composite defect: the n1 = 1/2

mass vortex is accompanied by the ν = 1/2 vortex in the d̂-field. Together
they form the spin–mass vortex similar to that in 3He-B (Sec. 14.1.4), with one
important difference. In 3He-B, the mass vortex with n1 = 1 and the spin vortex
with ν = 1 ‘live in two different worlds’ and interact through the Casimir forces.
In 3He-A, the n1 = 1/2 mass vortex and ν = 1/2 spin vortex also ‘live in two

different worlds’: they are described by non-interacting fields (m̂ + in) and d̂

correspondingly. If m̂ + in = (x̂ + iy)eiΦ and d̂ = x̂ cos θ + ŷ sin θ, the gradient
energy is the sum of the energies of Φ- and θ-fields in the same manner as in
3He-B:

ELondon =
h̄2

8m

(

ns(∇Φ)2 + nspin
s (∇θ)2

)

. (15.19)

But, the important distinction from 3He-B is that here the two defects are con-
fined topologically: half-quantum vortices in Φ- and θ-fields cannot exist as
separate isolated entities. The continuity of the vacuum order parameter around
the defect requires that they must always have a common core.

The p-space analogs of fractional defects with the common core have been
discussed in secs 8.1.7 and 12.2.3 where a (quasi)particle was considered as a
product of the spinon and holon.

As the spin–mass vortex in 3He-B (Sec. 14.1.5), the half-quantum spin–mass
vortex in 3He-A becomes the termination line of the topologicalZ2-solitons when
the symmetry violating spin–orbit interaction is turned on (see Sec. 16.1.1, Fig.
16.1). This property will allow identification of this object in future experiments.

15.3.2 Alice string

The n1 = 1/2 vortex in Sec. 15.3.1 is the counterpart of Alice strings considered
in particle physics by Schwarz (1982). The motion of the ‘matter’ around such a
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Fig. 15.2. Alice string in 3He-A and in some RQFT. Left: The axis d̂ determin-
ing quantization of spin, charge or other quantum number changes direction
to the opposite around the Alice string. This means that if a particle slowly
moves around a half-quantum vortex, it flips its spin, charge, parity, etc.,
depending on the type of Alice string. Right: A person traveling around such
an Alice string can annihilate with the person who did not follow this topo-
logically non-trivial route.

string has unexpected consequences. In nematic liquid crystals, the ‘monopole’
(the hedgehog) that moves around the n1 = 1/2 disclination line transforms
to the anti-monopole; the same occurs for the 3He-A monopoles: the hedgehog
in the d̂-field with the topological charge n2 = +1 in eqn (15.11) transforms
to the anti-hedgehog with n2 = −1 (Volovik and Mineev 1977). Similarly, in
some models of RQFT, a particle that moves around an Alice string (Fig. 15.2)
continuously flips its charge, or parity, or enters the ‘shadow’ world (Schwarz
1982; Schwarz and Tyupkin 1982; Silagadze 2001; Foot and Silagadze 2001).

Let us consider such a flip of the quantum number in an example of a macro-
scopic body with a spin magnetization M immersed in 3He-A. Since d̂ is the vec-
tor of magnetic anisotropy in 3He-A, the magnetization of the object is aligned
with d̂ due to the interaction term −(M · d̂)2. When this body slowly moves
around a half-quantum vortex, its magnetization follows the direction of the
anisotropy axis. Finally, after the body makes the complete circle, it will find
that its magnetization is reversed with respect to the magnetization of those
objects which did not follow the topologically non-trivial route. In this example,
the d̂-vector is the spin quantization axis, that is why the object flips its U(1)Sz

charge – the spin. In the same manner the electric or the topological charges are
reversed around the corresponding Alice string.

There are several non-trivial quantum mechanical phenomena related to the
flip of a quantum number around an Alice string. In particular, this leads to the
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Aharonov–Bohm effect experienced by some collective modes in the presence
of a half-quantum vortex (Khazan 1985; Salomaa and Volovik 1987; Davis and
Martin 1994).

Using the closed loop of the corresponding Alice string, one can produce the
baryonic charge (or other charges) from the vacuum by creating the baryon–
antibaryon pair and forcing the antibaryon to move through the loop. In this
way the antibaryon transforms to the baryon, and one gains the double baryonic
(and/or electric) charge from the vacuum. The baryonic charge is not conserved
in this process. But the electric charge must be conserved, which implies that
in this process the loop of the Alice string acquires the opposite electric charge
distributed along the string – the so-called Cheshire charge (Alford et al. 1990;
Bais 2005).

15.3.3 Fractional flux in chiral superconductor

In 3He-A the fractional vorticity is still to be observed (Kee and Maki (2007)
suggested that half-quantum vortices may have been observed in experiment by
Yamashita et al. (2006) on 3He-A confined between parallel plates – geometry
proposed by Cross and Brinkman (1977)). However, discussion of the fractional
vorticity extended to unconventional superconductivity led to predictions of half-
quantum vortices in superconductors (Geshkenbein et al. 1987); and finally such
a vortex was discovered by Kirtley et al. (1996). It was topologically pinned by
the intersection line of three grain boundary planes in a thin film of a cuprate
superconductor, YBa2Cu3O7−δ (see Sec. 15.3.4).

In unconventional superconductors, the U(1)Q gauge symmetry is broken
together with some symmetry of the underlying crystal, which is why the crys-
talline structure of the superconductor becomes important. Let us first start with
the axial or chiral superconductor, whose order parameter structure is similar
to that in 3He-A. The possible candidate is the superconductivity in Sr2RuO4,
whose crystal structure has tetragonal symmetry. In the simplest representation,
the 3He-A order parameter – the off-diagonal element in eqn (7.57) – adapted
to the crystals with tetragonal symmetry has the following form:

∆(p) = ∆0 (d̂ · σ) (sinp · a + i sinp · b) eiθ . (15.20)

Here θ is the phase of the order parameter (here we use θ instead of Φ to dis-
tinguish the order parameter phase from the magnetic flux Φ); a and b are the
elementary vectors of the crystal lattice within the layer. When |p · a|/h̄ ≪ 1
and |p · b|/h̄ ≪ 1, the order parameter acquires the familiar form applicable to

liquids with triplet p-wave pairing: ∆(p) = eµip
iσµ, with eµi ∝ d̂µ(âi + ib̂i).

Vortices with fractional winding number n1 can be constructed in two ways.
The traditional way discussed for liquid 3He-A is applicable to superconductors
when the d̂-vector is not strongly fixed by the crystal fields, and is flexible enough.
Then one obtains the analog of n1 = 1/2 vortex in eqn (15.18): after circling

around this Alice string, d̂ → −d̂, while the phase of the order parameter θ →
θ+π. According to eqn (15.17) such a vortex traps the magnetic flux Φ = hc/4e,
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Fig. 15.3. Fractional flux in unconventional superconductors trapped by a topo-
logically nontrivial loop. The twisted loop of a crystalline wire with tetragonal
symmetry represents the disclination in crystal and has a geometry of 1/2 of
the Möbius strip.

which is one-half of the flux trapped by a conventional Abrikosov vortex having
n1 = 1.

In another scenario in Fig. 15.3, the crystalline properties of the chiral super-
conductor are exploited. Twisting the crystal axes a and b in the closed wire of
a tetragonal superconductor, one obtains an analog of the Möbius strip geometry
(Volovik 2000b). The closed loop traps the fractional flux, if it is twisted by an
angle π/2 before gluing the ends. Since the local orientation of the crystal lattice
continuously changes by π/2 around the loop, axes a and b transform to each
other after circling along the loop, and thus the order parameter is multiplied
by i. The single-valuedness of the order parameter in eqn (15.20) requires that
this change must be compensated by a change of the phase θ by π/2. Thus in
the ground state, the phase winding around the twisted loop is π/2, and the
circulation trapped by the loop is n1 = 1/4 of the circulation quantum.

Applying eqn (15.17) for the magnetic flux in terms of the winding number,
one would find that the loop of the chiral p-wave superconductor in the ground
state traps a quarter of the magnetic flux Φ0/2 of the conventional Abrikosov
vortex, i.e. Φ = Φ0/8. However, this is not exactly so. Because of the breaking of
time reversal symmetry in chiral crystalline superconductors, persistent electric
current in the loop arises not only due to the order parameter phase θ but also
due to deformations of the crystal axes (Volovik and Gor‘kov 1984):
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Fig. 15.4. Fractional flux is topologically trapped by intersection of three grain
boundaries, according to experiments by Kirtley et al. (1996) in high-tem-
perature cuprate superconductor.

j = ens

(

vs −
e

mc
A
)

+ eCâi∇b̂i , vs =
h̄

2m
∇θ . (15.21)

The parameter C is non-zero if the time reversal symmetry T is broken, and this
modifies eqn (15.17). Now the condition of no electric current in the wire, j = 0,
leads to the following magnetic flux trapped by the loop:

Φ =
1 − C̃

8
Φ0 =

1 − C̃

8

hc

e
, (15.22)

where C̃ = 2mC/h̄ns. If the underlying crystal lattice has hexagonal symmetry,
and the wire is twisted by π/3, the trapped flux will be Φ = (1 − C̃)Φ0/12. In
the limit case of C = 0, eqn (15.17) is restored, and the flux trapped by the loop
becomes a quarter or a sixth of the conventional flux quantum in superconduc-
tors.

The supercurrent due to the deformation of the crystal lattice in eqn (15.21)
can be considered as coming from the A-phase orbital vectors m̂ and n̂ trapped
by crystal fields, m̂ = â and n̂ = b̂, while the l̂-vector is trapped along the
normal to the crystal layers. If the superconducting state is liquid, such as hy-
pothetical electrically charged 3He-A, its current is j = ens

(

vs − e
mcA

)

, where

vs = h̄
2m (∇θ + m̂i∇n̂i). This corresponds to C̃ = 1 in eqn (15.22), and thus if

the l̂-vector is along the loop there is no trapped flux in the ground state of the
liquid chiral superconductor. The fractional flux is trapped by the wire only
because of the underlying crystal structure.

15.3.4 Half-quantum flux in d-wave superconductor

In the non-chiral (i.e. with conserved time reversal symmetry) spin-singlet su-
perconductor in layered cuprate oxides, the order parameter can be represented
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by
∆(p) = ∆0

(

sin2 p · a − sin2 p · b
)

eiθ . (15.23)

In the liquid superconductors, or when |p ·a|/h̄≪ 1 and |p ·b|/h̄≪ 1, the order
parameter acquires the more familiar d-wave form ∆(p) = dx2−y2(p2

x − p2
y).

The same twisted loop of superconducting wire in Fig. 15.3, with a → b and
b → −a after circling, leads to the change of sign of the order parameter after
circumnavigating along the loop. This must be compensated by a change of
phase θ by π. As a result one finds that in the ground state the loop traps
n1 = 1/2 or n1 = −1/2 of circulation quantum. The ground state has thus
two-fold degeneracy, with the magnetic flux trapped by the loop being exactly
±Φ0/4. This is because the time reversal symmetry is not broken in cuprate
superconductors, and thus the crystal deformations do not produce an additional
supercurrent in eqn (15.21): the parameter C = 0. Note that the observation of
fractional flux different from Φ0/4, or Φ0/2, would indicate breaking of the time
reversal symmetry (Sigrist et al. 1989, 1995; Volovik and Gor‘kov 1984).

The same reasoning gives rise to the ±Φ0/4 flux attached to the tricrystal
line (Kirtley et al. 1996): circling around this line one finds that the crystal axes
transform in the same way as in the twisted wire: a → b and b → −a (Fig. 15.4).
This is an example of the topological interaction of the defects. In superfluid 3He
the half-quantum vortex is topologically attached to the disclination in the d̂-field
with winding number ν = 1/2. The latter is the termination line of the soliton, as
we shall see in Sec. 16.1.1. The fractional vortex observed by Kirtley et al. (1996)
is topologically coupled with the junction line of three grain boundaries. In the
case of the twisted wire in Fig. 15.3, the fractional vortex is attached to the
linear topological defect of the crystal lattice – disclination in the field of crystal
axes. The empty space inside the loop thus represents the common core of the
n1 = 1/2 vortex and of the disclination in crystal with the winding number
ν = 1/4.

We must also mention the vortex sheet with fractional vortices, which has
been predicted to exist in chiral superconductors by Sigrist et al. (1989) be-
fore the experimental identification of the vortex sheet in 3He-A by Parts et
al. (1994b) (see more on the vortex sheet in Sec. 16.3). The object in chiral su-
perconductors which traps vorticity is the domain wall separating domains with
opposite orientations of the l̂-vector discussed by Volovik and Gor‘kov (1985).
Such a domain wall has a kink – the Bloch line – which represents the vortex
with the winding number n1 = 1/2. When there are many trapped fractional
vortices (kinks), they form the vortex sheet analogous to that in 3He-A (see Sec.
16.3.4).

The half-quantum vortex – the Alice string – has also been suggested by
Leonhardt and Volovik (2000) to exist in Bose–Einstein condensates with a hy-
perfine spin F = 1.
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CONTINUOUS STRUCTURES

16.1 Hierarchy of energy scales and relative homotopy group

When several distinct energy scales are involved the vacuum symmetry is differ-
ent for different length scales: the larger the length scale, the more the symmetry
is reduced. The interplay of topologies on different length scales gives rise to many
different types of topological defects, which are described by relative homotopy
groups (Mineev and Volovik 1978). Here we discuss the continuous structures
generated by this group, and in Chapter 17 the combinations of topological de-
fects of different co-dimensions will be discussed.

16.1.1 Soliton from half-quantum vortex

Let us consider what happens with the half-quantum vortex (Sec. 15.3.1), when

the spin–orbit interaction between l̂- and d̂- fields is turned on:

FD = −gD

(

l̂ · d̂
)2

. (16.1)

The parameter gD is connected with the dipole length ξD in eqn (12.5) as gD ∼
nsh̄

2/mξ2D. It is also instructive to express it in terms of the characteristic energy
ED and Planck energy scale:

gD ∼ √−gE2
DE

2
Planck 2 . (16.2)

This interaction requires that l̂ and d̂ must be aligned (‘dipole-locked’): l̂ ·
d̂ = +1 or l̂ · d̂ = −1. But in the presence of a half-quantum vortex it is
absolutely impossible to saturate the spin–orbit energy everywhere: the d̂-vector
flips its direction around the Alice string, while the l̂-vector does not. That is
why l̂ cannot follow d̂ everywhere, and the alignment (‘dipole-locking’) must be
violated somewhere.

As in the case of the spin vortex in 3He-B disturbed by the spin–orbit inter-
action in Sec. 14.1.5, the region where the vacuum energy (16.1) is not saturated
forms a soliton in Fig. 16.1 terminated by the half-quantum vortex; for walls
terminated by strings see Kibble (2000), Volovik and Mineev (1977), and Mineev
and Volovik (1978). The opposite end of the soliton may be on a second Alice
string, or it may be anchored to the wall of the container as in Fig. 14.1.

The thickness of the soliton wall is determined by the competition of the
spin–orbit interaction and the gradient energy and is of order of the dipole length
ξD ∼ 10−3 cm. The same occurs for solitons in 3He-B (see Sec. 14.1.5). Solitons
often appear in 3He-A after cool-down into the superfluid state. Its existence
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Fig. 16.1. Half-quantum vortex generates the d̂-soliton in 3He-A. The arrows
indicate the local direction of the vector d̂.

is displayed in cw NMR experiments as a special satellite peak in the NMR
absorption as a function of excitation frequency.

How many topologically distinct solitons do we have in 3He-A? First, since
the d̂ texture in eqn (15.18) is the same for both half-quantum vortices, with
n1 = +1/2 and n1 = −1/2, they give rise to the same soliton. Second, if we
consider the pair of half-quantum vortices, then, on any path surrounding both
strings, the d̂-field becomes single-valued. Thus outside the pair of any half-
quantum vortices, the d̂-field loses its Alice behavior, so that the l̂-vector can
follow d̂ saturating the vacuum spin–orbital energy. This demonstrates that any
two solitons can kill each other, i.e. the summation law for the topological charges
of solitons is 1 + 1 = 0. A soliton equals its anti-soliton. Thus there is only one
topologically stable soliton described by the non-trivial element of the Z2 group.

This also means that the soliton in the d̂-field with constant l̂-vector in
Fig. 16.1, and the soliton in the l̂-field with constant d̂-vector in Fig. 16.2,
belong to the same topological class: they can be continuously transformed to
each other. Typically the real solitons are neither d̂-solitons, nor l̂-solitons: both
d̂ and l̂ change across the soliton with l̂ = d̂ on one side of the soliton and l̂ = −d̂

on the other.
These topological properties of the soliton can be obtained by direct calcu-

lations of the relative homotopy group.

16.1.2 Relative homotopy group for soliton

At first glance the l̂-soliton in Fig. 16.2 is equivalent to the domain wall in
ferromagnets. The l̂-vector is a ferromagnetic vector, because the time reversal
operation reverses its direction, Tl̂ = −l̂. The l̂-vector shows the direction of the
orbital magnetism of Cooper pairs. On the other hand, the d̂-vector shows the
direction of the ‘easy axis’ of the magnetic anisotropy in eqn (16.1). Thus the
soliton wall separates domains with opposite orientations of the magnetization
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d ≈ constant

l-field:

F = – gD (d • l)2 + bending energy

Fig. 16.2. The l̂-soliton in 3He-A. The arrows indicate the local direction of the
vector l̂. The soliton in the l̂ field belongs to the same topological class as the
d̂-soliton in Fig. 16.1.

along the easy axis: with l̂ = d̂ on one side and l̂ = −d̂ on the other one.
Nevertherless the discussed soliton is not the domain wall and it is described

by essentially different topology.
The vacuum manifold R in ferromagnets with an easy axis consists of two

points only: M = ±M0ẑ, if ẑ is the direction of an easy axis. That is why R = Z2,
and the only possible non-trivial topology comes from the zeroth homotopy set
π0(R) = Z2, which shows the number of disconnected pieces of the vacuum man-
ifold. Since vacua are disconnected, the domain wall cannot terminate inside the
sample: it must either stretch ‘from horizon to horizon’ (i.e. from one bound-
ary of the system to another) or form a closed surface. The same is valid for
the Fermi surface in p-space (and also for the topologically stable vortex line in
r-space): it must be either infinite or form a closed surface (a closed loop).

On the contrary, the vacua on two sides of the soliton belong to the same piece
of the vacuum manifold. One can go from one vacuum to the other continuously,
simply by going around the Alice string. This means that it is possible to drill a
hole in the soliton, an operation which is absolutely impossible for the domain
walls. The hole is bounded by the topological line defect – the string loop (Fig.
16.3). In our case it is the Alice string which can terminate the soliton, while
for the 3He-B soliton it is the spin vortex or spin–mass vortex.

This is the reason why the solitons are topological objects – their topology
is determined by the topology of the string on which the soliton plane can ter-
minate. But this topology is essentially different from the π0 topology of the
domain wall. In strict mathematical terms solitons correspond to the non-trivial
elements of the relative homotopy group. The relevant relative homotopy group
for the soliton in 3He-A is

π1(G/HA, G̃/H̃A) . (16.3)

This group describes the classes of the following mapping of the path C crossing
the soliton in Fig. 16.3 to the order parameter space. The part of the path within
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Fig. 16.3. A topological soliton can terminate on a topologically stable string.
The soliton in 3He-A can terminate on a half-quantum vortex. The hole in
the soliton is bounded by the loop of the Alice string.

the soliton where there is no dipole locking is mapped to the vacuum manifold
of the A-phase, RA = G/HA = (SO(3) × S2)/Z2.

The end parts of the path are far from the soliton, where the spin–orbit
interaction is saturated. These parts must be mapped to the order parameter
space R̃A = G̃/H̃A, which is restricted by the dipole locking of l̂- and d̂- vectors.
Since orbital and spin degrees of freedom are coupled at large distance, the
large-distance symmetry group of the physical laws is G̃ = SO(3)J × U(1)N ; its
subgroup representing the symmetry group of the vacuum state is H̃A = U(1);
and the vacuum manifold is R̃A = G̃/H̃A = SO(3). This is the space of the

solid rotations of the triad m̂, n̂ and l̂, while d̂ is dipole-locked with l̂. Formal
calculations give

π1(RA, R̃A) = π1((SO(3) × S2)/Z2, SO(3)) = Z2 . (16.4)

The same result can be obtained by the following consideration. The path C
can be deformed and closed so that it encircles the half-quantum vortex (Fig.
16.3). The mapping of the closed path C to the vacuum manifold G/HA gives rise
to the homotopy group π1(G/HA) = Z4. Two elements of this group correspond
to two half-quantum vortices, with n1 = +1/2 and n1 = −1/2. Since both
Alice strings give rise to the same soliton, the group describing the soliton is
Z4/Z2 = Z2.

16.1.3 How to destroy topological solitons and why singularities are not easily
created in 3He

The essential difference in the topological properties of the domain walls, de-
scribed by the symmetry group π0(R), and the soliton walls, described by the
relative homotopy group π1(R, R̃), results in different energy barriers separating
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them from topologically trivial configurations. To destroy the domain wall one
must restore the broken symmetry in the half-space on the left or on the right
of the wall. The corresponding energy barrier is thus proportional to L3, where
L is the size of the system.

To destroy the soliton it is sufficient to drill a hole and form a vortex loop of
the size on the order of the thickness of the soliton. After that the surface tension
of the wall exceeds the linear tension of the string and it becomes energetically
favorable for the string to grow and eat the soliton. Thus the corresponding
energy barrier is the energy required for the nucleation of the vortex loop of the
size ξD. This energy is finite: it does not depend on the size of the system. In
the same way, nucleation of the loop of spin vortex of the size ξD can destroy
the soliton in 3He-B.

However, for solitons in both phases of 3He the energy barrier – the energy
of the optimal size of string loop – normalized to the transition temperature is
Ebarrier/Tc ∼ p2

F ξDξ/h̄
2 ∼ 108. Though the barrier is finite, it is huge. That is

why topological solitons in both superfluid phases of 3He are extremely stable.
The reason for this is that the characteristic lengths ξ and ξD, which determine
the core size of string and soliton respectively, are both big in superfluid 3He
compared to the interatomic space a0 ∼ h̄/pF . Singularities are not easily created
in superfluid 3He.

16.2 Continuous vortices, skyrmions and merons

16.2.1 Skyrmion – Anderson–Toulouse–Chechetkin vortex texture

According to the Landau picture of superfluidity, the superfluid flow is potential:
its velocity vs is curl-free: ∇ × vs. Later Onsager (1949) and Feynman (1955)
found that this statement must be generalized: ∇ × vs 6= 0 at singular lines,
the quantized vortices, around which the phase of the order parameter winds
by 2πn1. The discovery of superfluid 3He-A further weakened the rule: the non-
singular vorticity can be produced by the regular texture of the order parameter
according to the Mermin–Ho relation in eqn (9.17).

Let us consider the structure of the continuous vortex in its simplest axisym-
metric form, as it was first discussed by Chechetkin (1976) and Anderson and
Toulouse (1977) (ATC vortex, Fig. 16.4). It has the following distribution of the

l̂-field:
l̂(ρ, φ) = ẑ cos η(ρ) + ρ̂ sin η(ρ) . (16.5)

Here ẑ, ρ̂ and φ̂ are unit vectors of the cylindrical coordinate system; η(ρ) changes

from η(0) = 0 to η(∞) = π. Such l̂-texture forms the so-called soft core of the
vortex, since it is the region of texture which contains a non-zero vorticity of
superfluid velocity in eqn (9.16):

vs(ρ, φ) =
h̄

2mρ
[1 − cos η(ρ)] φ̂ , ∇× vs =

h̄

2m
sin η ∂ρη ẑ . (16.6)

In comparison to a more familiar singular vortex, the continuous vortex has
a regular superfluid velocity field vs, with no singularity on the vortex axis.
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l-vector vs

vs
superflow with n1=2 around skyrmion with n2=1

soft core

Fig. 16.4. Continuous vortex-skyrmion. The arrows indicate the local direc-
tion of the order parameter vector l̂. In 3He-A the winding number of the
Anderson–Toulouse–Chechetkin vortex is n1 = 2.

However, the circulation of the superfluid velocity about the soft core is still
quantized: κ =

∮

dr·vs = 2κ0. This is twice the conventional circulation quantum
number in the pair-correlated system, κ0 = πh̄/m, i.e. far from the soft core this
object is viewed as the vortex with the winding number n1 = 2.

Quantization of circulation for continuous vortex is related to the topology
of the l̂-field. By following the l̂-field in the cross-section of the vortex texture,
it is noted that all possible 4π directions of the l̂-vector on its unit sphere are
present here. Such a 4π topology of the unit vector orientations in 2D is known
as a skyrmion. This topology ensures two quanta of circulation n1 = 2 according
to the Mermin–Ho relation in eqn (9.17):

∮

dr · vs =

∫

dS · (∇× vs) =
h̄

2m

∫

dx dy l̂ ·
(

∂ l̂

∂x
× ∂ l̂

∂y

)

= 4π
h̄

2m
. (16.7)

In the general case the winding number n1 can be related to the degree n2 of the
mapping of the cross-section of the soft core to the sphere S2 of unit vector l̂:

n1 =
m

πh̄

∮

dr · vs =
1

2π

∫

dx dy l̂ ·
(

∂ l̂

∂x
× ∂ l̂

∂y

)

= 2n2 . (16.8)

This relation demonstrates the topological structure of this object. Since
n1 is even, this configuration belongs to the trivial class of topological defects
described by the first homotopy group in the classification scheme of Sec. 15.2.
That is why there is no singularity: any singularity which is not supported by
topology can be continuously dissolved, so that finally the system everywhere will
be in the vacuum manifold of 3He-A. However, the continuous configurations are
not necessarily topologically trivial: they are described by a finer topological
scheme utilizing the relative homotopy group. In a given case it is the group
π2(SO(3), U(1)) which describes the following hierarchical mapping: the disk
– the cross-section of the soft core – is mapped to the SO(3) manifold of the
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Fig. 16.5. Continuous vortex-skyrmion with n1 = n2 = 1 in two component
Bose condensate. The ‘isotopic spin’ – the l̂-vector (shown by arrows) – sweeps

the 4π solid angle in the soft core. Far from the core the vector l̂ is up,
which means that only Ψ↑ component is present; this component has winding

number n1 = 1. Near the origin the vector l̂ is down which means that the
core region is mainly filled by Ψ↓ component of the Bose condensate.

triad m̂, n̂ and l̂, while the boundary of the disk is mapped to the subspace
U(1) = SO(2) – the vacuum manifold which is left after l̂ is fixed outside the
soft core.

The relation (16.8) also reflects the interplay of the r-space and p-space

topologies, since the l̂-vector shows the position of the Fermi point in momen-
tum space. It is a particular case of the general rule in eqn (23.32), which will
be discussed in Sec. 23.3: in the Anderson–Toulouse–Chechetkin texture in eqn
(16.5) the Fermi point with N3 = +2 sweeps a 4π angle, while the Fermi point
with N3 = −2 sweeps a −4π solid angle, and as a result the winding number of
the vortex is n1 = 2.

16.2.2 Continuous vortices in spinor condensates

If the order parameter is a spinor (the ‘half of vector’), as occurs in 2-component
Bose condensates and in the Standard Model of electroweak interactions (eqn
(15.6)), the corresponding skyrmions – the continuous vortices and the continu-
ous cosmic strings (Achúcarro and Vachaspati 2000) – have a two times smaller
winding number for the phase of the condensate, n1 = n2. Let us illustrate this
in an example of a mixture of two Bose condensates in a laser-manipulated trap.

In the experiment one starts with a single Bose condensate which is denoted
as the |↑〉 component. Within this component a pure n1 = 1 phase vortex with
singular core is created. Next the hard core of the vortex is filled with the second
component in the |↓〉 state. As a result the core expands and becomes essentially
larger than the coherence length ξ, and a vortex-skyrmion with continuous
structure is obtained. Such a skyrmion has recently been observed with 87Rb
atoms by Matthews et al. (1999). It can be represented in terms of the l̂-vector
which is constructed from the two components of the order parameter as in eqn
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(15.7) for the direction of isotopic spin in the Standard Model

(

Ψ↑

Ψ↓

)

= |Ψ↑(∞)|
(

eiφ cos β(ρ)
2

sin β(ρ)
2

)

, l̂ = (sinβ cosφ,− sinβ sinφ, cosβ) . (16.9)

The polar angle β(ρ) of the l̂-vector changes from 0 at infinity, where l̂ = ẑ

and only the |↑〉 component is present, to β(0) = π on the axis, where l̂ = −ẑ

and only the |↓〉 component is present. Thus the vector l̂ sweeps the whole unit
sphere, n2 = 1, while the vortex winding number is also n1 = 1. As distinct from
the vector order parameter, where n1 = 2n2, for the spinor order parameter the
skyrmion winding number n2 and vortex winding number n1 are equal: n2 = n1.

However, this should be considered with care. As distinct from 3He-A, in the
spinor condensate each of the two components is conserved. This means that
the vacuum manifold always remains U(1)×U(1). Since each component has its
own winding number, this essentially changes the classification of the pseudo-
continuous vortex-skyrmions.

16.2.3 Continuous vortex as a pair of merons

The NMR measurements by Hakonen et al. (1983a) had already in 1982 provided
an indication for the existence of skyrmions – the continuous 4π lines – in rotating
3He-A. From that time many different types of continuous vorticity have been
identified and their properties have been investigated in detail. This allowed us
to use the continuous vortices for ‘cosmological’ experiments. In particular, the
investigation of the dynamics of these vortices by Bevan et al. (1997b) presented
the first demonstration of the condensed matter analog of the axial anomaly in
RQFT, which is believed to be responsible for the present excess of matter over
antimatter (see Sec. 18.4).

Another cosmological phenomenon related to nucleation of skyrmions has
been simulated by Ruutu et al. (1996b, 1997). The onset of helical instability,
which triggers formation of these vortices, is described by the same equations and
actually represents the same physics as the helical instability of the bath of right-
handed electrons toward formation of the helical hypermagnetic field discussed
by Joyce and Shaposhnikov (1997) and Giovannini and Shaposhnikov (1998).
This experiment thus supported the Joyce–Shaposhnikov scenario of formation
of the primordial cosmological magnetic field (see Chapter 20).

This is why it is worthwhile to look at the real structure of these objects.
The typical structure of the doubly quantized continuous vortex line in the ap-

plied magnetic field needed to perform the NMR measurements (see Blaauwgeers
et al. (2000) and references therein), is shown in Fig. 16.6. The topology of the

l̂-vector and vorticity remain the same as in the axisymmetric ATC vortex in Fig.
16.4: all 4π directions of the l̂-vector are present here, which ensures two quanta
of circulation n1 = 2 trapped by skyrmions. However, the applied magnetic field
changes the topology of the d̂-field and the symmetry of the l̂-field. The most
important difference from the ATC vortex is that the magnetic field keeps the
d̂-vector everywhere in the plane perpendicular to the magnetic field. Thus the
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Fig. 16.6. Top left: An n1 = 2 continuous vortex in 3He-A. The arrows indi-
cate the local direction of the order parameter vector l̂. Under experimental
conditions the direction of the l̂-vector in the bulk liquid far from the soft
core is kept in the plane perpendicular to the applied magnetic field. Top
right: Illustration of the mapping of the space (x, y) to the unit sphere of the

l̂-vector, and of continuous vorticity. Circulation of superfluid velocity along
the contour γ is expressed in terms of the area Σ(Γ) bounded by its image
– the contour Γ, i.e. one has

∫

σ dS · (∇ × vs) =
∮

γ dr · vs = (h̄/2m)Σ(Γ).
In the whole cross-section of the Anderson–Toulouse–Chechetkin vortex, the
l̂-vector covers the whole 4π sphere within the soft core. As a result there is
4π winding of the phase of the order parameter around the soft core, which
corresponds to n1 = 2 quanta of anticlockwise circulation. Bottom: The NMR
absorption in the characteristic vortex satellite originates from the soft core
where the l̂ orientation deviates from the homogeneous alignment in the bulk.
Each soft core contributes equally to the intensity of the satellite peak and
gives a practical tool for measuring the number of vortices.

d̂-vector cannot follow l̂: it is dipole-unlocked from l̂ in the region of size of dipole
length ξD ∼ 10−3 cm. The dipole-unlocked region represents the soft core of the
vortex, which serves as the potential well trapping the spin-wave modes. The
standing spin waves localized inside the soft core are excited by NMR giving
rise to the well-defined satellite peak in the NMR spectrum in Fig. 16.6. The
position of the peak shows the type of the skyrmion, while the intensity of the
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Fig. 16.7. Continuous vortex in applied magnetic field as a pair of merons.
In each meron the l̂-vector covers half of the unit sphere. Merons serve as
potential wells for spin-wave modes excited in NMR experiments.

peak gives the information on the number of skyrmions of this type. In 2000 the
single-vortex sensitivity was reached and the quantization number n1 = 2 of the
vortex-skyrmion was verified directly by Blaauwgeers et al. (2000) [64].

The magnetic field also disturbs the axisymmetric structure of the ATC vor-
tex: due to the spin–orbit coupling, far from the core the l̂-vector must be kept
in the plane perpendicular to the direction of the field, and this violates the
axisymmetry. In Fig. 16.7 the projection of the l̂ to the plane perpendicular to
the vortex line is shown, while d̂ = x̂ everywhere. The vortex-skyrmion is di-
vided into a pair of merons (Callan et al. 1977; Fateev et al. 1979; Steel and
Negele 2000). µǫρoσ means fraction (Callan et al. 1977). In the 3He literature
such merons are known as Mermin–Ho vortices. In the complete skyrmion, the
l̂-vector sweeps the whole unit sphere while each meron, or Mermin–Ho vortex,
covers only the orientations in one hemisphere and therefore carries one quantum
of vorticity, n1 = 1. The meron covering the northern hemisphere forms a circular
2π Mermin–Ho vortex, while the meron covering the southern hemisphere is the
hyperbolic 2π Mermin–Ho vortex. The division of a skyrmion into two merons is
not artificial. The centers of the merons correspond to minima in the potential
for spin waves. Also, approaching the transition to 3He-A1, the merons become
well separated from each other, i.e. the distance between them grows faster than
their size (Volovik and Kharadze 1990).

Skyrmions and merons are popular structures in physics. For instance, the
model of nucleons as solitons was proposed 40 years ago by Skyrme (1961) (see
the latest review on skyrmions by Gisiger and Paranjape 1998). Merons in QCD
were suggested by Steel and Negele (2000) to produce the color confinement.
The double-quantum vortex in the form of a pair of merons similar to that
in 3He-A was also discussed in the quantum Hall effect where it is formed by
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pseudospin orientations in the magnetic structure (see e.g. Girvin 2000), etc.
Various schemes have recently been discussed (Ho 1998; Isoshima et al. 2000;
Marzlin et al. 2000) by which a meron can be created in a Bose condensate
formed within a 3-component F = 1 manifold.

16.2.4 Semilocal string and continuous vortex in superconductors

In the chiral superconductor (in superconductors with A-phase-like order pa-

rameter) the l̂-vector is fixed by the crystal lattice, and thus the continuous
vorticity does not exist there. The continuous vortices become possible if the
electromagnetic U(1)Q group is mixed not with orbital rotations but with the
spin rotations. In principle the spin–orbit coupling between the electronic spins
and the crystal lattice can be small, so that the spin rotation group SO(3)S can
be almost exact. Then the following symmetry-breaking scheme is possible:

G = SO(3)S × U(1)Q → H = U(1)Sz−Q/2 . (16.10)

The spin part of the order parameter corresponding to this symmetry breaking
is

e = ∆0

(

d̂′ + id̂′′
)

, d̂′ · d̂′′ = 0 , |d̂′| = |d̂′′| = 1 , d̂′ × d̂′′ = ŝ . (16.11)

Here ŝ is the orientation of spin of the Cooper pairs, which now plays the same
role as the axial l̂-vector: the Mermin–Ho relation for continuous vorticity is
obtained by substitution of ŝ instead of the orbital momentum l̂ in eqn (9.17).
Thus in the analog of the ATC vortex in superconductors it is the spin ŝ which
covers a solid angle of 4π in the soft core of the vortex with n1 = 2. Such vortex
a has been discussed by Burlachkov and Kopnin (1987).

The main difference from the corresponding scheme in superfluids where the
group U(1)N is global, is that in superconductors this group is local: it is the
gauge group U(1)Q of QED. As for the group SO(3)S it is global in both su-
perfluids and superconductors. Thus in the symmetry-breaking scheme in eqn
(16.10) both local and global groups are broken and become mixed. In particle
physics the topological defects resulting from breaking of the combination of the
global and local groups are called semilocal defects (Preskill 1992; Achúcarro and
Vachaspati 2000). Thus the Burlachkov–Kopnin (1987) vortex in superconduc-
tors represents the semilocal string in condensed matter. In the Standard Model
one can obtain the ‘semilocal’ limit by using such a ratio of running couplings
that the SU(2)L symmetry becomes effectively global. Semilocal electroweak
defects in such a limit case have been discussed by Vachaspati and Achúcarro
(1991).

In ‘semilocal’ superconductors the magnetic field can penetrate to the bulk
of the superconductor due to ŝ-texture, and one can construct the analog of the
magnetic monopole in Sec. 17.1.5 using the ŝ-hedgehog instead of the l̂-hedgehog.
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in rotating 3He-A
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dipole-unlocked
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Fig. 16.8. Topological transition between continuous vortices. The vector field d̂

in the continuous vortex lattice is characterized by integer topological charge
n2{d̂} – the degree of mapping of the isolated vortex core (or the elementary

cell of the vortex lattice – torus) onto the sphere of the unit vector d̂.

16.2.5 Topological transition between continuous vortices

The continuous vortex-skyrmion is characterized by another topological invari-
ant, which describes the topology of the unit vector d̂ of the axis of spontaneous
magnetic anisotropy

n2{d̂} =
1

4π

∫

dx dy d̂ ·
(

∂d̂

∂x
× ∂d̂

∂y

)

. (16.12)

This integer topological charge n2{d̂} is the degree of mapping of the cross-
section of the isolated vortex core (or the elementary cell of the vortex lattice

– the torus) onto the sphere of the unit vector d̂. An integer charge n2{d̂} can
change only abruptly, which leads to the observed first-order topological phase
transition in rotating 3He-A when the magnetic field changes (Fig. 16.8). (Pekola

et al. 1990) At zero or low field the d̂-vector is dipole-locked with l̂, and thus has

the same winding n2{d̂} = n2{̂l} = 1. This vortex is the double skyrmion: both

in l̂- and d̂-fields. At large field the d̂-field is kept in the plane perpendicular to
the field and thus the vortex with the lowest energy has a dipole-unlocked core.
In this vortex the l̂-vector topology remains intact, n2{̂l} = 1, while the d̂-vector

topology becomes trivial, n2{d̂} = 0.

The double-skyrmion vortex with n2{d̂} = n2{̂l} = 1 can exist at high
field as a metastable object, and this allows us to investigate this vortex in
NMR experiments. The position of the satellite peak in the NMR line in Fig.
17.1 produced by this vortex is much closer to the main peak than the dipole-
unlocked vortex (Parts et al. 1995a). This is why these two topologically different
skyrmions can be observed simultaneously in the same NMR experiment.
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Fig. 16.9. Kink on the soliton is continuous vortex with n1 = 1 (Mermin–Ho
vortex or meron). The kink can live only within the soliton, as the Bloch
line within the Bloch wall in magnets (see the books by Chen 1977 and
Malozemoff and Slonczewski 1979). The chain of alternating circular and
hyperbolic merons, with the same circulation n1 = 1, forms the vortex sheet.

16.3 Vortex sheet

16.3.1 Kink on a soliton as a meron-like vortex

Solitons and vortices, in both phases of superfluid 3He, are related topologically.
In A-phase the half-quantum vortex is the termination line of the soliton (Fig.
16.1), in the B-phase the soliton can terminate on a spin vortex or on a spin–mass
vortex (Sec. 14.1.5). Here we discuss another topological interaction between
these planar and linear objects: the topological defect of the soliton matter – a
kink within the soliton – represents the continuous vortex with n1 = 1. Such
vortices bounded to the soliton core produce the vortex sheet, which appears
in the rotating vessel instead of the conventional n1 = 2 continuous vortex-
skyrmions (Parts et al. 1994b; Heinilä and Volovik 1995).

A kink in the soliton structure is the building block of the vortex sheet.
Within the l̂-soliton in Fig. 16.2 the parity is broken. As a result there are two
degenerate soliton structures (Fig. 16.9 top):

l̂(y) = x̂ cosα(y) ± ŷ sinα(y) , (16.13)
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where α(−∞) = 0, α(+∞) = π. These two structures transform to each other
by parity transformation. The domains with different degenerate structures can
be separated by the domain wall (line), which is often called the kink. This kink

has no singularity in the l̂-field and is equivalent to the Bloch line within the
Bloch wall in magnets.

In 3He-A the meron-like l̂-texture of the kink is the same as in the Mermin–
Ho vortex: the l̂-vector sweeps the hemisphere and thus carries the n1 = ±1
units of circulation quanta. Such continuous vortices with n1 = ±1 can live only
within the soliton. Outside the soliton they can live only in pairs forming the
regular continuous vortices with n1 = ±2.

16.3.2 Formation of a vortex sheet

A vortex sheet is the chain of alternating circular and hyperbolic kinks with the
same orientation of circulation, say, all with n1 = 1 (Fig. 16.9 bottom).

If there are no solitons in the vessel, then rotating the vessel results in the
ordinary array of n1 = 2 continuous vortices. However, if the rotation is started
when there is a soliton plane parallel to the rotation axis, even at very slow
acceleration of rotation the vortex sheet starts to grow. The new vorticity in the
form of the kinks enters the soliton at the line of contact with the cylindrical
cell wall. This is because the measured critical velocity of creation of a new kink
within the soliton is lower compared to the measured critical velocity needed
for nucleation of a conventional isolated vortex with n1 = 2. That is why the
vortex-sheet state can be grown in spite of its larger energy compared to the
regular vortex state. The difference in critical velocities needed for nucleation of
different structures is actually a very important factor which allows manipulation
of textures, and even creation of the vortex state with a prescribed ratio between
vortices with different structures.

16.3.3 Vortex sheet in rotating superfluid

When growing, the vortex sheet uniformly fills the rotating container by folding
as illustrated in Fig. 16.10 left. Locally the folded sheet corresponds to a con-
figuration with equidistant soliton planes. That is why we can consider an ideal
system of planes shown in Fig. 16.10 right, which is, however, not so easy to
reach in experiment.

Let us find b, the equilibrium distance between the planes of the vortex sheet,
in a container rotating with Ω ‖ ẑ. It is determined by the competition of
the surface tension σ of the soliton and the kinetic energy of the counterflow
w = vn − vs outside the sheet. The motion of the normal component, which
corresponds to the vorticity ∇×vn = 2Ωẑ, can be represented by the shear flow
vn = −2Ωyx̂ parallel to the planes. In the gap between nearest planes, the vortex-
free superfluid velocity vs is constant and equals the average vn to minimize the
counterflow. Thus the velocity jump across the is ∆vs = 2Ωbx̂. The counterflow
energy per volume is (1/b)

∫

1
2ρs‖w

2dy = 1
6ρs‖Ω

2b2, where ρs‖ = mns‖ is the

superfluid density for the flow along l̂. The surface energy per volume equals
σ/b. Minimizing the sum of two contributions with respect to b one obtains
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single vortex sheet system of vortex-sheet planes

Fig. 16.10. Single and multiple vortex sheets in rotating vessel.

velocity  vn = Ω × r

 vs 
∇ × vs ≠ 0

radiusb

at vortex sheets

Fig. 16.11. Vortex-sheet array suggested by Landau and Lifshitz (1955) as the
ground state of rotating superfluid 4He.

b =

(

3σ

ρs‖Ω2

)1/3

. (16.14)

This gives obout 0.3–0.4 mm at Ω = 1 rad s−1 under the conditions of the
experiment.

Equation (16.14) is the anisotropic version of the result obtained by Lan-
dau and Lifshitz (1955) for isotropic superfluid 4He, where ρs‖ = ρs. Before the
concept of quantized vortices had been generally accepted, Landau and Lifshitz
assumed that the system of coaxial cylindrical vortex sheets in Fig. 16.11 is
the proper arrangement of vorticity in superfluid 4He under rotation (histori-
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Fig. 16.12. Measurement of the distance between the planes of the vortex sheet
using the Bragg reflection of the spin waves from the sheet (after Parts et
al. 1994a).

cally the vortex sheet in superfluid 4He was discussed even earlier by Onsager
(unpublished) and London (1946). Though it turned out that in superfluid 4He
the vortex sheet is topologically and energetically unstable toward break-up into
separated quantized vortex lines, the calculation made by Landau and Lifshitz
(1955) happened to be exactly to the point for the topologically stable vortex
sheet in 3He-A.

The distance b between the sheets has been measured by Parts et al. (1994a).
In addition to the vortex-sheet satellite peak in the NMR spectrum caused by
the spin waves bound to the soliton (Fig. 16.12 bottom left), they resolved a small
peak caused by the Bragg reflection of the spin waves from the equidistant sheet
planes (Fig. 16.12 bottom right). The position of the Bragg peak as a function
of Ω gives b(Ω) (Fig. 16.12 top left), which is in quantitative agreement with the
Landau–Lifshitz equation (16.14).

The areal density of circulation quanta has the solid-body value nv = 2Ω/κ0,
as in the case of an array of singly quantized vortices (see eqn (14.2)): the vortex
sheet also mimics the solid-body rotation of superfluid vacuum, 〈vs〉 = Ω ×
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Fig. 16.13. Vortex sheet in chiral superconductor.

r. This means that the length of the vortex sheet per two circulation quanta
is p = κ0/(bΩ), which is the periodicity of the order parameter structure in
Fig. 16.9 bottom (p ≈ 180µm at Ω = 1 rad s−1). The NMR absorption in the
vortex-sheet satellite is proportional to the total volume of the sheet which in
turn is proportional to 1/b ∝ Ω2/3. This non-linear dependence of the satellite
absorption on rotation velocity is also one of the experimental signatures of the
vortex sheet.

16.3.4 Vortex sheet in superconductor

The topologically stable vortex sheet has been discussed for chiral superconduc-
tors by Sigrist et al. (1989, 1995) and Sigrist and Agterberg (1999) (Fig. 16.13).
Similar to superfluid 3He-A, the vorticity is trapped in a wall separating two do-
mains with opposite orientations of the l̂-vector. But, unlike the case of 3He-A,
this domain wall is not a continuous soliton described by the relative homotopy
group: it is a singular defect described by the group π0, as domain walls in ferro-
magnets. That is why the trapped kink is not a continuous meron but a singular
vortex. Its winding is also two times smaller than that of the singular vortex in
bulk superconductor: it has the fractional winding number n1 = 1/2. If there
are many trapped fractional vortices, then they form a vortex sheet, which as
suggested by Sigrist and Agterberg (1999) can be responsible for the peculiarities
in the flux-flow dynamics in the low-temperature phase of the heavy-fermionic
superconductor UPt3.
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MONOPOLES AND BOOJUMS

17.1 Monopoles terminating strings

17.1.1 Composite defects

Composite defects exist in RQFT and in continuous media, if a hierarchy of en-
ergy scales with different symmetries is present. Examples are strings terminating
on monopoles and walls bounded by strings. Many quantum field theories pre-
dict heavy objects of this kind that could appear only during symmetry-breaking
phase transitions at an early stage in the expanding Universe (see reviews by
Hindmarsh and Kibble (1995) and Vilenkin and Shellard (1994)). Various roles
have been envisaged for them. For example, domain walls bounded by strings
have been suggested by Ben-Menahem and Cooper (1992) as a possible mecha-
nism for baryogenesis. Composite defects also provide a mechanism for avoiding
the monopole overabundance problem as was suggested by Langacker and Pi
(1980). On the interaction of the topological defects of different dimensionali-
ties, which can be applicable to the magnetic monopole problem, see also Sec.
17.3.8.

In high-energy physics it is generally assumed that the simplest process for
producing a composite defect is a two-stage symmetry breaking, realized in two
successive phase transitions which are far apart in energy (Kibble 2000). An
example of successive transitions in GUTs is SO(10) → G(224) → G(213) →
G(13).

In condensed matter physics, composite defects are known to result even from
a single phase transition, provided that at least two distinct energy scales are
involved, such that the symmetry at large lengths can become reduced (Mineev
and Volovik 1978) (see Sec. 16.1). Examples are the spin–mass vortex in super-
fluid 3He-B (Sec. 14.1.5) and the half-quantum vortex in 3He-A (Sec. 16.1.1),
both serving as the termination line of a soliton. These composite defects result
not from the second phase transition but from the fact that the original unbro-
ken symmetry G is approximate. The original small interaction wich violates the
symmetry G imposes the second length scale. At distances larger than this scale,
the vacuum manifold is reduced by the interaction and linear defects become
composite. In our case of superfluid 3He, the symmetry violating interaction is
the spin–orbit coupling.

Now we consider the other composite objects which appear as a result of two
scales: monopoles terminating strings.
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Fig. 17.1. d-hedgehog as an interface separating continuous vortices with differ-
ent π2 topological charge n2{d̂} of the d̂-field. The charge of the l̂-field is the

same on both sides, n2{̂l} = 1. The hedgehog can serve as a mediator of the
observed phase transition between topologically different skyrmions discussed
in Sec. 16.2.5. Left: NMR signatures of the corresponding vortex-skyrmions.
Satellite peaks signify NMR absorption due to excitation of spin-wave modes
localized inside the skyrmions, whose eigenfrequencies depend on orientations
of d̂- and l̂-vectors.

17.1.2 Hedgehog and continuous vortices

In Sec. 16.2.5 we discussed the observed topological phase transition (Pekola
et al. 1990) between different continuous vortex-skyrmions. The two continuous

structures differ by the topological charge n2{d̂} in the-d̂ field in eqn (16.12). The

topological charge n2{d̂} comes from the homotopy group π2 which describes the
mapping of the cross-section of the soft core of the vortex to the unit sphere of
unit vector d̂. The same topological charge in eqn (15.11) is carried by the point

defect – the hedgehog in the d̂-field (Sec. 15.2.1). That is why the hedgehog can
serve as a mediator of the topological transition between the single-skyrmion and
double-skyrmion vortices which occurs continuously when the hedgehog moves
along the vortex line from one ‘horizon’ to the other (Fig. 17.1).

This is an example of the topological interaction between the linear objects
and point defects described by the same topological charge. In our case the n2
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charge of the hedgehog comes from the π2 homotopy group of the A-phase, eqn
(15.10). The topological charge n2 of the continuous vortex-skyrmion below
the hedgehog comes from the relative homotopy group. The relevant relative
homotopy group is (compare with eqn (16.3))

π2(G/HA, G̃/H̃A) = π2

(

(SO(3) × S2)/Z2, SO(3)
)

= π2(S
2) = Z . (17.1)

Here the cross-section of the skyrmion is mapped to the vacuum manifold G/HA

which takes place at short distances below the dipole length ξD. At distances
above the dipole length ξD, the vacuum manifold is restricted by the spin–orbit
interaction, and thus the boundary of the disk is mapped to the restricted man-
ifold G̃/H̃A.

In particle physics the point defects are usually associated with magnetic
monopoles. Let us consider different types of monopoles with and without at-
tached strings, and their analogs in 3He and superconductors.

17.1.3 Dirac magnetic monopoles

Magnetic monopoles do not exist in classical electromagnetism. The Maxwell
equations show that the magnetic field is divergenceless, ∇·B = 0, which implies
that the magnetic flux through any closed surface is zero:

∮

S
dS·B = 0. If one tries

to construct the monopole solution B = gr/r3, the condition that magnetic field
is non-divergent requires that magnetic flux Φ = 4πg from the monopole must be
accompanied by an equal singular flux supplied to the monopole by an attached
Dirac string. QED, however, can be successfully modified to include magnetic
monopoles. Dirac (1931) showed that the string emanating from a magnetic
monopole (Fig. 17.2 top left) becomes invisible for electrons if the magnetic flux
of the monopole is quantized in terms of the elementary magnetic flux:

Φ = 4πg = nΦ0 , Φ0 =
hc

e
, (17.2)

where e is the charge of the electron. When an electron circles around the string
its wave function is multiplied by exp

(

ie
∮

dr ·A/h̄c
)

= exp (ieΦ/h̄). If the mag-
netic charge g of the monopole is quantized according to eqn (17.2), the wave
function does not change after circling, and the flux tube is invisible.

17.1.4 ’t Hooft–Polyakov monopole

It was shown by ’t Hooft, and Polyakov (both in 1974) [185, 376], that a magnetic
monopole with quantization of the magnetic charge according to eqn (17.2) can
really occur as a physical object if the U(1)Q group of electromagnetism is a
part of the higher gauge group SU(2). The magnetic flux of a monopole in terms
of the elementary magnetic flux coincides with the topological charge n2 of the
hedgehog in the isospin vector field d̂ (Fig. 17.2 bottom left): this is the quantity
which remains constant under any smooth deformation of the quantum fields.
Such monopoles do not appear in the electroweak symmetry breaking transition
(eqn (15.5)), since the π2 group is trivial there. But they can appear in GUT
theories, where all interactions are united by, say, the SU(5) group.
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Fig. 17.2. Monopoles in high-energy physics. Bottom left: The
’t Hooft–Polyakov magnetic monopole. In the anti-GUT analogy dictated by
the similarity of p-space topology, the role of the ’t Hooft–Polyakov magnetic
monopole in 3He-A is played by the hedgehog in the d̂-field in Sec. 15.2.1.
Bottom right: The electroweak monopole. The monopole is the termination
line of the string, which is physical in contrast to the Dirac string (top).
In the GUT analogy which exploits the similarity in the symmetry-breaking
pattern and r-space topology, the role of the electroweak monopole in 3He-A
is played by the hedgehog in the l̂-field (Fig. 17.3 top left).

In 3He-A this type of magnetic monopole is reproduced by the hedgehog in
the d̂-vector (Fig. 17.1). According to the p-space topology of Fermi points, the

d̂-vector is felt by ‘relativistic’ quasiparticles in the vicinity of the Fermi point
as the direction of the isotopic spin (see discussion in Sec. 15.2.1).

17.1.5 Nexus

An exotic composite defect in 3He-A which bears some features of magnetic
monopoles is the singular n1 = 2 vortex terminated by the hedgehog in the
l̂-field discussed by Blaha (1976) and Volovik and Mineev (1976a) (Fig. 17.3 top
left). The n1 = 2 vortex can terminate in the bulk 3He-A because the n1 = 2
vortices belong to the trivial element of the homotopy group. The superfluid
velocity around such a monopole has the same form as the vector potential A of
the electromagnetic field near the Dirac monopole

vs =
h̄

2mr
φ̂ cot

θ

2
, ∇× vs =

h̄

2m

r̂

r2
. (17.3)

It has a singularity at θ = π, i.e. on the line of singular n1 = 2 vortex emanating
from the hedgehog. This type of monopole in 3He-A has a physical ‘Dirac string’.
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Fig. 17.3. Top left: Doubly quantized singular vortex with free end in 3He-A.
The termination point is the hedgehog in the l̂-field. Top right: Doubly quan-
tized singular vortex splits into two n1 = 1 vortices terminating on hedgehog.
Bottom left: The same as in top right but in a chiral superconductor with the
same order parameter as in 3He-A. Each vortex with n1 = 1 is an Abrikosov
vortex which carries the magnetic flux Φ0/2 to the nexus. The nexus repre-
sents the magnetic pole with emanating flux Φ0. Bottom right: The magnetic
flux to the nexus is supplied by four half-quantum vortices.

The vorticity ∇× vs which plays the role of magnetic field B is a conserved
quantity: the continuous vorticity radially emanating from the hedgehog is com-
pensated by the quantized vorticity entering the hedgehog along the hard core
of the string. The Mermin–Ho relation in (9.17) must be modified to include the
singular vorticity concentrated in the singular vortex:

∇× vs =
h̄

4m
eijk l̂i∇l̂j ×∇l̂k +

2πh̄

m
Θ(−z)δ(x)δ(y) . (17.4)

The singular n1 = 2 vortex can split into two topologically stable vortices
with n1 = 1 (Fig. 17.3 top right), or even into four half-quantum vortices, each
with n1 = +1/2 winding number (see Fig. 17.3 bottom right in the case of the
chiral superconductor with the same order parameter as in 3He-A). These vor-

tices thus meet each other at one point – the hedgehog in the l̂-field. Such a
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composite object, which is reminiscent of the Dirac magnetic monopole with
one or several physical Dirac strings, is called a nexus in relativistic theories
(Cornwall 1999). In electroweak theory the nexus is represented by a hypermag-
netic (or electroweak) monopole which is the termination point of the Z-string
(Fig. 17.2 bottom); the monopole–anti-monopole pair can be connected by the
Z-string (Nambu 1977); such configuration is called a dumbbell.

17.1.6 Nexus in chiral superconductors

Figure 17.3 bottom shows nexuses in chiral superconductors (Volovik 2000b). In
a chiral superconductor the semilocal group is broken (Sec. 16.2.4); as a result

the Meissner effect is not complete because of the l̂-texture. Magnetic flux is not
necessarily concentrated in the tubes – Abrikosov vortices (Abrikosov 1957) – but
can propagate radially from the hedgehog according to the Mermin–Ho relation
eqn (9.17) extended to the electrically charged superfluids. The condition that
the electric current j = ens(vs−(e/m)A) is zero in the bulk of the superconductor
gives for the vector potential according to eqn (17.3)

A =
m

e
vs =

h̄

2er
φ̂ cot

θ

2
. (17.5)

This is exactly the vector potential of the Dirac monopole, i.e. the l̂-hedhehog
in Fig. 17.3 top acquires in superconductors a magnetic charge g = hc/4πe.
The magnetic flux Φ0 = hc/e emanating radially from the hedgehog (nexus)
is compensated by the flux supplied by the doubly quantized Abrikosov vortex
(n1 = 2) which plays the part of a Dirac string.

The flux Φ0 can be supplied to the hedgehog by two conventional Abrikosov
vortices, each having winding number n1 = 1 and thus the flux Φ = Φ0/2 (Fig.
17.3 bottom left) or by four half-quantum vortices, each having fractional winding
number n1 = 1/2 and thus the fractional flux Φ = Φ0/4 (Fig. 17.3 bottom right).

17.1.7 Cosmic magnetic monopole inside superconductors

Since magnetic monopoles in GUT and the monopole-like defects in supercon-
ductors involve the quantized magnetic flux, there is a topological interaction be-
tween these topological objects. Let us imagine that the GUT magnetic monopole
enters a conventional superconductor. If the monopole has unit Dirac magnetic
flux Φ0, it produces two Abrikosov vortices, each carrying Φ0/2 flux away from
the magnetic monopole (Fig. 17.4 top left). This demonstrates the topological
confinement of linear and point defects.

In chiral superconductors, a cosmic monopole with elementary magnetic
charge can produce four half-quantum Abrikosov vortices (Fig. 17.4 top right).
The other ends of the vortices can terminate on the nexus. Thus Abrikosov flux
lines produce the topological confinement between the GUT magnetic monopole
and the nexus of the chiral superconductor. Figure 17.4 (bottom left) shows the
cosmic defect and defect of superconductor combined by the doubly quantized
(n2 = 2) Abrikosov vortex. This leads to the attraction between the objects, the
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superconductors.

final result of which is that the GUT magnetic monopole will find its equilib-
rium position in the core of the hedgehog in the l̂-vector field forming a purely
point-like composite defect (Fig. 17.4 bottom right). The nexus in chiral supercon-
ductors thus provides a natural trap for the massive cosmic magnetic monopole:
if one tries to separate the monopole from the hedgehog, one must supply the

energy needed to create the segment(s) of the Abrikosov flux line(s) confining
the hedgehog and the monopole.

17.2 Defects at surfaces

17.2.1 Boojum and relative homotopy group

Boojum is the point defect which can live only on the surface of the ordered
medium. This name was coined by Mermin (1977) who discussed boojums in
3He-A [326]. In 3He-A boojums are always present on the surface of a rotating
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tive homotopy group. The relevant subspace is a hemisphere, whose boundary
– the circumference – is on the surface of the system. Such a hemisphere is
mapped to the vacuum manifold R, while its boundary is mapped to the sub-
space R̃ of the vacuum manifold R constrained by the boundary conditions.
Bottom: Doubly quantized continuous vortices in rotating vessel terminate on
boojums. Top right: Classification of linear boojums – strings living on the
surface of the system. The relevant subspace is a cemicircle, whose boundaries
– two points – are on the surface of the system.

vessel as termination points of continuous vortex-skyrmions (Fig. 17.5 bottom;
they are present at the interface separating 3He-A and 3He-B (see Figs 17.6 and
17.9 top below). Boojums on the surface of nematic liquid crystals are discussed
in the book by Kleman and Lavrentovich (2003).

Boojums are described by the relative homotopy group π2(R, R̃). Here the
subspace R̃ is the vacuum manifold on the surface of the system, which is reduced
due to the boundary conditions restricting the freedom of the order parameter
(Volovik 1978; Trebin and Kutka 1995). Now the relevant part of the coordinate
space to be mapped to the vacuum space is a hemisphere in Fig. 17.5 top left,
whose boundary – the circumference – is on the surface of the system. Such a
hemisphere surrounds the point defect living on the surface. The hemisphere is
in the bulk liquid and thus is mapped to the vacuum manifold R. The boundary
of the hemisphere is on the surface of the container and thus is mapped to the
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subspace R̃ of the vacuum manifold R, which is constrained by the boundary
conditions.

In principle, the relative homotopy group π2(R, R̃) describes two types of
point defects: (i) hedgehogs which came from the bulk but did not disappear
on the surface because of boundary conditions; and (ii) boojums which live only
on the surface and cannot move to the bulk liquid. The topological description,
which resolves between these two topologically different types of point defects
on the surface, can be found in Volovik (1978).

Accordingly, linear defects on the surface of the system are desribed by the
relative homotopy group π1(R, R̃) (Fig. 17.5 top right). The semicircle surround-
ing the defect line is mapped to the vacuum manifold R of the bulk liquid, while
the end points, which are on the surface, are mapped to the vacuum submanifold
R̃ constrained by the boundary conditions. This group also includes two types
of defects: (i) strings which came from the bulk but did not disappear on the
surface because of boundary conditions (an example is the half-quantum vortex
of the A-phase which survives on the AB-interface in Sec. 17.3.9); and (ii) linear
boojums – the strings which live only on the surface and cannot move to the
bulk liquid.

17.2.2 Boojum in 3He-A

In the case of 3He-A the boundary conditions restrict the orientation of the l̂-
vector: l̂ = ±ŝ, where ŝ is the normal to the surface. As a result the restricted
vacuum manifold on the surface is

R̃ = S2 × U(1) × Z2 . (17.6)

Here S2 is the sphere of the unit vector d̂: it is not disturbed by the boundary
(we neglect here the spin–orbit interaction); U(1) is the space of phase rotation

group: m̂ and n̂ are parallel to the surface and can freely rotate about l̂, since
such rotation corresponds to the change of the phase of the order parameter; Z2

marks two possible directions of the l̂-vector on the surface: l̂ = ±ŝ.
The relative homotopy group describing the point defects on the surface is

π2(RA, R̃A) = π2

(

(S2 × SO(3))/Z2, S
2 × U(1) × Z2

)

= Z . (17.7)

A more detailed inspection of this group shows that the group Z of integers
refers to the topological charge n2 of the boojums (see below), while the point

defects which come from the bulk liquid – hedgehogs in the d̂-field – can be
continuously destroyed on the boundary. The d̂-field belongs to the spin part of
the order parameter and thus is not influenced by the surface: The d̂-hedgehog
simply penetrates through the surface to the ‘shadow world behind the wall’
(this shadow world can be constructed by mirror reflection without violation of

the boundary condition for the l̂-vector).
The boojum is a singular defect: its hard core has size of order coherence

length ξ. This defect has a double topological nature, bulk and surface. On the
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Fig. 17.6. Singularities in superfluid 3He in a rotating container: singular
B-phase vortices, AB-interface, A-phase boojums on the surface of the con-
tainer and A-phase boojums at the interface. Boojums on the surface of
container (Mermin 1977) have the surface winding number n1 = 2 and the
bulk winding number n2 = 1. Boojums on the AB-interface have two times
smaller winding numbers: n1 = 1 and n2 = 1/2.

one hand, it is a point defect for the bulk l̂-field. The integral charge n2 is
the degree of the mapping of the hemisphere, which is S2 since l̂ is fixed on the
boundary, to the sphere S2 of unit vector l̂ in the bulk liquid. On the other hand,
if one considers the order parameter field on the surface where l̂ is fixed, one finds
that it is the point defect in the m̂ + in̂ field. Since rotations of these vectors
about l̂ are equivalent to phase rotations, this defect is a point vortex. The
winding number of vectors m̂ and n̂ along the closed path on the surface around
the boojum, which determines the circulation number of superfluid velocity, is
n1 = 2n2.

The relation between the two winding numbers is exactly the same as for
continuous vortex-skyrmions in eqn (16.8), where the l̂-texture gives rise to
the winding number of the vortex with n1 = 2n2. This is the reason why the
continuous vortex with n1 = 2 in the bulk liquid terminates on the singular
vortex with n1 = 2 on the surface – the boojum (Fig. 17.5 bottom). Boojums
on the top and bottom walls of the container are the necessary attributes of the
rotating state in 3He-A.

17.3 Defects on interface between different vacua

17.3.1 Classification of defects in presence of interface

The phase boundary between two superfluid vacua, 3He-A and 3He-B, is the 2D
object which is under extensive experimental investigation for many reason (see
e.g. Blaauwgeers et al. 2002)

The classification of defects in the presence of the interface between A- and
B-phases (Volovik 1990c; Misirpashaev 1991) must give answers to the following
questions: What is the fate of defects which come to the interface from the bulk
liquid? Do they survive or disappear? Can they propagate through the interface
or do they have a termination point on the interface? Are there special defects
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which live only at the interface? The latter are shown in Fig. 17.6. Boojums at
the AB-interface do exist, but they have different topological charges than the
boojums living on the surface of 3He-A.

The existence and topological stability of boojums are determined by the
topological matching rules across the interface, which in turn are defined by
boundary conditions, combined with the topology of the A- and B-phases in the
bulk liquid. The boundary conditions in turn depend on the internal symmetry
of the order parameter in the core of the interface. Thus we must start with the
symmetry classes of interfaces.

17.3.2 Symmetry classes of interfaces

The symmetry classification of possible interfaces is similar to the symmetry
classification of the structures of the core of defects – hedgehogs/monopoles
and vortices/cosmic strings – discussed in Sec. 14.2.6. We must consider the
symmetry-breaking scheme of the transition from the normal 3He with symmetry
G to the superfluid state having the extended object in the form of a plane wall.

The are only two maximum symmetry subgroups of G which are consistent
with the geometry of defects, and with the groups HA and HB of the super-
fluid phases A and B far from the interface. Both of them contain only discrete
elements:

HAB1 = (1 , U2xT , U2zP , U2yTP) (17.8)

and
HAB2 = (1 , U2x , U2yPT , U2zPT) . (17.9)

Here U2x, U2y and U2z denote rotations through π about x̂, ŷ and ẑ, with the axis
x̂ along the normal s to the AB-interface. In each of these two subgroups there
is a stationary solution for the order parameter everywhere in space including
the interior of the interface. In the solution with symmetry HAB2 the orbital unit
vector of the A-phase anisotropy is oriented along the normal to the interface,
l̂ = ±x̂. In the solution with symmetry HAB1 the l̂-vector is in the plane of the
interface, say l̂ = ẑ.

The solution with minimum interface energy belongs to the class HAB1. It
has the following asymptotes for the order parameter on both sides of the wall:

e0αi(x = −∞) = ∆Ax̂α(x̂i + iŷi) , e
0
αi(x = +∞) = ∆Bδαi . (17.10)

For the maximally symmetric interface the symmetry HAB1 of the asymptote
persists everywhere throughout the interface, i.e. at −∞ < x < +∞.

17.3.3 Vacuum manifold for interface

Equation (17.10) represents only one of the possible degenerate states of the
wall in the class HAB1, the other states with the same energy being obtained by
the symmetry operations. These are the symmetry operations from the group G
which do not change the orientation of the interface

GAB = U(1)N × SO(2)Lx
× SO(3)S × PU2y × T . (17.11)
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Here SO(2)Lx
is the group of orbital rotations about the normal to the interface.

Applying these symmetry transformations to the particular solution (17.10) one
obtains all the possible orientations of the vacuum parameters in both phases
across the interface (the unit vectors d̂, m̂, n̂ and l̂ on the A-phase side, and the
phase Φ and the rotation matrix Rαi on the B-phase side):

eαi = ∆Be
iΦRαi(θ, n̂), x = +∞ , (17.12)

(m̂ + in̂)i = eiΦRL
ik(α, x̂)(x̂k + iŷk), d̂α = Rαβ(θ, n̂)x̂β , x = −∞ . (17.13)

Here RL is the matrix of orbital rotations from the group SO(2)Lx
. Equation

(17.12) and eqn (17.13) represent the mutual boundary conditions for the two
vacua across the interface, which can be written in general form introducing the
unit vector ŝ along the normal to the boundary:

ŝ · l̂ = 0 , ŝ · (m̂ + in̂) = eiΦ , d̂α = Rαi(θ, n̂)ŝi . (17.14)

The vacuum manifold – the space of degenerate states – which describes all
possible mutual orientations of the order parameter on both sides of the wall of
class HAB1 is

RAB1 = GAB/HAB1 = U(1)N × SO(2)Lx
× SO(3)S . (17.15)

17.3.4 Topological charges of linear defects

The vacuum manifold in eqn (17.15) is rather peculiar: there is no one-to-one
correspondence between the orientations of the vacua across the interface. It
follows, for example, that if we fix the orientation of the B-phase vacuum, the
order parameter matrixRαi and the phase Φ, there is still freedom on the A-phase
side. While the spin vector d̂ and the phase Φ (the angle of rotation of vectors

m̂ and n̂ around l) become fixed by the B-phase, d̂µ = Rµiŝ
i and ΦA = ΦB, the

direction of the l̂ in the plane – the angle α in eqn (17.13) – remains arbitrary.
In other words, each point in the B-phase vacuum produces a U(1) manifold of
vacuum states on the A-phase side.

On the other hand, if one fixes the orientation of the A-phase degeneracy
parameters Φ, l̂ and d̂, then on the B-phase side the phase Φ will be fixed, but
there is still some freedom in the orientation of the B-phase order parameter
matrix Rαi: the angle θ of rotations about axis n̂ = ŝ is arbitrary. Thus each
point in the A-phase vacuum also produces a U(1) manifold of states on the
B-phase side.

These degrees of freedom lead to a variety of possible defects on the AB-
interface. The general classification of such defects in terms of the relative ho-
motopy groups has been elaborated by Misirpashaev (1991) and Trebin and
Kutka (1995). Let us first consider the defects which have singular points on the
interface as termination or crossing points of the linear defects in the bulk. At
these points the structure of the interface is violated: the mutual boundary condi-
tions for the degeneracy parameters are satisfied everywhere on the AB-interface
except these points.
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These points can be described by the π1 homotopy group

π1(RAB1) = Z × Z × Z2 . (17.16)

This group describes the mapping of the contour lying on the interface and
surrounding the defect to the vacuum manifold of the interface in eqn (17.15).
According to eqn (17.16), there are three topological charges – three integer
numbers NΦ, Nl and NR – which characterize the topologically stable defects
related to the interface.

The integer charge NΦ comes from the subspace U(1)N of RAB1 in eqn
(17.15). It is the winding number of the phase of the order parameter on the
interface. In other words, this is the number of the circulation quanta of the
superfluid velocity along the contour on the AB-interface which embraces the
defect, i.e. NΦ = n1. Since the phases Φ at the interface are the same for both
vacua, ΦA = ΦB, the circulation number n1 of superfluid velocity is conserved
across the interface.

Integer Nl comes from the subspace SO(2)Lx
. It is the winding number for

the l̂-vector on the interface around a defect. Let us recall that at the interface
one has l̂ ⊥ ŝ and thus the vacuum manifold of the l̂-vector is the circumference
SO(2)Lx

.
The topological quantum number NR comes from the space of spin rota-

tions SO(3)S in the vacuum manifold RAB1 in eqn (17.15). Since the spin–orbit
interaction is neglected, spin rotations of the order parameter do not change
the energy of the interface. The integer NR takes only values 0 and 1, since
π1(SO(3)S) = Z2. Corresponding defects are related to spin vortices.

17.3.5 Strings across AB-interface

All the linear defects intersecting the interface or terminating on the interface
can be classified in terms of the 3-vector with integer-valued components ~N =
(NΦ, Nl, NR). Among these defects one can find:

(1) End points of the linear singularities in the bulk A-phase without propa-
gation of the singularity into the B-phase.

(2) End points of the linear singularities in the bulk B-phase without prop-
agation into the A-phase. The end of the linear B-phase defect sometimes gives
rise to the special point singularity on the A-phase side, which is similar to
boojums – the point defects which live on the surface of the ordered medium.

(3) Points of the intersection of the linear defects with the AB-interface, i.e.
defects which propagate into the bulk liquid on both sides of the wall.

Let us start with three elementary defects, i.e. described by only one non-zero
component of the ~N -vector (Fig. 17.7):

~N = (0, 0, 1). This elementary defect has non-zero winding NR = 1 of the
angle θ in the B-phase. It represents the end point of the B-phase spin vortex
without any singularity on the A-phase side (Fig. 17.7 top left). This is possible
because the angle θ is not fixed by the A-phase and thus can make winding even
if the A-phase order parameter remains constant.
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Fig. 17.7. Defects at and across the AB-interface. MV, SV and SMV denote
mass vortex, spin vortex and spin–mass vortex respectively.

~N = (1, 0, 0). This elementary defect is the B-phase mass vortex with 2π
winding of the phase Φ, which transforms to the singular A-phase mass vortex
with the same winding number: NΦ ≡ n1 = 1 (Fig. 17.7 top right).

~N = (0, 1, 0) (Fig. 17.7 middle left). This elementary defect is a disclination

in the l̂-field with winding number Nl = 1 which does not propagate into the bulk
B-phase, since at a given fixed value of the B-phase orientation the orientation
of the l̂ can be arbitrary. However, it should propagate into the A-phase either
in terms of the same disclination or in terms of the vortex, since in the A-phase
the disclination and the vortex belong to the same topological class n1 = 1 and
may transform to each other. If the singularity propagates as a vortex, the end
of the A-phase vortex is the boojum in the l̂-field with n2 = 1/2.

All other defects can be constructed from the elementary ones. The important
ones for us are the following defects, which can appear in the rotating vessel.
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the role of the gravimagnetic field, this defect plays the role of gravimagnetic
monopole.

17.3.6 Boojum as nexus

~N = (1, 1, 0) (Fig. 17.7 middle right). This is a sum of the defects (1, 0, 0) +
(0, 1, 0). The B-phase vortex will persist but the two singularities in the A-phase
will be annihilated due to the famous sum rule for the linear defects in the bulk
A-phase: NΦ+Nl = 1+1 = 0. So only the boojum is left on the A-phase side and
we come to the Dirac monopole structure: B-phase n1 = 1 vortex terminating
on the A-phase boojum l̂ = r̂ (Fig. 17.8). As distinct from the boojums on

the surface of the container, where the boundary conditions on the l̂-vector are
different (̂l is parallel to the normal to the surface), the boojum at the interface
has n1 = 1 circulation quantum (Fig. 17.6). Since ∇ × vs plays the role of the
gravimagnetic field, this boojum is equivalent to the gravimagnetic monopole
discussed by Lynden-Bell and Nouri-Zonoz (1998) (see Sec. 20.1.2 and Chapter
31 on the gravimagnetic field).

And finally the sum of three elementary defects, (1, 1, 1) = (1, 0, 0)+(0, 1, 0)+
(0, 0, 1), in Fig. 17.7 bottom left is the A-phase Mermin–Ho vortex, which propa-
gates across the AB-interface forming the composite linear defect in the Φ- and
Rµi- fields – the spin–mass B-phase vortex discussed in Sec. 14.1.4. The compos-
ite spin–mass vortices were experimentally resolved by Kondo et al. (1992) just
after the AB-interface with continuous vorticity on the A-phase side traversed
the rotating vessel. This implies that (1, 1, 1) or (1,−1, 1) defects of the interface
were the intermediate objects in formation of the spin–mass vortex.

17.3.7 AB-interface in rotating vessel

The vortex-full rotating state in the presence of the AB-interface is shown in
Fig. 17.9 top. Both phases contain an equilibrium number of vortices at given
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Fig. 17.9. Top: In an equilibrium rotating state, a continuous vortex-skyrmion
in the A-phase with winding number n1 = 2, approaching the interface,
splits into Mermin–Ho vortices, radial and hyperbolic, each with n1 = 1.
Each Mermin–Ho vortex gives rise to a singular point defect on the AB-in-
terface – a boojum. The boojum is the termination point of a singular 2π
(n1 = 1) vortex in the B-phase. Thus the continuous vorticity crosses the
interface transforming to singular vorticity. However, singularities are not
easily created in superfluid 3He. That is why typically the non-equilibrium
state arises (bottom), in which the continuous A-phase vorticity does not
propagate through the interface. Instead it is accumulated at the A-phase
side of the interface forming the vortex layer with a high density of vortices
separating the vortex-free 3He-B and the 3He-A with equilibrium vorticity.

angular velocity Ω of rotation. Let us recall (see eqn (14.2)) that the areal density
of vortices nv is determined by the condition that in equilibrium the superfluid
component performs on average the solid-body rotation, i.e. 〈vs〉 = Ω × r, or
〈∇ × vs〉 = 2Ω. Since 〈∇ × vs〉 = n1κ0nv, where κ0 = πh̄/m, one obtains

nv =
2mΩ

n1πh̄
. (17.17)
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This demonstrates that the number of doubly quantized vortex-skyrmions in
the A-phase is two times smaller than the number of singular singly quantized
B-phase vortices.

The vorticity is conserved when crossing the interface. When approaching
the interface the continuous n1 = 2 A-phase vortex splits into two Mermin–
Ho vortices, radial and hyperbolic, each terminating on a boojum with n1 =
2n2 = 1. The quantized circulation around the boojum continues to the B-phase
side in terms of n1 = 1 singular vortices. In terms of the point singularities on
the AB-interface these processes correspond to two defects: ~N = (1, 1, 0) and
~N = (1,−1, 0), which are radial and hyperbolic boojums at the AB-interface,
respectively.

However, we know that singularities are not easily created in superfluid 3He:
the energy barrier is too high, typically of 6–9 orders of magnitude bigger than
the temperature (Sec. 16.1.3). When the vessel is accelerated from rest, the A-
phase vortex-skyrmions are created even at a low velocity of rotation, while
the critical velocity for nucleation of the singular vortices in 3He-B are is higher
(Sec. 26.3.3). Thus one may construct the state with vortex-full A-phase and
vortex-free B-phase (Blaauwgeers et al. 2002). The A-phase thus rotates as
a solid body, while the B-phase remains stationary in the inertial frame (Fig.
17.9 bottom). The A-phase continuous vorticity does not propagate through the
interface; instead it is accumulated at the interface forming the vortex layer (the
vortex sheet) with a high density of continuous vorticity. Thus two superfluids
slide along each other with a tangential discontinuity of the superflow velocity
at the interface. This tangential discontinuity is ideal – there is no viscosity in
the motion of superfluids, so that such a state can persist for ever.

Vorticity starts to propagate into the B-phase only after the critical velocity
of the Kelvin–Helmholtz instability of the tangential discontinuity is reached, in
the process of development of this shear-flow instability (see Chapter 27), and
thus one superfluid (3He-A) spins up another one (3He-B).

17.3.8 AB-interface and monopole ‘erasure’

The interaction of cosmic defects of different dimensionalities can be important
as a possible way of soving the magnetic monopole problem. The GUT magnetic
monopoles could have been formed in the early Universe if the temperature had
crossed the phase transition point at which the GUT symmetry of strong, weak
and electromagnetic interactions was spontaneously broken. They appear accord-
ing to Kibble’s (1976) scenario of formation of topological defects in the process
of non-equilibrium phase transition, which we shall discuss in Chapter 28. Since
these monopoles are heavy, their energy density at the time of nucleosynthesis
would by several orders of magnitude exceed the energy density of matter, which
strongly contradicts the existence of the present Universe (see review by Vilenkin
and Shellard 1994).

The possible solution of the cosmological puzzle of overabundance of mono-
poles was suggested by Dvali et al. (1998) and Pogosian and Vachaspati (2000).
In the suggested mechanism the interaction of the defects of different dimensions
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for the Alice string. When a singular vortex or other defect (except for the
half-quantum vortex) approaches the interface from either side (left), it can
be cut to pieces by the interface (right). The half-quantum vortex – the Alice
string – survives at the interface.

leads to ‘defect erasure’: monopoles can be swept away by the topological defects
of higher dimension, the domain walls, which then subsequently decay.

The impenetrability of continuous A-phase vorticity through the interface in
Fig. 17.9 bottom, as well as the impenetrability of singular defects through the
interface from the B-phase to A-phase in Fig. 17.9 top, serve as a condensed
matter illustration of the monopole ‘erasure’ mechanism. In our case the role of
the monopoles is played by both vortices, singular and continuous.

In the situation in Fig. 17.9 bottom, continuous A-phase vortex-skyrmions
cannot propagate through the domain wall – the interface between two different
phases of 3He. They are swept away when the interface moves toward the A-
phase.

In the situation in Fig. 17.9 top the singular defects of the B-phase terminate
on boojums and do not propagate to the A-phase side where vortex-skyrmions
have no singularities. If one starts to move the interface toward the B-phase one
finds that the singularities are erased from the experimental cell by the interface.

17.3.9 Alice string at interface

As was found by Misirpashaev (1991), the Alice string (half-quantum vortex)
is the only singular defect which is topologically stable in the presence of the
AB-interface (Fig. 17.7 bottom right). The other linear defects, when they ap-
proach and touch the interface, can smoothly annihilate leaving the termination
points (see Fig. 17.10). The point defects – the A-phase hedgehog in the d̂-field
– are erased completely when they collide with the interface. This is another
illustration of the monopole erasure. The Alice string cannot propagate through
the interface, but when it comes from the bulk A-phase (Fig. 17.10 left) to the
interface it will survive there (Fig. 17.10 right).

Whether the Alice string is repelled from the interface or attracted by the
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Fig. 17.11. Simplest realization of the Alice string at the interface. On the
A-phase side it is the spin vortex in the d̂-field with ν = 1/2, while on the
B-phase side it is the mass vortex with n1 = 1/2.

interface and lives there, is not determined by topology, but by the energetics of
vortices on different sides of the interface. Let us recall that in the bulk A-phase,
the Alice string is the combination of the mass vortex with n1 = 1/2 and spin
vortex with ν = 1/2. This allows us to construct the simplest representation of
the Alice string lying at the interface:

eαi(x < 0) = ∆A (x̂α sinφ− ŷα cosφ) (x̂i + iŷi) , (17.18)

eαi(x > 0) = −i∆Bδαie
iφ . (17.19)

Here the vortex line and the l̂-vector are along the z axis. In this construction,
the change of sign of the order parameter due to the reorientation of the d̂-vector
on the A-phase side is compensated by the change of the phase Φ on the B-phase
side. As a result the mass-current part of the string is on the B-phase side of
the interface, where the phase ΦB = φ − π/2 changes from −π to 0, while the
spin-current part of the string is on the A-phase side, i.e. at x < 0 (Fig. 17.11).
In the real Alicie string the spin and mass currents are present in both phases
due to the conservation law for the mass and spin:

eαiA = ∆A (x̂α sin((1 − a)φ) − ŷα cos((1 − a)φ)) (x̂i + iŷi)e
ibφ, (17.20)

eαiB = −i∆BRαi(ẑ, aφ)ei(1−b)φ. (17.21)

Parameters a and b of the string can be determined from the minimization
of the London energy. In the BCS model at T = 0, eqns (14.6) and (15.19) give
the following energy densities in the A- and B-phases:
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E(x < 0) = n
h̄2

8m

(

(∇Φ)2 + (∇α)2
)

, Φ = bφ , α = (1 − a)φ , (17.22)

E(x > 0) = n
h̄2

8m

(

(∇Φ)2 +
4

5
(∇α)2

)

, Φ = (1 − b)φ , α = aφ . (17.23)

Minimization of the energy
∫

dxE is equivalent to application of the conserva-
tion law for the mass and spin currents across the interface, dEB/d(∇Φ) =
dEA/d(∇Φ) and dEB/d(∇α) = dEA/d(∇α), which gives b = 1/2 and a = 5/9.
Thus the energy of the Alice string of length L attached to the interface is

EAlice AB = nL
πh̄2

8m

17

18
ln
R

ξ
. (17.24)

The energy of the Alice string in a bulk A-phase is somewhat higher:

EAlice A = nL
πh̄2

8m
ln
R

ξ
. (17.25)

That is why in this simplified case the Alice string prefers to live at the interface
for energetical reasons. The topology allows for that. All the other linear defects,
even if they are topologically stable in bulk vacua, can be eaten by the interface
(Fig. 17.10). This does not mean that they will always be destroyed by the
interface: the non-topological energy barriers can prevent the destruction.





Part IV

Anomalies of chiral vacuum





18

ANOMALOUS NON-CONSERVATION OF FERMIONIC

CHARGE

In this part we discuss physical phenomena in the vacuum with Fermi points. The
non-trivial topology in the momentum space leads to anomalies produced by the
massless chiral fermions in the presence of collective fields. In 3He-A this gives
rise to the anomalous mass current; non-conservation of the linear momentum
of superflow at T = 0; the paradox of the orbital angular momentum, etc. All
these phenomena are of the same origin as the chiral anomaly in RQFT (Adler
1969; Bell and Jackiw 1969).

As distinct from the pair production from the vacuum, which conserves the
fermionic charge, in the chiral anomaly phenomenon the fermionic charge is nu-
cleated from the vacuum one by one. This is a property of the vacuum of massless
chiral fermions, which leads to a number of anomalies in the effective action. The
advantage of 3He-A in simulating these anomalies is that this system is complete:
not only is the ‘relativistic’ infrared regime known, but also the behavior in the
ultraviolet ‘non-relativistic’ (or ‘trans-Planckian’) range is calculable, at least in
principle, within the BCS scheme. Since there is no need for a cut-off, all subtle
issues of the anomaly can be resolved on physical grounds.

Whenever gapless fermions are present (due to the Fermi point or Fermi
surface), and/or gapless collective modes, the measured quantities depend on
the correct order of imposing limits. It is necessary to resolve which parameters
of the system tend to zero faster in a given physical situation: temperature T ;
external frequency ω; inverse relaxation time 1/τ ; inverse observational time;
inverse volume; the distance ω0 between the energy levels of fermions; or others.
All this is very important for the T → 0 limit, where the relaxation time τ is
formally infinite.

We have already seen such ambiguity in the example discussed in Sec. 10.3.5,
where the density of the normal component of the liquid is different in the limit
T → 0 and at exactly zero temperature. An example of the crucial difference
between the results obtained using different limiting procedures is also provided
by the so-called ‘angular momentum paradox’ in 3He-A, which is also related
to the anomaly: the density of the orbital momentum of the fluid at T = 0
differs by several orders of magnitude, depending on whether the limit is taken
while lefting ωτ → 0 or ωτ → ∞. The same situation occurs for the Kopnin
or spectral-flow force acting on vortices, which comes from the direct analog of
the chiral anomaly in the vortex core (see Chapter 25), and for quantization of
physical parameters in 2+1 systems (Sec. 21.2.1), which is also related to the
anomaly.
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Fig. 18.1. Flow of the vacuum in 1D p-space under external force.

In many cases different regularization schemes lead to essentially different
results. In some cases this does not mean that one scheme is better than another:
each scheme can simply reflect the proper physical situation in its most extreme
manifestation.

18.1 Chiral anomaly

18.1.1 Pumping the charge from the vacuum

The nucleation of the fermionic charge from the vacuum can be visualized in an
example of the 1D energy spectrum E(p) = (p2 − p2

F )/2m (Fig. 18.1). In the
initial vacuum state all the negative energy levels are occupied by quasiparticles.
Now let us apply an external force F > 0 acting on the particles according
to the Newton law ṗ = F . Particles in the momentum space start to move to
the right, they cross the zero-energy level at p = pF and become part of the
positive energy world, i.e. become quasiparticles representing the matter. Thus,
an external field pumps the liquid from the vacuum to the world. The number of
quasiparticles which appear from the vacuum near +pF is ṅ = F/2πh̄ (per unit
time per unit length). On the other hand, the same number of holes appear near
the left Fermi surface at p = −pF , which also represent matter. If we assign the
fermionic charge B = +1 to the fermions near +pF and the charge B = −1 to
the fermions near −pF , we find that the total charge B produced by the external
force per unit time per unit length is Ḃ = 2F/2πh̄.

The same actually occurs in 3D space in the vacuum with Fermi points: under
external fields the energy levels flow from the vacuum through the Fermi point to
the positive energy world. Since the flux of the levels in momentum space is con-
served, the rate of production of quasiparticles can be equally calculated in the
infrared or in the ultraviolet limits. In 3He-A it was calculated in both regimes:
in the infrared regime below the first ‘Planck’ scale, where the chiral quasipar-
ticles obey all the ‘relativistic’ symmetries; and in a more traditional approach
utilizing the so-called quasiclassical method, which is applicable only above the
‘Planck’ scale, i.e. in the highly non-relativistic ultraviolet regime. Of course, the
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Fig. 18.2. Spectrum of massless right-handed and left-handed particles with
electric charges qR and qL, respectively, in a magnetic field B along z; the
thick lines show the occupied negative energy states. Particles are also char-
acterized by some other fermionic charges, BR and BL, which are created
from the vacuum in the process of spectral flow under electric field E ‖ B.

results of both approaches coincide. Here we shall consider the infrared relativis-
tic regime in the vicinity of the Fermi point to make the connection with the
chiral anomaly in RQFT.

18.1.2 Chiral particle in magnetic field

Let us consider the chiral right-handed particle with electric charge qR moving
in magnetic and electric fields which are parallel to each other and are directed
along the axis z. Let us first start with the effect of the magnetic field B = F12ẑ.
The Hamiltonian for the right-handed particle with electric charge qR in the
magnetic field is

H3 = cσ3p3 + cσ1
(

p1 −
qR
2
F12x

2
)

+ cσ2
(

p2 +
qR
2
F12x

1
)

. (18.1)

The motion of the particle in the (x, y) plane is quantized into the Landau levels
shown in Fig. 18.2. The free motion is thus effectively reduced to 1D motion
along the direction of magnetic field B with momentum pz(= p3). Because of
the chirality of the particles, the branch corresponding to the lowest (n = 0)
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Landau level is asymmetric: the energy spectrum E = cpz of our right-handed
particle crosses zero with positive slope (Fig. 18.2). Zero in this energy spectrum
represents the Fermi surface in 1+1 spacetime which is described by the topolog-
ical charge N1 = 1 in eqn (8.3). The branches of the fermionic spectrum which
cross zero energy are usually called the fermion zero modes. The number ν of
fermion zero modes formed in the magnetic field equals the number of states at
the Landau level. It is determined by the total magnetic flux Φ =

∫

dxdyF12 in
terms of the elementary flux Φ0 = 2π/|qR|:

ν =
Φ

Φ0
=

|qRF12|L1L2

2π
, (18.2)

where L1 and L2 are the lengths of the system in the x and y directions. This
is an example of the dimensional reduction of the Fermi point with topological
charge N3 in 3+1 spacetime (defect of co-dimension dc = 3) to the Fermi surface
with topological charge N1 in 1+1 spacetime (defect of co-dimension dc = 1)
in the presence of the topologically non-trivial background, which in our case is
provided by the magnetic flux.

18.1.3 Adler–Bell–Jackiw equation

Let us now apply an electric field E along axis z. According to the Newton law,
ṗ3 = qRE3, the electric field pushes the energy levels marked by the momentum
p3 from the negative side of the massless branch to the positive energy side. This
is the spectral flow of levels generated by the electric field acting on fermion
zero modes. As a result the particles filling the negative energy levels enter the
positive energy world. The whole Dirac sea of fermions on the anomalous branch
moves through the Fermi point transferring the electric charge qR and the other
fermionic charges carried by particles, say BR, from the vacuum into the positive
energy continuum of matter. The rate of production of chiral particles from the
vacuum along one branch of fermion zero modes is (L3ṗ3)/2π, where L3 is the
size of the system along the axis z. Accordingly the production of charge B
per unit time is Ḃ = BR(L3ṗ3)/2π = BRqRL3/2π. This must be multiplied by
the number ν of fermion zero modes in eqn (18.2). Then dividing the result by
the volume V = L1L2L3 of the system one obtains the rate of production of
fermionic charge B from the vacuum per unit time per unit volume:

Ḃ =
1

4π2
BRq

2
RE ·B . (18.3)

If we are interested in the production of electric charge we must insert BR = qR
to obtain Q̇ = (1/4π2)q3RE · B.

The same spectral-flow mechanism of anomalous production of the charge B
can be applied to the left-handed fermions. In the magnetic field the left-handed
fermions give rise to the fermion zero modes with the spectrum E = −cp3, i.e.
they have negative slope. Now the force acting on the particles in the applied
electric field has an opposite effect: it pushes the Dirac sea of left-handed particles
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down, annihilating the corresponding charge of the vacuum. If the left-handed
particles have electric charge qL and also the considered fermionic charge BL,
they contribute to the net production of the B-charge from the vacuum:

Ḃ =
1

4π2

(

BRq
2
R −BLq

2
L

)

E · B . (18.4)

It is non-zero if the mirror symmetry between the left and right worlds is not
exact, i.e. if the fermionic charges of left and right particles are different. This is
actually the equation for the anomalous production of fermionic charge, which
has been derived by Adler (1969) and Bell and Jackiw (1969) for the relativistic
systems.

It can be written in a more general form introducing the chirality Ca of
fermionic species:

Ḃ =
1

16π2
FµνF

∗µν
∑

a

CaBaq
2
a . (18.5)

Here qa is the charge of the a-th fermion with respect to the gauge field Fµν ;
F ∗µν = (1/2)eαβµνFαβ is the dual field strength.

Finally, if the chirality is not a good quantum number, as in 3He-A far from
the Fermi point, it can be written in terms of the p-space topological invariant
in eqn (12.9):

Ḃ =
1

16π2
FµνF ∗

µνtr
(

BQ2N
)

, (18.6)

where B is the matrix of the fermionic charges Ba and Q is the matrix of the
electric charges qa.

In this form, the Adler–Bell–Jackiw anomaly equation depends only on geo-
metric quantities, such as fermionic and topological charges, and thus it remains
the same in all orders of perturbations, see Adler (2005). It can be equally applied
to the Standard Model and to 3He-A. In the first case the corresponding gauge
fields are hypercharge U(1) and weak SU(2)L fields; in the second case the gauge
field and fermionic charges must be expressed in terms of the 3He-A observables.
The effective ‘magnetic’ and ‘electric’ fields in 3He-A are simulated by the space-
and time-dependent l̂-texture. Since the effective gauge field is A = pF l̂, the ef-
fective magnetic and electric fields are B = pF

~∇× l̂ and E = pF∂t̂l.
Let us first apply eqn (18.6) to the Standard Model.

18.2 Anomalous non-conservation of baryonic charge

18.2.1 Baryonic asymmetry of Universe

In the Standard Model (Sec. 12.2) there are two additional, accidental global
symmetries U(1)B and U(1)L whose classically conserved charges are the baryon
number B and lepton number L. Each of the quarks has baryonic chargeB = 1/3
and leptonic charge L = 0 with B−L = 1/3 in eqn (12.6). The leptons (neutrino
and electron) have B = 0 and L = 1 with B − L = −1. The baryon number,
as well as the lepton number, are not fundamental quantities, since they are
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not conserved in unified theories, such as G(224), where leptons and quarks
are combined in the same multiplet in eqn (12.6). At low energy the matrix
elements for the transformation of quarks to leptons become extremely small
and the baryonic charge can be considered as a good quantum number with high
precision.

The visible matter of our present Universe is highly baryon asymmetric: it
consists of baryons and leptons, while the fraction of antibaryons and antileptons
is negligibly small. The ratio of baryons to antibaryons now is a very big number.
What is the origin of this number? This is one side of the puzzle.

Another side of the puzzle shows up when we consider what the baryonic
asymmetry was in the early Universe and find that the Universe was actually
too symmetric. To see this let us first assume that the Universe was baryon
symmetric from the very beginning. Then at early times of the hot Universe
(t≪ 10−5 s), the thermally activated quark–antiquark pairs are as abundant as
photons, i.e. nq + nq̄ ∼ nγ . As the Universe cools down, matter and antimatter
annihilate each other until annihilation is frozen out. This occurs when the anni-
hilation rate Γ becomes less than the expansion rate H of the Universe, so that
nucleons and antinucleons become too rare to find one another. After annihila-
tion is frozen out, one finds that only trace amounts of matter and antimatter
remain, nq + nq̄ ∼ 10−18nγ . This is much smaller than the observed nucleon to
photon ratio η = nq/nγ ∼ 10−10. To prevent this so-called annihilation catastro-
phe the early Universe must be baryon asymmetric, but only with a very slight
excess of baryons over antibaryons: (nq − nq̄)/(nq + nq̄) ∼ η ∼ 10−10. What is
the origin of the small number η?

In modern theories which try to solve these two problems, it is assumed that
originally the Universe was baryon symmetric. The excess of baryons could be
produced in the process of evolution, if the three Sakharov criteria (1967b) are
fulfilled: the Universe must be out of thermal equilibrium; the C (charge conju-
gation) and CP symmetries must be violated; and, of course, the baryon number
is not conserved, otherwise the non-zero B cannot appear from the Universe
which was initially baryon symmetric. One of the most popular mechanisms of
the non-conservation of the baryonic charge is related to the axial anomaly (see
the review papers by Turok (1992) and Trodden (1999)). In electroweak theory
the baryonic charge can be generated from the vacuum due to spectral flow from
negative energy levels in the vacuum to the positive energy levels of matter.

18.2.2 Electroweak baryoproduction

In the Standard Model there are two gauge fields whose ‘electric’ and ‘magnetic’
fields become a source for baryoproduction: the hypercharge field U(1)Y and
the weak field SU(2)L. Let us first consider the effect of the hypercharge field.
According to eqn (18.6) the production rate of baryonic charge B in the presence
of hyperelectric and hypermagnetic fields is

Ḃ(Y) =
1

4π2
tr
(

BY2N
)

BY ·EY =
Ng

4π2
(Y 2

dR+Y 2
uR−Y 2

dL−Y 2
uL) BY ·EY , (18.7)
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where Ng is the number of families (generations) of fermions; YdR, YuR, YdL and
YuL are hypercharges of right and left u and d quarks. Since the hypercharges
of left and right fermions are different (see Fig. 12.1), one obtains the non-zero
value of tr

(

BY2N
)

= 1/2, and thus a non-zero production of baryons by the
hypercharge field

Ḃ(Y) =
Ng

8π2
BY ·EY . (18.8)

The weak field also contributes to the production of the baryonic charge:

Ḃ(T) =
1

4π2
tr
(

BT2
3LN

)

Bb
T ·EbT = − Ng

8π2
Bb

T ·EbT . (18.9)

Thus the total rate of baryon production in the Standard Model takes the
form

Ḃ =
1

4π2

[

tr
(

BY2N
)

BY · EY + tr
(

BT2
3LN

)

Bb
T · EbT

]

(18.10)

=
Ng

8π2

(

BY ·EY − Bb
T ·EbT

)

. (18.11)

The same equation describes the production of the leptonic charge L: one has
L̇ = Ḃ since B − L is the charge related to the gauge group in GUT and thus
is conserved due to anomaly cancellation. This means that production of one
lepton is followed by production of three baryons.

The second term in eqn (18.10), which comes from non-Abelian SU(2)L field,
shows that the nucleation of baryons occurs when the topological charge of the
vacuum changes, say, by the sphaleron (Sec. 26.3.2) or due to de-linking of linked
loops of the cosmic strings (Vachaspati and Field 1994; Garriga and Vachaspati
1995; Barriola 1995). This term is another example of the interplay between
momentum space and real space topologies discussed in Chapter 11. It is the
density of the topological charge in r-space (∝ Bb

T · EbT ) multiplied by the
factor tr

(

BT2
3LN

)

, which is the topological charge in p-space.
The first non-topological term in eqn (18.10) describes the exchange of the

baryonic (and leptonic) charge between the hypermagnetic field and the fermionic
degrees of freedom.

18.3 Analog of baryogenesis in 3He-A

18.3.1 Momentum exchange between superfluid vacuum and quasiparticle
matter

In 3He-A the relevant fermionic charge B, which is important for the dynamics
of superfluid liquid, is the linear momentum. There are three subsystems in
superfluids which carry this charge: the superfluid vacuum, the texture (magnetic
field) and the system of quasiparticles (fermionic matter). According to eqn
(10.15) each of them contributes to the fermionic charges – the momentum of
the liquid. Let us write down eqn (10.15) neglecting PM – the quasiparticle
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Fig. 18.3. Exchange of the fermionic charge in 3He-A (linear momentum) be-
tween three subsystems moving with different velocities. The phenomenon
of chiral anomaly regulates the exchange between l̂-texture and the normal
component – the heat bath of quasiparticles. vs, vn and vL are velocities of
the superfluid vacuum, normal component and texture (or vortex line, hence
the index L) correspondingly.

momentum transverse to l̂ which does not contribute to fermionic charge – since
it is relatively small at low T :

P = PF + P{̂l} +mnvs , PF =
∑

a,p

p(a)fa(p) . (18.12)

The first term PF describes the fermionic charge carried by quasiparticles. Each
quasiparticle of chirality Ca carries the fermionic charge p(a) = −CapF l̂ (see eqn

(10.25)). In addition the momentum P{̂l} is carried by the texture of the l̂-field

which plays the role of magnetic field. Thus the second term, P{̂l}, corresponds to
the fermionic charge stored in the magnetic field. The superfluid vacuum moving
with velocity vs also carries momentum (the third term); this contribution is
absent in the Standard Model: our physical vacuum is not a superfluid liquid.

One of the most important topics in superfluid dynamics is the momentum ex-
change between these three subsystems (Fig. 18.3). The axial anomaly describes

the momentum exchange between two of them: the l̂-texture, which plays the
role of the U(1) gauge field, and the world of quasiparticles, the fermionic matter.
This is what we discuss in this chapter.

The exchange between these two subsystems and the third one – the su-
perfluid vacuum – is described by different physics which we discuss later. Of
particular importance for superfluidity is the momentum exchange between the
moving vacuum and quasiparticles, the third and the first terms in eqn (18.12),
respectively. The force between the superfluid and normal components arising
due to this momentum exchange is usually called the mutual friction force fol-
lowing Gorter and Mellink (1949), though the term friction is not very good
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Fig. 18.4. Production of the fermionic charge in 3He-A (linear momentum) and
in the Standard Model (baryon number) described by the same Adler–Bel-
l–Jackiw equation. Integration of the anomalous momentum production over
the cross-section of the moving continuous vortex-skyrmion gives the loss of
linear momentum and thus the additional force per unit length acting on the
vortex due to spectral flow.

since some or even the dominating part of this force is reversible and thus non-
dissipative. In the early experiments in superfluid 4He the momentum exchange
between vacuum and matter was mediated by a chaotic, turbulent motion of the
vortex tangle which produced the effective dissipative mutual friction between
the normal and superfluid components.

Here we are interested in the momentum exchange between vacuum and
matter mediated by the l̂-texture. The momentum exchange occurs in two steps:
the momentum of the flowing vacuum (the third term) is transferred to the
momentum carried by the texture (the second term), and then from the texture
to the matter (the first term). The process 2 → 1 is due to the analog of chiral
anomaly, while the process 3 → 2 corresponds to the lifting Magnus force acting
on the vorticity of the l̂-texture from the moving vacuum.

There is also another specific momentum exchange 3 → 1 in Fig. 18.3 rep-
resenting the analog of the gravitational Aharonov–Bohm effect, which will dis-
cussed in Chapter 31. It gives rise to the Iordanskii force.

In superfluids and superconductors with curl-free superfluid velocity vs, in-
stead of the texture the singular quantized vortex serves as a mediator in the
two-step process of momentum exchange. The modification of the chiral anomaly
to the case of singular vortices will be discussed in Chapter 25.
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18.3.2 Chiral anomaly in 3He-A

Here we are interested in the process of the momentum transfer from the l̂-texture
to quasiparticles. When a chiral quasiparticle crosses zero energy in its spectral
flow it carries with it its linear momentum – the fermionic charge p(a) = −CapF l̂.
We now apply the axial anomaly equation (18.5) to this process of transformation

of the fermionic charge (momentum) carried by the magnetic field (̂l-texture) to
the fermionic charge carried by chiral particles (normal component of the liquid)
(Fig. 18.4). Substituting the relevant fermionic charge p(a) into eqn (18.5) instead
of B one obtains the rate of momentum production from the texture

ṖF =
1

4π2
tr
(

PQ2N
)

B · E =
1

4π2
B · E

∑

a

p(a)Caq
2
a . (18.13)

Here B = (pF /h̄)∇× l̂ and E = (pF /h̄)∂t l̂ are effective ‘magnetic’ and ‘electric’
fields acting on fermions in 3He-A; Q is the matrix of corresponding ‘electric’
charges in eqn (9.2): qa = −Ca (the ‘electric’ charge is opposite to the chirality
of the 3He-A quasiparticle, see eqn (9.4)). Using this translation to the 3He-A
language one obtains that the momentum production from the texture per unit
time per unit volume is

ṖF = − p3
F

2π2h̄2 l̂
(

∂t l̂ · (∇× l̂)
)

. (18.14)

It is interesting to follow the history of this equation in 3He-A. Volovik and
Mineev (1981) considered the hydrodynamic equations for the superfluid vacuum
in 3He-A at T = 0 as the generalization of eqns (4.7) and (4.9) for the superfluid

dynamics of 4He which included the dynamics of the orbital momentum l̂. They
found that according to these classical non-relativistic hydrodynamic equations
the momentum of the superfluid vacuum P{̂l} + mnvs is not conserved even
at T = 0, when the quasiparticles are absent; and the production of the mo-
mentum is given by the right-hand side of eqn (18.14). They suggested that the
momentum somehow escapes from the inhomogeneous vacuum to the world of
quasiparticles. Later it was found by Combescot and Dombre (1986) that in

the presence of the time-dependent l̂-texture quasiparticles are really nucleated,
with the momentum production rate being described by the same eqn (18.14).
Thus the total momentum of the system (superfluid vacuum and quasiparticles)
has been proved to be conserved. In the same paper by Combescot and Dombre
(1986) [99] it was first found that the quasiparticle states in 3He-A in the pres-

ence of twisted texture of l̂ (i.e. the texture with ∇× l̂ 6= 0) have a strong analogy
with the eigenstates of a massless charged particle in a magnetic field. Then it
became clear (Volovik 1986a) that equation (18.14) can be obtained from the
axial anomaly equation in RQFT. Now we know why it happens: the spectral
flow from the l̂-texture to the ‘matter’ occurs through the Fermi point and thus
it can be described by the physics in the vicinity of the Fermi point, where the
RQFT with chiral fermions necessarily arises and thus the anomalous flow of
momentum can be described in terms of the Adler–Bell–Jackiw equation.
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18.3.3 Spectral-flow force acting on a vortex-skyrmion

From the underlying microscopic theory we know that the total linear momentum
of the liquid is conserved. Equation (18.14) thus implies that in the presence of
a time-dependent texture the momentum is transferred from the texture (the
distorted superfluid vacuum or magnetic field) to the heat bath of quasiparticles
forming the normal component of the liquid (analog of matter). The rate of the

momentum transfer gives an extra force acting on a moving l̂-texture. The typical
continuous texture in 3He-A is the doubly quantized vortex-skyrmion discussed
in Sec. 16.2. The forces acting on moving vortex-skyrmions have been measured
in experiments on rotating 3He-A by Bevan et al. (1997b). So let us find the force
acting on the skyrmion moving with respect to the normal component.

The stationary vortex has non-zero effective ‘magnetic’ field, B = (pF h̄)∇× l̂.
If the vortex moves with velocity vL, then in the frame of the normal component
the l̂-texture acquires the time dependence,

l̂(r, t) = l̂(r − (vL − vn)t) . (18.15)

This time dependence induces the effective ‘electric’ field

E =
1

h̄
∂tA = −pF

h̄
((vL − vn) · ∇)̂l . (18.16)

Since B ·E 6= 0, the motion of the vortex leads to the production of the quasipar-
ticle momenta due to the spectral flow. Integrating eqn (18.14) over the cross-
section of the simplest axisymmetric skyrmion with n1 = 2n2 = 2 in eqn (16.5),
one obtains the momentum production per unit time per unit length and thus
the force acting on unit length of the skyrmion line from the normal component:

Fsf =

∫

d2ρ
p3

F

2π2h̄2 l̂ (((vn−vL) ·∇)̂l ·(∇× l̂)) = −πh̄n1C0ẑ×(vL−vn), (18.17)

where

C0 =
p3

F

3π2h̄3 . (18.18)

The parameter C0 has the following physical meaning: (2πh̄)3n1C0 is the volume
inside the surface in the momentum space swept by Fermi points in the soft core
of the vortex-skyrmion.

The above spectral-flow force in eqn (18.17) is transverse to the relative
motion of the vortex with respect to the heat bath and thus is non-dissipative
(reversible). In this derivation it was assumed that the quasiparticles and their
momenta, created by the spectral flow from the inhomogeneous vacuum, are
finally absorbed by the heat bath of the normal component. The retardation in
the process of absorption and also the viscosity of the normal component lead also
to a dissipative (friction) force between the vortex and the normal component:

Ffr = −γ(vL − vn) , (18.19)

which will be discussed later for the case of singular vortices. Note that there is
no momentum exchange between the vortex and the normal component if they
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move with the same velocity; according to Sec. 5.4 the condition that vn = 0
in the frame of a texture is one of the conditions of the global thermodynamic
equilibrium, when the dissipation is absent.

18.3.4 Topological stability of spectral-flow force. Spectral-flow force from
Novikov–Wess–Zumino action

The same result for the force in eqn (18.17) was obtained in a microscopic theory
by Kopnin (1993). He used the so-called quasiclassical method (see Kopnin’s
book (2001)). This method is applicable at energies well above the first Planck
scale, E ≫ ∆2

0/vF pF , i.e. well outside the ‘relativistic’ domain, where RQFT is
certainly not applicable. This reflects the fact that the spectral flow, the flow
of levels along the anomalous branch of the energy spectrum, which governs
the axial anomaly, does not depend on energy and can be calculated at any
energy scale. In Kopnin’s essentially non-relativistic calculations no notion of
axial anomaly was invoked.

The spectral-flow force (18.17) does not depend on the details of the skyrmion
structure as well. It can be derived not only for the axisymmetric skyrmion in
eqn (16.5) but also for the general continuous vortex texture (Volovik 1992b); the
only input is the topological charge of the vortex n1. This force can be obtained
directly from the topological Novikov–Wess–Zumino type of of action describing
the anomaly (Volovik 1986b, 1993b). In the frame of the heat bath it has the
same form as eqn (6.14) for ferromagnets in Sec. 6.1.5:

SNWZ = − h̄C0

2

∫

d3x dt dτ l̂ · (∂tl̂ × ∂τ l̂) . (18.20)

Here the unit vector l̂ along the orbital momentum of Cooper pairs substitutes
the unit vector m̂ of spin magnetization in ferromagnets, while the role of the
spin momentum M is played by the angular momentum

Lanomalous = − h̄
2
C0 l̂ . (18.21)

For the vortex ‘center of mass’ moving along the trajectory rL(t, τ) the vortex

texture has the form l̂(r, t, τ) = l̂(r− rL(t, τ)), and the action for the rectilinear
vortex of length L becomes

SNWZ = −C0

2

∫

d3x l̂ ·
(

∂ l̂

∂xi
L

× ∂ l̂

∂xj
L

)

∫

dt dτ ∂tx
i
L∂τx

j
L (18.22)

= −πn1C0Leijkẑ
k

∫

dt dτ ∂tx
i
L∂τx

j
L =

π

2
n1C0Leijkẑ

k

∫

dt vi
Lx

j
L . (18.23)

Here we used eqn (16.8) for the mapping of the cross-section of the vortex to the

sphere of unit vector l̂. Variation of the vortex-skyrmion action in eqn (18.23)
over the vortex-skyrmion coordinate xL(t) (with vL = ∂txL) gives the spectral-
flow force acting on the vortex in eqn (18.17): Fsf = −δSNWZ/δxL.
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18.3.5 Dynamics of Fermi points and vortices

The Novikov–Wess–Zumino action (18.23) is the product of two volumes in p-
and r-space (Volovik 1993b):

SNWZ = πh̄
VpVr

(2πh̄)3
. (18.24)

The quantity (2πh̄)3n1C0 represents the volume within the surface in the p-
space spanned by Fermi points. The integral (L/2)eijkẑ

k
∫

dt vi
Lx

j
L represents

the volume inside the surface swept by the vortex line in r-space; it is written for
the rectilinear vortex, but the expression in terms of the volume is valid for any
shape of the vortex line (see Sec. 26.4.2 and eqn (26.12)). This demonstrates the
close connection and similarity between Fermi points in p-space and vortices in
r-space.

The action (18.24) in terms of the volume of the phase space spanned by
Fermi points describes the general dynamics of the Fermi points of co-dimension
dc = 3, which is applicable even far outside the relativistic domain of the effective
RQFT. This may show the route to the possible generalization of RQFT based
on the physics of the Fermi points. Returning to the relativistic domain, one
finds that in this low-energy limit, eqn (18.20) or (18.24) gives the action, whose
variation represents the anomalous current in RQFT (see the book by Volovik
1992a). For, say, the hypermagnetic field this variation is

δSNWZ =
1

2π2
tr
(

Y3N
)

eαβµν

∫

d3x dt Aβ∂µAνδAα . (18.25)

In the Standard Model the prefactor is zero due to anomaly cancellation (see
eqn (12.17)).

18.3.6 Vortex texture as a mediator of momentum exchange. Magnus force

The spectral-flow Kopnin force Fsf is thus robust against any deformation of
the l̂-texture which does not change its asymptote, i.e. the topological charge
of the vortex – its winding number n1. In this respect the spectral-flow force
between the vortex texture and the bath of quasiparticles, which appears when
the texture is moving with respect to the ‘matter’, resembles another force –
the Magnus lifting force. The Magnus force describes the momentum exchange
between the texture and the superfluid vacuum, the second and third terms in
eqn (18.12), see Fig. 18.3. It acts on the vortex or vortex-skyrmion moving with
respect to the superfluid vacuum:

FM = πh̄n1nẑ × (vL − vs(∞)) , (18.26)

where again n is the particle density, the number density of 3He atoms; vs(∞)
is the uniform velocity of the superfluid vacuum far from the vortex. Here we
marked by (∞) the external flow of the superfluid vacuum to distinguish it from
the local circulating superflow around the vortex, but in future this mark will be
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omitted. In conventional notation used in canonical hydrodynamics, the Magnus
force is

FM = ρκẑ× (vL − vliquid) , (18.27)

where ρ is the mass density of the liquid and κ is the circulation of its velocity
around the vortex. In our case ρ = mn and κ = n1κ0, with κ0 = πh̄/m in
superfluid 3He and κ0 = 2πh̄/m in superfluid 4He.

Let us recall that the vortex texture (or quantized vortex in U(1) super-
fluids) serves as mediator (intermediate object) for the momentum exchange
between the superfluid vacuum moving with vs and the fermionic heat bath of
quasiparticles (normal component or ‘matter’) moving with vn. The momentum
is transferred in two steps: first it is transferred from the vacuum to texture
moving with velocity vL. This is described by the Magnus force acting on the
vortex texture from the superfluid vacuum which depends on the relative veloc-
ity vL −vs. Then the momentum is transferred from the texture to the ‘matter’.
With a minus sign this is the spectral-flow force in eqn (18.17) which depends on
the relative velocity vL −vn. In this respect the texture (or vortex) corresponds
to the sphaleron (Sec. 26.3.2) or to the cosmic string in relativistic theories which
also mediate the exchange of fermionic charges between the quantum vacuum
and the matter.

If the other processes are ignored then in the steady state these two forces
acting on the texture, from the vacuum and from the ‘matter’, must compensate
each other: FM + Fsf = 0. From this balance of the two forces one obtains that
the vortex must move with the constant velocity determined by the velocities vs

and vn of the vacuum and ‘matter’ respectively: vL = (nvs − C0vn)/(n − C0).
Note that in the Bose liquid, where the fermionic spectral flow is absent and thus
C0 = 0, this leads to the requirement that the vortex moves with the superfluid
velocity.

However, this is valid only under special conditions. First, the dissipative
friction must be taken into account. It comes in particular from the retardation
of the spectral-flow process. The retardation also modifies the non-dissipative
spectral-flow force as we shall see in the example of the 3He-B vortex in Sec.
25.2. Second, the analogy with gravity shows that there is one more force of
topological origin – the so-called Iordanskii (1964, 1966) force, see Fig. 18.3. It
comes from the gravitational analog of the Aharonov–Bohm effect experienced
by (quasi)particles moving in the presence of the spinning cosmic string and
exists in the Bose liquid too (see Sec. 31.3.4).

18.4 Experimental check of Adler–Bell–Jackiw equation in 3He-A

The spectral-flow force (the Kopnin force) acting on the vortex-skyrmion has
been measured in experiments on vortex dynamics in 3He-A by Bevan et al.
(1997a,b). In such experiments a uniform array of vortices is produced by rotat-
ing the whole cryostat. In equilibrium the vortices and the normal component of
the fluid (heat bath of quasiparticles) rotate together with the cryostat. An elec-
trostatically driven vibrating diaphragm in Fig. 18.5 left produces an oscillating



EXPERIMENTAL CHECK OF ADLER–BELL–JACKIW EQUATION 249

0.85 0.9 0.95 1
0

0.1

0.2

0.3

  
T / Tc

oscillating
diaphragm

electrodes

vortices2
0

0 
µm

d⊥ –1

d||

 

Fig. 18.5. Experimental verification of anomaly equation in 3He-A. Left: A
uniform array of vortices is produced by rotating the whole cryostat, and
oscillatory superflow perpendicular to the rotation axis is produced by a
vibrating diaphragm, while the normal fluid (thermal excitations) is clamped
by viscosity, vn = 0. The velocity vL of the vortex array is determined by
the overall balance of forces acting on the vortices. Right: These vortices
produce additional dissipation proportional to d‖ and coupling between two
orthogonal modes proportional to 1 − d⊥. (After Bevan et al. 1997a).

superflow, which via the Magnus force acting on vortices from the superfluid ve-
locity field vs generates the vortex motion. The normal component of the liquid
remains clamped in the container frame due to the high viscosity of the system
of quasiparticles in 3He. Thus vortices move with respect to both the heat bath
(‘matter’) and the superfluid vacuum. The vortex velocity vL is determined by
the overall balance of forces acting on the vortices. This includes the spectral-
flow force Fsf in eqn (18.17); the Magnus force FM in eqn (18.26); the friction
force Ffr in eqn (18.19); and the Iordanskii force in eqn (31.25):

FIordanskii = πn1h̄nnẑ× (vs − vn) . (18.28)

For the steady state motion of vortices the sum of all forces acting on the vortex
must be zero:

FM + Fsf + FIordanskii + Ffr = 0 , (18.29)

From this force balance equation one has the following equation for vL:

ẑ × (vL − vs) + d⊥ẑ× (vn − vL) + d‖(vn − vL) = 0 , (18.30)

where

d⊥ = 1 − n− C0

ns(T )
, d‖ =

γ

πn1ns(T )
. (18.31)

Measurement of the damping of the diaphragm resonance and of the coupling
between different eigenmodes of vibrations enables both dimensionless parame-
ters, d⊥ and d‖ in eqn (18.31), to be deduced (Fig. 18.5 right). The most im-
portant for us is the parameter d⊥, which gives information on the spectral-flow
parameter C0. The effect of the chiral anomaly is crucial for C0: if there is no
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anomaly then C0 = 0 and d⊥ = nn(T )/ns(T ); if the anomaly is fully realized
the parameter C0 has its maximal value, C0 = p3

F /3π
2h̄3, which coincides with

the particle density of liquid 3He in the normal state, eqn (8.6). The difference
between the particle density of liquid 3He in the normal state C0 and the particle
density of liquid 3He in superfluid 3He-A state n at the same chemical poten-
tial µ is determined by the tiny effect of superfluid correlations on the particle
density and is extremely small: n − C0 ∼ n(∆0/vF pF )2 = n(c⊥/c‖)

2 ∼ 10−6n;
in this case one must have d⊥ ≈ 1 for all practical temperatures, even including
the region close to Tc, where the superfluid density ns(T ) ∼ n(1 − T 2/T 2

c ) is
small. 3He-A experiments, made in the entire temperature range where 3He-A is
stable, gave precisely this value within experimental uncertainty, |1−d⊥| < 0.005
(Bevan et al. 1997b; see also Fig. 18.5).

This means that the chiral anomaly is fully realized in the dynamics of the l̂-
texture and provides an experimental verification of the Adler–Bell–Jackiw axial
anomaly equation (18.5), applied to 3He-A. This supports the idea that baryonic
charge (as well as leptonic charge) can be generated by electroweak gauge fields
through the anomaly.

In the same experiments with the 3He-B vortices the effect analogous to the
axial anomaly is temperature dependent and one has the crossover from the
regime of maximal spectral flow with d⊥ ≈ 1 at high T to the regime of fully
suppressed spectral flow with d⊥ = nn(T )/ns(T ) at low T (see Sec. 25.2.4 and
Fig. 25.1). The reason for this is that eqn (18.5) for the axial anomaly and the
corresponding equation (18.14) for the momentum production are valid only in
the limit of continuous spectrum, i.e. when the distance ω0 between the energy
levels of fermions in the texture is much smaller than the inverse quasiparticle
lifetime: ω0τ ≪ 1. The spectral flow completely disappears in the opposite case
ω0τ ≫ 1, because the spectrum becomes effectively discrete. As a result, the
force acting on a vortex texture differs by several orders of magnitude for the
cases ω0τ ≪ 1 and ω0τ ≫ 1. The parameter ω0τ is regulated by temperature.
This will be discussed in detail in Chapter 25.

In the case of 3He-A the vortices are continuous, the size of the soft core of
the vortex is large and thus the distance ω0 between the quasiparticle levels in
the soft core is extremely small compared to 1/τ . This means that the spectral
flow in 3He-A vortices is maximally possible and the Adler–Bell–Jackiw anomaly
equation is applicable there at all practical temperatures. This was confirmed
experimentally.

Note in conclusion of this section that the spectral flow realized by the moving
vortex can be considered as the exchange of fermionic charge between systems
of different dimension: the 3+1 fermionic system outside the vortex core and
the 1+1 fermions living in the vortex core (Volovik 1993b; Stone 1996; see also
Chapter 25). In RQFT this corresponds to the Callan–Harvey (1985) process
of anomaly cancellation in which also two systems with different dimension are
involved.
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ANOMALOUS CURRENTS

19.1 Helicity in parity-violating systems

Parity violation, the asymmetry between left and right, is one of the fundamental
properties of the quantum vacuum of the Standard Model (see Sec. 12.2). This
effect is strong at high energy on the order of the electroweak scale, but is
almost imperceptible in low-energy condensed matter physics. At this scale the
left and right particles are hybridized and only the left–right symmetric charges
survive: electric charge Q and the charges of the color group SU(3)C . Leggett’s
(1977a) suggestion to observe the macroscopic effect of parity violation using
such a macroscopically coherent atomic system as superfluid 3He-B is still very
far from realization (Vollhardt and Wölfle 1990). On the other hand, an analog of
parity violation exists in superfluid 3He-A alongside related phenomena, such as
the chiral anomaly which we discussed in the previous section and macroscopic
chiral currents. So, if we cannot investigate the macroscopic parity-violating
effects directly we can simulate analogous physics in 3He-A.

Most of the macroscopic parity-violating phenomena are related to helicity:
the energy of the system in which the parity is broken contains the helicity
term λA · (∇ × A), where A is the relevant collective vector field. To have
such terms the parity P must be violated together with all the combinations
containing other discrete symmetries, such as CP, PT, CPT, PU2 (where U2 is
the rotation by π), etc. Since they contain the first-order derivative of the order
parameter, such terms sometimes cause instability of the vacuum toward the
spatially inhomogeneous state, the so-called helical instability. In nematic liquid
crystals, for example, the excess of the chiral molecules of one preferred chirality
leads to the helicity term, λn̂ · (∇× n̂), for the nematic vector (director) field n̂.
This leads to formation of the cholesteric structure, the helix.

The same phenomenon occurs in superfluid 3He-A. The velocity w = vn−vs

of the counterflow plays the role of the difference in chemical potentials between
the left-handed and right-handed quasiparticles (Sec. 10.3.2). By creating the
counterflow in the rotating vessel, one can generate an excess of quasiparticles of
a given chirality and test experimentally the suggestion by Joyce and Shaposh-
nikov (1997) and Giovannini and Shaposhnikov (1998) that it exhibits helical
instability. According to Joyce and Shaposhnikov, the system with an excess of
right-handed electrons is unstable toward formation of the helical hypermagnetic
field BY . Below the electroweak transition, the formed field BY is transformed
to the electromagnetic magnetic field B(≡ BQ). Thus the helical instability can
serve as a source of formation of primordial cosmological magnetic fields (see
also the recent review paper on cosmic magnetic fields by Tornkvist (2000) and



252 ANOMALOUS CURRENTS

Y

  B =  Σ B  N 

3He-A 

Standard Model 

effective magnetic field  B =∇ ×A=pF∇ × l

  P =  Σ p N

+ 

state with excess of 
fermionic charge

vacuum state
hypermagnetic

field

primordial 
magnetic

field

fermionic charge
of particles

fermionic charge
stored in hypermagnetic field BY =∇ ×AY

momentum 
of quasiparticles

momentum stored by l-texture:

helical instability

helical instability

helical instability
a a

aa

a

a

a

B = (1/8π2) BY • AY Σ B  C Y2

P = (1/8π2) B • A Σ P  C q2

a a a a

a a a a

Fig. 19.1. Formation of magnetic field due to helical instability. The fermionic
charge of right-handed particles minus that of left-handed ones is conserved
at the classical level but not if quantum properties of the physical vacuum
are taken into account. This charge can be transferred to the inhomogeneity
of the vacuum via the axial anomaly in the process of helical instability. The
inhomogeneity which absorbs the fermionic charge arises as a hypermagnetic
field configuration in the Standard Model (top) and as the l̂-texture in 3He-A,
which is analogous to the magnetic field (bottom).

references therein). In Sec. 19.3 we show that the mechanism of formation of the
hypermagnetic field in the relativistic plasma of right-handed electrons has a di-
rect parallel with the formation of the helical l̂-texture ina rotating vessel. They
are described by the same effective action, which contains the Chern–Simons
helical term (Fig. 19.1).

19.2 Chern–Simons energy term

19.2.1 Chern–Simons term in Standard Model

Due to the axial anomaly, fermionic charge, say baryonic or leptonic, can be
transferred to the ‘inhomogeneity’ of the vacuum. As a result the topologically
non-trivial vacuum can acquire the fermionic charge. In particular, a monopole
can acquire spin 1/2 due to fermion zero modes (Jackiw and Rebbi 1976a, 1984);
in some theories of strong interactions protons and neutrons emerge as topolog-
ical defects – skyrmions (Skyrme 1961) – whose baryonic charge and spin 1/2
are provided by the rearrangement of the fermionic vacuum in the presence of
the defect (see the recent review by Gisiger and Paranjape 1998).
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In the Standard Model the typical inhomogeneity of the Bose fields, which ab-
sorbs the fermionic charge, is a helix of a magnetic field configuration, say, of hy-
permagnetic field. According to the axial anomaly equation (18.6), the fermionic
charge density B̃ absorbed by the hypermagnetic field is

B̃{AY } =
1

8π2
AY · (∇× AY ) tr

(

B̃Y2N
)

. (19.1)

Let us recall that for the non-interacting relativistic fermions this equations reads

B̃{AY } =
1

8π2
AY · (∇× AY )

∑

a

CaB̃aY
2
a , (19.2)

where again a marks the fermionic species; Ca = ±1 is the chirality of the
fermion; Ya and B̃a are correspondingly the hypercharge of the a-th fermion
and its relevant fermionic charge, whose absorption by the hyperfield is under
discussion.

The fermionic charge which we are interested in here is B̃a = 3Ba + La,
where Ba and La are baryonic and leptonic numbers, i.e. B̃a = +1 for quarks and
leptons and B̃a = −1 for antiquarks and antileptons. Both baryonic and leptonic
numbers are extremely well conserved in our low-energy world at temperatures
below the electroweak phase transition. But above the the electroweak transition
separate conservations of B and L are violated by axial anomaly, while the
combination B − L is conserved (Sec. 12.2). For each quark and lepton in the
Standard Model the charge B̃a = 1; thus the number of chiral fermionic species
in the Standard Model is

∑

a B̃a = 16Ng, where Ng is the number of fermionic
families.

If fermionic species do not interact with each other then the number Na =
∑

p B̃a of the a-th fermionic particles is conserved separately, and one can intro-
duce chemical potential µa for each species. Then the energy functional has the
following term (compare with eqn (3.2)):

−
∑

a

µaNa . (19.3)

However, due to the chiral anomaly the charge B̃a can be distributed and re-
distributed between fermionic particles and the Bose field. As a result the total
fermionic charge Na has two contributions

Na =

∫

d3x

(

nfermion
a +

1

8π2
CaY

2
a AY · (∇× AY )

)

. (19.4)

Here na is the number density of the a-th fermionic particles; the second term is
the fermionic charge stored by the helix in the U(1)Y gauge field in eqn (19.2).
This term gives the following contribution to the energy in eqn (19.3):

FCS{AY } = −
∑

a

µa

∫

d3xB̃a{AY } = − 1

8π2

∑

a

CaµaY
2
a

∫

d3xAY ·(∇×AY ) .

(19.5)
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It describes the interaction of the helicity of hypermagnetic field with the chem-
ical potentials µa of fermions and represents the Chern–Simons energy of the
hypercharge U(1)Y field. It is non-zero because the parity is violated by non-
zero values of chemical potentials µa. The corresponding Lagrangian is not gauge
invariant, but the action is if µa are constant in space and time. The latter is
natural since µa are Lagrange multipliers.

As an example let us consider the unification energy scale, where all the
fermions have the same chemical potential µ, since they can transform to each
other at this scale. From the generating function for the Standard Model in eqn
(12.12) one has

∑

a CaY
2
a = tr

(

Y2N
)

= 2Ng and thus the Chern–Simons energy
of the hypercharge field at high energy becomes

FCS{AY } = −µNg

4π2

∫

d3xAY · (∇× AY ) . (19.6)

When µ = 0 the CP and CPT symmetries of the Standard Model are restored,
and the helicity term becomes forbidden (emergence of the Chern–Simons term
in quantum phase transition at which CPT symmetry is broken due to splitting of
Fermi points in Standard Model is discussed by Klinkhamer and Volovik (2005a);
see also review (Volovik 2007a)).

19.2.2 Chern–Simons energy in 3He-A

Let us now consider the 3He-A counterpart of the Chern–Simons term. It arises in
the l̂-texture in the presence of the homogeneous counterflow w = vn −vs = wẑ

of the normal component with respect to the superfluid vacuum. As is clear,
say, from eqn (10.32), the counterflow orients the l̂-vector along the counterflow,

so that the equilibrium orientations of the l̂-field are l̂0 = ±ẑ. Since l̂ is a unit
vector, its variation δl̂ ⊥ l̂0. In the gauge field analogy, in which the effective
vector potential is A = pF δl̂, this corresponds to the gauge choice Az = 0.

The relevant fermionic charge in 3He-A exhibiting the Abelian anomaly is
the momentum of quasiparticles along l̂0, i.e. p(a) = −CapF l̂0. According to eqn
(19.2), where the fermionic charge B̃a is specified as p(a) and the hypercharge is
substituted by the charge qa = −Ca of quasiparticles, the helicity of the effective
gauge field A = pF δl̂ carries the following linear momentum:

P{A} =
1

8π2
A · (∇× A)

∑

a

Cap
(a)q2a = − p3

F

4π2
l̂0

(

δl̂ · (∇× δl̂)
)

. (19.7)

The total linear momentum density stored both in the heat bath of quasi-
particles (‘matter’) and in the texture (‘hyperfield’) is thus

P =
∑

p,a

p(a)fa(p) + P{δl̂} = PF + P{A} . (19.8)

This is in agreement with eqn (10.15) for the total current. Because of the

Mermin–Ho relation between the superfluid velocity vs and the l̂-texture, the l̂-
texture induces the nmvs contribution to the momentum which is also quadratic
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in δl̂. That is why, instead of the parameter C0 in the anomalous current in eqn
(10.11), one has C0 + n/2 ≈ 3C0/2, and one obtains the factor 1/4π2 in eqn
(19.7) instead of the expected factor 1/6π2.

The kinetic energy of the liquid, which is stored in the counterflow, is

−w · P = −w ·
∑

p

pf(p) − w ·P{A} ≈ −w ·PF − w ·P{A} . (19.9)

The second term on the rhs of this equation is the analog of the Chern–Simons
energy in eqn (19.5), which is now the energy stored in the l̂-field in the presence
of the counterflow:

FCS{δl̂} = − 1

8π2
A·(∇×A)

∑

a

Caµaq
2
a ≡ − p3

F

4π2
(̂l0·w)

(

δl̂ · (∇× δl̂)
)

. (19.10)

This term was earlier calculated in 3He-A using the quasiclassical approach: it is
the fourth term in eqn (7.210) of the book by Vollhardt and Wölfle (1990). The
quasiclassical method is applicable in the energy range ∆0 ≫ T ≫ ∆2

0/vF pF ,
which is well above the first Planck scale EPlanck 1 = ∆2

0/vFpF and thus outside
the relativistic domain. In the present derivation we used RQFT well below
EPlanck 1, where the effect was discussed in terms of the Abelian anomaly. The
results of the two approaches coincide indicating that the phenomenon of the
anomaly is not restricted by the relativistic domain.

19.3 Helical instability and ‘magnetogenesis’ due to chiral fermions

19.3.1 Relevant energy terms

The Chern–Simons term in eqn (19.5) for the Standard Model and eqn (19.10)
for 3He-A is odd under spatial parity transformation, if the chemical potential
and correspondingly the counterflow are fixed. Thus it can have a negative sign
for properly chosen perturbations of the field or texture. This means that one can
have an energy gain from the transformation of the fermionic charge from matter
(quasiparticles) to the U(1) gauge field (̂l-texture). This is the essence of the
Joyce–Shaposhnikov (1997) scenario for the generation of primordial magnetic
field starting from the homogeneous bath of chiral fermions. In 3He-A language,
the excess of the chiral fermions, i.e. the non-zero chemical potential µa for
fermions, corresponds to non-zero counterflow: µa = −CapF w · l̂ (Sec. 10.3).
Thus the Joyce–Shaposhnikov effect corresponds to the collapse of the flow of the
normal component with respect to the superfluid vacuum toward the formation
of l̂-texture – the analog of hypermagnetic field. The momentum carried by the
flowing quasiparticles (the fermionic charge PF) is transferred to the momentum

P{δl̂} carried by the texture. Such a collapse of quasiparticle momentum toward

l̂-texture has been investigated experimentally in the rotating cryostat (see Fig.
19.2 below) by Ruutu et al. (1996b, 1997) and was interpreted as an analog of
magnetogenesis by Volovik (1998b).
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Now let us write all the relevant energy terms in the Standard Model (thermal
energy of fermions, Chern–Simons term and the energy of the hypermagnetic
field) and their counterparts in 3He-A:

W = W (T, µ) + FCS + Fhypermagn , (19.11)

W (T, µ) =
7π2

180

√−gT 4
∑

a

1 −
√−g
12

T 2
∑

a

µ2
a , (19.12)

FCS = − 1

8π2
AY · (∇× AY )

∑

a

CaµaY
2
a , (19.13)

Fhypermagn =
1

96π2
ln

(

E2
Planck

T 2

)√−ggikgmnFimY FknY

∑

a

Y 2
a . (19.14)

Equation (19.14) is the energy of the hypermagnetic field. In the logarithmically
running coupling we left only the contribution of fermions to the polarization of
the vacuum. This is what we need for application to 3He-A, where only fermions
are fundamental. Equation (19.12) is the thermodynamic energy of the gas of the
relativistic quasiparticles at non-zero chemical potential, |µa| ≪ T . This energy
is irrelevant in the Joyce–Shaposhnikov scenario, since it does not contain the
field AY . But in 3He-A it is important because it gives rise to the mass of the
hyperphoton.

19.3.2 Mass of hyperphoton due to excess of chiral fermions (counterflow)

In 3He-A the chemical potential in eqn (19.12) depends on the l̂-vector: µa =

−CapF w · l̂. The unit vector must be expanded up to second order in deviations:

l̂ = l̂0 + δl̂ − (1/2)̂l0(δl̂)
2 . (19.15)

Inserting this into eqn (19.12) and neglecting the terms which do not contain

the δl̂-field, one obtains the energy whose translation to relativistic language
represents the mass term for the U(1)Y gauge field (in 3He-A AY = pF δl̂):

Fmass =
1

4
mnn‖w

2(δl̂ · δl̂) ≡ 1

2

√−ggikAiY AkY M
2
hp , (19.16)

M2
hp =

1

6

T 2

E2
Planck 2

∑

a

Y 2
a µ

2
a , EPlanck 2 = ∆0 . (19.17)

In 3He-A the mass Mhp ∼ Tµ/EPlanck = TpFw/∆0 of the ‘hyperphoton’ is

physical and important for the dynamics of the l̂-vector. It determines the gap
in the spectrum of orbital waves in eqn (9.24) – propagating oscillations of δl̂
(Leggett and Takagi 1978) – which play the role of electromagnetic waves. This
hyperphoton mass appears due to the presence of the counterflow, which orients
l̂ and thus provides the restoring force for oscillations of δl̂.

In principle, a similar mass can exist for the real hyperphoton. If the Standard
Model is an effective theory, the local U(1)Y symmetry arises only in the low-
energy corner and thus is approximate. It can be violated (not spontaneously but
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gradually) by the higher-order terms, which contain the Planck energy cut-off;
in 3He-A it is the second Planck scale EPlanck 2. Equation (19.17) suggests that
the mass of the hyperphoton could arise if both the temperature T and the
chemical potential µa are finite. This mass disappears in the limit of an infinite
cut-off parameter or is negligibly small, if the cut-off is of Planck scale EPlanck.
The 3He-A example thus provides an illustration of how the non-renormalizable
terms are suppressed by the small ratio of the energy to the fundamental energy
scale of the theory (Weinberg 1999) and how the terms of order (T/EPlanck)

2

appear in the effective quantum field theory (Jegerlehner 1998).

19.3.3 Helical instability condition

In 3He-A eqns (19.11–19.14) give the following quadratic form of the energy in

terms of the deviations δl ⊥ l̂0 = ẑ from the state with homogeneous counterflow
along the axis ẑ:

12π2

p2
F vF

W{δl̂} = (∂zδl̂)
2ln

∆0

T
− 3m∗wδl̂ · (ẑ× ∂zδl̂)+ π2(m∗w)2

T 2

∆2
0

(δl̂)2. (19.18)

Since the Chern–Simons term depends only on the z-derivative, in the ‘hyper-
magnetic’ energy only the derivative along z are left. After the rescaling of the
coordinates z̃ = zm∗w/h̄ one obtains

W̃ =
4W{δl̂}
C0m∗w2

= (∂z̃δl̂)
2ln

∆0

T
− 3δl̂ · (ẑ × ∂z̃δl̂) + π2 T

2

∆2
0

(δl̂)2 . (19.19)

In Fourier components δl̂ =
∑

q aqe
iqz̃ (with aq ⊥ ẑ) this reads

W̃ =
∑

q

ai
−qa

j
q

[(

q2ln
∆0

T
+ π2 T

2

∆2
0

)

δij − 3iqeij

]

, (19.20)

where i = 1, 2 and eij is the 2D antisymmetric tensor.
The quadratic form in eqn (19.20) becomes negative and thus the uniform

counterflow becomes unstable toward the nucleation of the l̂-texture if

T 2

∆2
0

ln
∆0

T
<

9

4π2
. (19.21)

If this condition is fulfilled, the instability occurs for any value w of the counter-
flow.

In relativistic theories, where the temperature is always smaller than the
Planck cut-off, the condition corresponding to eqn (19.21) is always fulfilled.
Thus the excess of the fermionic charge is always unstable toward nucleation of
the hypermagnetic field, if the fermions are massless, i.e. above the electroweak
transition. In the scenario of magnetogenesis developed by Joyce and Shaposh-
nikov (1997) and Giovannini and Shaposhnikov (1998), this instability is re-
sponsible for the genesis of the hypermagnetic field well above the electroweak
transition. The role of the subsequent electroweak transition is to transform this
hypermagnetic field to the conventional (electromagnetic U(1)Q) magnetic field
due to the electroweak symmetry breaking.
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Fig. 19.2. Experimental ‘magnetogenesis’ in 3He-A. Left: Initial vortex-free
state in the rotating vessel contains a counterflow, w = vn −vs = Ω× r 6= 0,
since the average velocity of quasiparticles (the normal component) is
vn = Ω × r, while the superfluid vacuum is at rest, vs = 0. The counter-
flow produces what would be a chemical potential in RQFT: µR = pF (̂l0 ·w)
for right-handed particles, and µL = −µR, and quasiparticles have a net
momentum P = mnnw, analogous to the excess of the leptonic charge of
right-handed electrons. Middle: When w reaches the critical value an abrupt
jump of the intensity of the NMR satellite peak from zero signals the appear-
ance of the l̂-texture, playing the part of the magnetic field (after Ruutu et
al. 1996b, 1997). Right: The final result of the helical instability is an array
of vortex-skyrmions (top). Vortices simulating the solid-body rotation of su-
perfluid vacuum with 〈vs〉 = Ω × r reduce the counterflow. This means that
the fermionic charge PF has been transformed into ‘hypermagnetic’ field.

19.3.4 Mass of hyperphoton due to symmetry-violating interaction

In 3He-A the helical instability is suppressed by another mass of the ‘hyperpho-
ton’, which comes from the symmetry-violating spin–orbit interaction −gD(̂l·d̂)2

in eqn (16.1). This gives an additional restoring force acting on l̂, and thus the
additional mass to the gauge field. Using eqn (19.15) one obtains the following
mass term:

−gD(̂l · d̂)2 = −gD (̂l0 · d̂)2 +
1

2
gD(δl̂)2 ≡ constant +

1

2

√−gM2
hpg

ikAiY AkY ,

(19.22)
and the mass of the gauge boson induced by the symmetry-violating interaction
is

Mhp =

√

gDvF

p2
F

= ED ∼ h̄vF

ξD
∼ 10−3∆0 . (19.23)

This is much bigger than the Dirac mass E2
D/EPlanck 2 of a fermionic quasipar-

ticle in the planar state induced by the same spin–orbit interaction, eqn (12.5).
As distinct from the mass of the ‘gauge boson’ in eqn (19.17), the mass in

eqn (19.23) is independent of the counterflow (the chemical potential µa). As a
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result the helical instability occurs only if the counterflow exceeds the critical
threshold wD ∼ ED/pF determined by the spin–orbit mass of the hyperphoton.

19.3.5 Experimental ‘magnetogenesis’ in 3He-A

This threshold has been observed experimentally by Ruutu et al. (1996b, 1997)
(see Fig. 19.2). The initial state in the rotating 3He-A is vortex-free. It contains
a counterflow which simulates the fermionic charge stored in the heat bath of
chiral quasiparticles. When the counterflow in the rotating vessel exceeds wD,
the intensive formation of the l̂-texture by helical instability is detected by NMR
(Fig. 19.2 middle). This, according to our analogy, corresponds to the formation
of the hypermagnetic field which stores the fermionic charge. There is no coun-
terflow in the final state. Thus all the fermionic charge has been transferred from
the fermions to the magnetic field.

The only difference from the Joyce–Shaposhnikov scenario is that the mass of
the ‘hyperphoton’ provides the threshold for the helical instability. In principle,
however, the similar threshold can appear in the Standard Model if there is a
small non-renormalizable mass of the hyperphoton, Mhp, which does not depend
on the chemical potential. In this case the decay of the fermionic charge stops
when the chemical potential of fermions becomes comparable to Mhp. This leads
to another scenario of baryonic asymmetry of the Universe. Suppose that the
early Universe was leptonic asymmetric. Then the excess of the leptonic charge
transforms to the hypermagnetic field until the mass of the hyperphoton prevents
this process. After that the excess of leptonic (and thus baryonic) charge is no
longer washed out. The observed baryonic asymmetry would be achieved if the
initial mass of the hyperhoton at the electroweak temperature, T ∼ Eew, were
Mhp ∼ 10−9Eew.



20

MACROSCOPIC PARITY-VIOLATING EFFECTS

20.1 Mixed axial–gravitational Chern–Simons term

20.1.1 Parity-violating current

The chiral anomaly phenomenon in RQFT can also be mapped to the angular
momentum paradox in 3He-A, which has possibly a common origin with the
anomaly in the spin structure of hadrons as was suggested by Troshin and Tyurin
(1997).

To relate the chiral anomaly and angular momentum paradox in 3He-A let
us consider the parity effects which occur for the system of chiral fermions under
rotation. The macroscopic parity-violating effects in a rotating system with chiral
fermions were first discussed by Vilenkin (1979, 1980a,b) The angular velocity of
rotation Ω defines the preferred direction of spin polarization, and right-handed
fermions move in the direction of their spin. As a result, such fermions develop
a current parallel to Ω. Assuming thermal equilibrium at temperature T and
chemical potential of the fermions µ, one obtains the following correction to the
particle distribution function due to interaction of the particle spin with rotation:

f =

(

1 + exp
cp− µL− (h̄/2)Ω · σ

T

)−1

. (20.1)

Here L is the lepton number, which is L = 1 for the lepton and L = −1 for its
antiparticle. For right-handed fermions the current is given by

j =
1

2
c tr

∑

p,L

σLf = − h̄c
2

tr σ(σ ·Ω)
∑

p

∂Ef =
1

(h̄c)2

(

T 2

12
+

µ2

4π2

)

Ω . (20.2)

The current j is a polar vector, while the angular velocity Ω is an axial vector, and
thus eqn (20.2) represents the macroscopic violation of the reflectional symmetry.
Similarly, left-handed fermions develop a particle current antiparallel to Ω. If the
number of left-handed and right-handed particles coincides, parity is restored and
the odd current disappears.

If particles have charges qa interacting with gauge field A, then the particle
current (20.2) is accompanied by the charge current, and the Lagrangian density
acquires the term corresponding to the coupling of the current with the gauge
field:

L =
1

h̄2c2
Ω ·A

(

T 2

12

∑

a

qaCa +
1

4π2

∑

a

qaCaµ
2
a

)

. (20.3)



MIXED AXIAL–GRAVITATIONAL CHERN–SIMONS TERM 261

20.1.2 Parity-violating action in terms of gravimagnetic field

The above equation contains the ‘material parameter’ – the speed of light c –
and thus it cannot be applied to 3He-A with anisotropic ‘speed of light’. The
necessary step is to represent eqn (20.3) in the covariant form applicable to any
systems of the Fermi point universality class. This is achieved by expressing the
rotation in terms of the metric field. Let us consider 3He-A in the reference frame
rotating with the container. In this frame all the fields including the effective
metric are stationary in a global equilibrium. In this rotating frame the velocity
of the normal component vn = 0, while the superfluid velocity in this frame is
vs = −Ω × r. According to the relation (9.13) between the superfluid velocity
and the effective metric one obtains the mixed components of the metric tensor:
g0i = (Ω × r)i. In general relativity the vector G ≡ g0i represents the vector
potential of the gravimagnetic field, and we obtain the familiar result that the
rotation is equivalent to the gravimagnetic field.

Let us consider the axisymmetric situation when the orbital momentum axis
l̂ is directed along Ω, and thus the superfluid velocity is perpendicular to l̂. Then
the relevant ‘speed of light’ is c⊥, and the effective gravimagnetic field is

Bg = ∇× G = 2
Ω

c2⊥
, Gi ≡ g0i = −vsi

c2⊥
. (20.4)

When the rotation is expressed in terms of the gravimagnetic field eqn (20.3)
becomes

L =
1

h̄2 Bg ·A
(

T 2

24

∑

a

qaCa +
1

8π2

∑

a

qaCaµ
2
a

)

. (20.5)

Now it does not explicitly contain the speeds of light, or any other material
parameters of the system, such as the bare mass m of the 3He atom or the
renormalized mass m∗. Thus it is equally applicable to both systems: the Stan-
dard Model and 3He-A. Equation (20.5) represents the mixed axial–gravitational
Chern–Simons term, since instead of the conventional product B ·A it contains
the product of the magnetic and gravimagnetic fields (Volovik and Vilenkin
2000). Equation (20.5) is not Lorentz invariant, because the existence of a heat
bath of fermions violates Lorentz invariance, since it provides a distinguished
reference frame.

Finally let us write the mixed axial-gravitational Chern–Simons action in
terms of the momentum space topological invariant:

Smixed =

(

T 2

24h̄2 tr (QN ) +
1

8π2h̄2 tr
(

QM2N
)

)
∫

d4xBg · A , (20.6)

where M is the matrix of the chemical potentials µa, and Q is the matrix of
charges qa interacting with the field A. If all the fermions can transform to each
other, the chemical potential becomes the same for all fermions, and the mixed
term is determined by only one topological invariant tr (QN ). In the Standard
Model it is zero because of anomaly cancellation.
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20.2 Orbital angular momentum in 3He-A

Equation (20.5) is linear in the angular velocity Ω, and thus its variation over
Ω represents some angular momentum of the system which does not depend on
the rotation velocity – the spontaneous angular momentum. In the Standard
Model this angular momentum is proportional to the vector potential of the
gauge field: L(T ) − L(T = 0) = −δSmixed/δΩ ∝ A, which at first glance vio-
lates the gauge invariance. However, the total angular momentum, obtained by
integration over the whole space, remains gauge invariant. Let us now proceed
to the quantum liquid where what we found corresponds to the contributions to
the spontaneous angular momentum of the liquid from thermal quasiparticles at
non-zero temperature T and from the non-zero counterflow, which plays the role
of the chemical potential. Let us consider first the temperature correction to the
spontaneous angular momentum. Introducing the gauge field A = pF l̂ and the
proper charges qa = −Ca of the chiral fermions in 3He-A, one obtains

L(T ) − L(T = 0) = −δSmixed

δΩ
= − pFT

2

6h̄2c2⊥
l̂ . (20.7)

Comparing this with eqns (10.29) and (10.42) one obtains that the prefactor can
be expressed in terms of the longitudinal density of the normal component of
the liquid

L(T ) − L(T = 0) = − h̄
2
n0

n‖ l̂ = − h̄
2

m

m∗
nn‖ l̂ . (20.8)

The total value of the angular momentum of 3He-A has been the subject of
a long-standing controversy (for a review see the books by Vollhardt and Wölfle
(1990) and by Volovik (1992a). Different methods for calculating the angular
momentum give results that differ by many orders of magnitude. The result is
also sensitive to the boundary conditions, since the angular momentum in the
liquid is not necessarily a local quantity, and to whether the state is strictly
stationary or has a small but finite frequency. This is often referred to as the
angular momentum paradox. The paradox is related to the axial anomaly induced
by chiral fermions and is now reasonably well understood.

At T = 0 the total angular momentum of the stationary homogeneous liquid
with homogeneous l̂ = ẑ can be found from the following consideration. Accord-
ing to eqn (7.53), Lz − (1/2)N is the generator of the symmetry of the vacuum
state in 3He-A. Applying this to the vacuum state (Lz − N/2)|vac〉 = 0, one
obtains that the angular momentum of a homogeneous vacuum state is

〈vac|Lz |vac〉 =
h̄

2
N , (20.9)

where N is the number of particles in the vacuum. The physical meaning of the
total angular momentum of 3He-A is simple: each Cooper pair carries the angular
momentum h̄ in the direction of the quantization axis l̂ (let us recall that the
Cooper pairs in 3He-A have quantum numbers L = 1, and Lz = 1, where Lz is
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the projection of the orbital angular momentum onto the quantization axis l̂).
This implies that the angular momentum density of the liquid at T = 0 is

L(T = 0) = l̂
h̄

2
n , (20.10)

where n, as before, is the density of 3He atoms. As distinct from the thermal
correction, this vacuum term has no analog in effective field theory and can
be calculated only within the microscopic (high-energy) physics. Adding the
contribution to the momentum from fermionic quasiparticles in eqn (20.8), one
may conclude that at non-zero temperature the spontaneous angular momentum
is

L(T ) = l̂
h̄

2
n0

s‖(T ) , n0
s‖(T ) = n− n0

n‖(T ) . (20.11)

Such a value of the angular momentum density agrees with that obtained by Kita
(1998) in a microscopic theory. This suggests that the non-renormalized value of
the superfluid component density, n0

s‖(T )/2, is the effective number density of
the ‘superfluid’ Cooper pairs which contribute to the angular momentum.

Equations (20.11) and (20.10) are, however, valid only for the static angular
momentum. The dynamical angular momentum is much smaller, and is reduced
by the value of the anomalous angular momentum in eqn (18.21) which comes

from the spectral flow: Ldyn(T = 0) = L(T = 0) − Lanomalous = h̄
2 l̂ (n − C0).

Let us recall that (n − C0)/n ∼ c2⊥/c
2
‖ ∼ 10−6, and thus the reduction is really

substantial. The presence of the anomaly parameter C0 in this almost complete
cancellation of the dynamical angular momentum reflects the same crucial role
of the axial anomaly as in the ‘baryogenesis’ by a moving texture discussed in
Chapter 18. The dynamics of the l̂-vector is accompanied by the spectral flow
which leads to the production of the angular momentum from the vacuum and
to the history dependent total angular momentum of the sample (Volovik 1995c;
Stone and Anduaga 2008).

20.3 Odd current in 3He-A

The parity-violating currents (20.2) could be induced in turbulent cosmic plas-
mas and could play a role in the origin of cosmic magnetic fields (Vilenkin and
Leahy 1982). The corresponding 3He-A effects are less dramatic but may in
principle be observable.

Let us discuss the effect related to the second (temperature-independent)
term in the mixed axial–gravitational Chern–Simons action in eqn (20.5). Ac-
cording to eqn (10.19) the counterpart of the chemical potentials µa of relativistic
chiral fermions is the superfluid–normal counterflow velocity in 3He-A. The rele-
vant counterflow, which does not violate the symmetry and the thermodynamic
equilibrium condition of the system, can be produced by superflow along the
axis of the rotating container. Note that we approach the T → 0 limit in such
a way that the rotating reference frame is still active and determines the local
equilibrium states. In the case of a rotating container this is always valid be-
cause of the interaction of the liquid with the container walls. For the relativistic
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counterpart we must assume that there is still a non-vanishing rotating thermal
bath of fermionic excitations. This corresponds to the case when the condition
ωτ ≪ 1 remains valid, despite the divergence of the collision time τ at T → 0.
This is one of numerous subtle issues related to the anomaly, when the proper
order of imposing limits is crucial.

We also assume that, in spite of rotation of the vessel, there are no vortices
in the container. This is typical of superfluid 3He-B, where the critical velocity
for nucleation of vortices is comparable to the pair-breaking velocity vLandau =
∆0/pF as was measured by Parts et al. (1995b; see Sec. 26.3.3). The critical

velocity in 3He-A, even in the geometry when the l̂-vector is not fixed, can reach
0.5 rad s−1 as was observed by Ruutu et al. (1996b, 1997). For the geometry with

fixed l̂, it should be comparableto the critical velocity in 3He-B. In addition, we
assume that Ωr < c⊥ everywhere in the vessel, i.e. the counterflow velocity vn−vs

is smaller than the pair-breaking critical velocity c⊥ = ∆0/pF (the transverse
‘speed of light’). This means that there is no region in the vessel where particles
can have negative energy (ergoregion). The case when Ωr can exceed c⊥ and
effects caused by the ergoregion in rotating superfluids (Calogeracos and Volovik
1999a) will be discussed below in Chapter 31.

Although the mixed Chern–Simons terms have the same form in relativistic
theories and in 3He-A, their physical manifestations are not identical. In the
relativistic case, the electric current of chiral fermions is obtained by variation
with respect to A, while in the 3He-A case the observable effects are obtained
by variation of the same term but with respect to 3He-A observables. For exam-
ple, the expression for the momentum carried by quasiparticles is obtained by
variation of eqn (20.5) over the counterflow velocity w. This leads to an extra
fermionic charge carried by quasiparticles, which is odd in Ω:

∆PF(Ω) = −m p3
F

π2h̄2c2⊥
l̂ (̂l ·w) (̂l ·Ω) . (20.12)

From eqn (20.12) it follows that there is an Ω odd contribution to the normal
component density at T → 0 in 3He-A:

∆nn‖(Ω) =
∆PF(Ω)

mw‖
=

p3
F

π2h̄2

l̂ · Ω
mc2⊥

. (20.13)

The sensitivity of the normal density to the direction of rotation is the counter-
part of the parity-violating effects in relativistic theories with chiral fermions.
It should be noted though that, since l̂ is an axial vector, the right-hand sides
of (20.12) and (20.13) transform, respectively, as a polar vector and a scalar,
and thus (of course) there is no real parity violation in 3He-A. However, a non-
zero expectation value of the axial vector of the orbital angular momentum
L = (h̄/2)n0

s‖(T )̂l does indicate a spontaneously broken reflectional symmetry,

and an inner observer living in 3He-A would consider this effect as parity violat-
ing.
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The contribution (20.13) to the normal component density can have arbitrary

sign depending on the sense of rotation with respect to l̂. This, however, does
not violate the general rule that the overall normal component density must
be positive: the rotation-dependent momentum ∆PF(Ω) was calculated as a
correction to the rotation-independent current in eqn (10.33). This means that
we used the condition h̄Ω ≪ mw2 ≪ mc2⊥. Under this condition the overall
normal density, given by the sum of (20.13) and (10.34), remains positive.

The ‘parity’ effect in eqn (20.13) is not very small. The rotational contribution
to the normal component density normalized to the density of the 3He atoms
is ∆nn‖/n = 3Ω/mc2⊥, which is ∼10−4 for Ω ∼ 3 rad s−1. This is within the
resolution of the vibrating wire detectors in superfluid 3He-A.

We finally mention a possible application of these results to the supercon-
ducting Sr2RuO4 if they really belong to the chiral superconductors as suggested
by Rice (1998) and Ishida et al. (1998). An advantage of using superconductors
is that the mass current ∆PF in eqn (20.12) is accompanied by the electric cur-
rent (e/m)∆PF, and can be measured directly. An observation in Sr2RuO4 of the
analog of the parity-violating effect that we discussed here (or of the other effects
coming from the induced Chern–Simons terms (Goryo and Ishikawa 1999; Ivanov
2001) would be unquestionable evidence of the chirality of this superconductor.

In RQFT the Chern–Simons-type terms are usually discussed in relation to
possible violation of Lorentz and CPT symmetries (Jackiw 2000; Perez-Victoria
2001). In our case it is the non-zero chemical potential of ‘matter’ which violates
these symmetries. Consideration of the Chern–Simons terms in RQFT (Jackiw
2000; Perez-Victoria 2001) demonstrates that the factor in front of them is am-
biguous within the effective theory. Quantum liquids provide an example of the
finite high-energy system where the ambiguity in the relativistic corner is re-
solved by the underlying ‘trans-Planckian’ microscopic physics (Volovik 2001b).
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QUANTIZATION OF PHYSICAL PARAMETERS

The dimensional reduction of the 3+1 system with Fermi points brings the
anomaly to the (2+1)-dimensional systems with fully gapped fermionic spectrum.
The most pronounced phenomena in these systems are related to the quantiza-
tion of physical parameters, and to the fermionic charges of the topological
objects – skyrmions. Here we consider both these effects. They are determined
by the momentum space topological invariant Ñ3 in eqn (11.1). While its ances-
tor N3 describes topological defects (singularities of the fermionic propagator) in
the 4-momentum space, Ñ3 describes systems without momentum space defects
and it characterizes the global topology of the fermionic propagator in the whole
3-momentum space (px, py, p0). Ñ3 is thus responsible for the global properties
of the fermionic vacuum, and it enters the linear response of the vacuum state
to some special perturbations.

21.1 Spin and statistics of skyrmions in 2+1 systems

21.1.1 Chern–Simons term as Hopf invariant

Let us start with a thin film of 3He-A. If the thickness a of the film is finite, the
transverse motion of fermions – along the normal ẑ to the film – is quantized.
As a result the fermionic propagator G not only is the matrix in the spin and
Bogoliubov–Nambu spin spaces, but also acquires the indices of the transverse
levels. This allows us to obtain different values of the invariant Ñ3 in eqn (11.1)
by varying the thickness of the film. The Chern–Simons action, which is respon-
sible for the spin and statistics of skyrmions in the d̂-field in 3He-A film, is the
following functional of d̂ (Volovik and Yakovenko 1989):

SCS{d̂} = Ñ3
h̄

64π

∫

d2x dt eµνλAµFνλ . (21.1)

Here Aµ is the auxiliary gauge field whose field strength is expressed through

the d̂-vector in the following way:

Fνλ = ∂νAλ − ∂λAν = d̂ ·
(

∂νd̂ × ∂λd̂
)

. (21.2)

The field strength Fνλ is related to the density of the topological invariant in
the coordinate spacetime which describes the skyrmions. The topological charge
of the d̂-skyrmion is (compare with eqn (16.12))

n2{d̂} =
1

4π

∫

d2xF12 =
1

4π

∫

dx dy d̂ ·
(

∂xd̂× ∂yd̂
)

. (21.3)
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Let us recall the simplest anzats for a skyrmion with n2{d̂} = +1:

d̂ = ẑ cosβ(ρ) + ρ̂ sinβ(ρ) , (21.4)

where β(0) = 0 and β(∞) = π.
The Chern–Simons action in eqn (21.1) is the product of the invariants in the

momentum–frequency space (px, py, p0) and in the coordinate spacetime (x, y, t):

SCS{d̂} =
πh̄

2
Ñ3n3{d̂} , (21.5)

where

n3{d̂(x, y, t)} = HHopf =
1

32π2

∫

d2x dt eµνλAµFνλ (21.6)

is the topological invariant – the Hopf invariant – which describes the mapping
S3 → S2. Here S3 is the compactified 2+1 spacetime (we assume that at infinity

the d̂-vector is constant, say d̂(∞) = ẑ, and thus the whole infinity is represented

by a single point), while S2 is the sphere of the unit vector d̂. This is the famous
Hopf map π3(S

2) = Z. The geometrical interpretation of the Hopf number is

the linking number of two world lines d̂(x, y, t) = d̂1 and d̂(x, y, t) = d̂2, each

corresponding to the constant value of d̂. In 3D space (x, y, z) the configurations

described by the Hopf invariant n3{̂l(x, y, z)} (hopfions) have been investigated
in 3He-A experimentally by Ruutu et al. (1994) and theoretically by Makhlin
and Misirpashaev (1995).

21.1.2 Quantum statistics of skyrmions

The quantum statistics of the d̂-skyrmions depends on how the wave func-
tion of the system with a single skyrmion behaves under adiabatic 2π rotation:
Ψ(2π) = Ψ(0)eiθ (Wilczek and Zee 1983). If θ equals an odd number of π, then
the skyrmion must be a fermion; correspondingly if θ equals an even number
of π, it is a boson. Since the phase of the wave function is S/h̄, and only the
Chern–Simons term in the action S is sensitive to the adiabatic 2π rotation, it is
this term in eqn (21.5) which determines the quantum statistics of d̂-skyrmions.

The process of the adiabatic 2π rotation of the d̂-skyrmion with n2{d̂} = +1 in
eqn (21.4) is given by

d̂(ρ, φ, t) = ẑ cosβ(ρ) + sinβ(ρ)
(

ρ̂ cosα(t) + φ̂ sinα(t)
)

, (21.7)

where α(t) slowly changes from 0 to 2π. Substituting this time-dependent field
into the action (21.5), one obtains that the action changes by the value ∆SCS =
πh̄Ñ3/2, i.e. the θ-factor ∆S/h̄ for the skyrmion is determined by the p-space
topology of the vacuum:

θ =
π

2
Ñ3 . (21.8)

Note that our system does not need to be relativistic, that is why eqn (21.9)
is more general than the result based on the index of the Dirac operators in
relativistic theories (Atiyah and Singer 1968, 1971; Atiyah et al. 1976, 1980).
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Fig. 21.1. Integer topological invariant Ñ3 as a function of the film thickness.
Points where Ñ3 changes abruptly are quantum phase transitions at which
the quantum statistics of d̂-skyrmions changes. Curves show the minimum
of the quasiparticle energy spectrum. The spectrum becomes gapless at the
quantum transition. Bottom: In layered materials, a skyrmion is a linear
object consisting of elementary fermionic skyrmions. In a thin film consisting
of 5 atomic layers with the total topological charge Ñ3 = 10, a skyrmion is a
fermion.

Equation (21.9) means that the spin of the d̂-skyrmion with winding number

n2{d̂} = +1 is

s =
h̄θ

2π
=
h̄

4
Ñ3 . (21.9)

In 3He-A films, the invariant Ñ3 is always even because of the spin degeneracy.
That is why the spin of a skyrmion can be either integer or half an odd integer, i.e.
a skyrmion is either the fermion or the boson depending on the thickness a of the
film in Fig. 21.1. Roughly speaking, the invariant Ñ3 is proportional to the num-
ber ntransverse of the occupied transverse levels (see the book by Volovik 1992a).
In the BCS model of the weakly interacting Fermi gas one has Ñ3 = 2ntransverse.
The number of the occupied levels ntransverse is proportional to the thickness



QUANTIZED RESPONSE 269

of the film. When the film grows the quantum transitions occur successively,
at which the momentum space invariant Ñ3 and thus the quantum statistics of
fermions abruptly change.

The change of the quantum statistics can be easily understood in an example
of the layered systems in superconductors or semiconductors. If each layer of
a thin film is characterized by an elementary topological charge Ñ3 = 2, the
d̂-skyrmion in this film can be represented as a chain of elementary skyrmions,
which are fermions (Fig. 21.1 bottom). Depending on the number of layers, the
skyrmion as a whole contains an odd or even number of elementary fermionic
skyrmions and thus is either the fermion or the boson.

As we discussed in Sec. 11.4, the quantum (Lifshitz) transitions between the
states with different Ñ3 occur through the intermediate gapless regimes where
Ñ3 is not well defined. Figure 21.1 shows that the quasiparticle energy spectrum
becomes gapless at the transition. In principle, the intermediate gapless state
between two plateaus can occupy a finite range of thicknesses.

21.2 Quantized response

21.2.1 Quantization of Hall conductivity

The topological invariants of the type in eqn (11.1) are also responsible for quanti-
zation of physical parameters of the systems, such as Hall conductivity (Ishikawa
and Matsuyama 1986, 1987; Matsuyama 1987; Volovik 1988) and spin Hall con-
ductivity (Volovik and Yakovenko 1989; Senthil et al. 1999; Read and Green
2000). Let us start with the (2+1)-dimensional semiconductor, whose valence
band has the non-zero value of the topological invariant Ñ3, i.e. the integration
in eqn (11.1) over the valence band gives Ñ3 6= 0. Then there is the Chern–Simons
term for the real electromagnetic field Aµ (Volovik 1988):

SCS = Ñ3
e2

16πh̄
eµνλ

∫

d2x dt AµFνλ . (21.10)

Variation of this term over Ax gives the current density along x, which is pro-
portional to the transverse electric field:

jx = Ñ3
e2

4πh̄
Ey . (21.11)

The electric current transverse to the applied electric field demonstrates that such
a system exhibits the anomalous Hall effect, i.e. the Hall effect occurs without an
external magnetic field. The Hall conductivity is quantized and this quantization
is determined by the momentum space topological invariant:

σxy = Ñ3
e2

2h
. (21.12)

The conditions for the quantized anomalous Hall effect are:
(i) The presence of the valence band separated by the gap from the conduction

band. Only for the fully gapped system the quantization is exact.
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(ii) This valence band must have the non-trivial momentum space topology,
i.e. Ñ3 6= 0. Let us recall that the non-zero value of Ñ3 means that the time
reversal symmetry is broken (see Sec. 11.2.2). In other words, the system must
have the ferromagnetic moment along the normal to the film.

(iii) Also what has been used in the derivation is that the gauge field can be in-
troduced to the fermionic Lagrangian through the long derivative: pµ → pµ−eAµ.
This implies that gauge invariance is not violated, and this rules out (completely
or partially) from consideration the systems exhibiting superconductivity (or
superfluidity in electrically neutral systems). In superfluid/superconducting sys-
tems quantization is not exact and the spontaneous Hall current is not universal
(Volovik 1988; Furusaki et al. 2001).

(iv) Finally, when the liquid state is considered, it is assumed that the Hall
conductivity is measured in a static limit, i.e. the ω → 0 limit is taken first, and
only after that the wave vector q → 0. The q 6= 0 perturbations violate Galilean
invariance, which prescribes that σxy = 0. This is another example of when the
order of limits is crucial, as was discussed in the introduction to Chapter 18. For
crystalline systems, Galilean invariance is violated by the crystal lattice.

21.2.2 Quantization of spin Hall conductivity

Let us consider again the semiconductor with Ñ3 6= 0, and introduce an ex-
ternal magnetic field H(x, y, t), which interacts with electronic spins only. This
interaction adds the Pauli term 1

2γσ · H to the Hamiltonian in the Theory of
Everything, where γ is the gyromagnetic ratio for the particle spin (or for nu-
clear spin in liquid 3He). As a result the Green function contains the long time
derivative which contains spin:

−i∂t −
1

2
γσ ·H , (21.13)

demonstrating that for the electrically neutral systems the magnetic field is
equivalent to the Ai

0 component of the external SU(2) gauge field, see recent
review by Leurs et al. (2008):

A0 = γH . (21.14)

The corresponding fermionic charge interacting with this non-Abelian gauge field
is the particle spin s = 1/2. Let us now introduce the space components, A1 and
A2, of the SU(2) gauge field. These are auxiliary fields, which are useful for
calculation of the spin current density. As a natural generalization of eqn (21.10)
to the non-Abelian case, one obtains the Chern–Simons action (Deser et al. 1982,
Jackiw 2005), which is induced by the auxiliary field Aµ:

SCS =
Ñ3s

2h̄

16π

∫

d2x dt eµνλ

(

1

3
Aµ · (Aν × Aλ) + Aµ · Fνλ

)

. (21.15)

Here

Fµν = ∂µAν − ∂νAµ − Aµ × Aν (21.16)
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is the field strength of the non-Abelian SU(2) gauge field, and the prefactor is
expressed in terms of the topological charge Ñ3. Derivation of this effective ac-
tion does not require the relativistic invariance. Topological actions are robust
to deformations, and thus are applicable both to relativistic and non-relativistic
systems. That is why, being derived for the system highly deviated from rela-
tivistic, eqn (21.15) retains its relativistic form.

The chiral spin current is obtained as the response of the action to auxiliary
space components Ai of the SU(2) gauge field in the limit Ai → 0 while the
physical field A0 is retained intact:

ji =

(

δSCS

δAi

)

Ai=0

=
Ñ3s

2h̄

4π
eikF0k =

γÑ3

16π
eik

∂H

∂xk
. (21.17)

Equation (21.17) means that the spin conductance is quantized in terms of ele-
mentary quantum h̄/8π:

σs
xy = Ñ3

h̄

16π
. (21.18)

Here Ñ3 is an even number because of spin degeneracy.

21.2.3 Induced Chern–Simons action in other systems

In electrically neutral systems, such as 3He-A film, there is also an analog of the
Hall conductivity, if instead of electric current one considers the mass (or parti-
cle) current. However, in 3He-A the U(1)N symmetry is spontaneously broken,
and thus the condition (iii) in Sec. 21.2.1 is violated. This leads to extra terms
in action, as a result quantization of the Hall conductivity is not exact (Volovik
1988; Furusaki et al. 2001; Roy and Kallin 2008). The same occurs for the spin
Hall conductivity in 3He-A films with one exception. The spin rotational sym-
metry SO(3)S is not completely broken in 3He-A: there is still the symmetry

under spin rotations about axis d̂. Thus, if d̂ is homogeneous, d̂ = ẑ, equation
(21.18) is applicable for longitudinal spins, and the current of the longitudinal

spin (oriented along d̂) is quantized:

jz
i =

Ñ3h̄

16π
eikF

z
0k =

γÑ3

16π
eik

∂Hz

∂xk
. (21.19)

The same can also be applied to the triplet superconductors discussed in Sec.
11.2.1, where Ñ3 = ±2 per atomic layer.

For spin-singlet superconductors (i.e. for the superconductors where the spin
of Cooper pairs is zero, s = 0), the SO(3)S group of spin rotations is not broken;
thus eqn (21.18) is always applicable. In particular, for the spin-singlet dx2−y2 ±
idxy superconductor, the topological invariant is Ñ3 = ±4 per corresponding
atomic layer (Sec. 11.2.3), and eqn (21.18) coincides with eqn (21) of Senthil et
al. (1999).

We considered here the dimensional reduction of the invariant N3 describing
the Fermi points in 3+1 systems to the invariant Ñ3 describing fully gapped
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2+1 fermionic systems. In Sec. 12.3.1 we discussed the Fermi points in 3+1
systems with zero topological invariant N3 which are protected by symmetry.
If the corresponding symmetry is parity P these systems are described by the
symmetry-protected invariants tr(PN ). The dimensional reduction of these in-
variants to the 2+1 systems, tr(PÑ ), leads to quantization of other fermionic
charges of skyrmions, in particular, of the electric charge of a skyrmion. The
corresponding invariants and charges were discussed by Yakovenko (1989). The
symmetry-protected invariants can be apllied if there are several Abelian gauge
fields AI

µ; the corresponding induced Chern–Simons term is

SCS =
∑

IJ

tr
(

QIQJÑ
) 1

16πh̄
eµνλ

∫

d2x dt AI
µF

J
νλ . (21.20)

Here QI is the matrix of the charge I interacting with the gauge field AI
µ. Such

action has been used in the effective theory of the fractional quantum Hall effect
(see e.g. Wen (2000) and references therein).



Part V

Fermions on topological objects
and brane world





22

EDGE STATES AND FERMION ZERO MODES ON SOLITON

The idea that our Universe lives on a brane embedded in higher-dimensional
space (Rubakov and Shaposhnikov 1983; Akama 1982) is popular at the moment
(see the review by Forste 2002). It is the further development of an old idea
of extra compact dimensions introduced by Kaluza (1921) and Klein (1926). In
the new approach the compactification occurs because the low-energy physics
is concentrated within the brane; for example, in a flat 4D brane embedded
in a 5D anti-de Sitter space with a negative cosmological constant (Randall
and Sundrum 1999). Branes can be represented by topological defects, such as
domain walls – membranes – (Rubakov and Shaposhnikov 1983) and cosmic
strings (Abrikosov–Nielsen–Olesen vortices) (Akama 1983). It is supposed that
we live inside the core of such a defect. Our 3+1 spacetime spans the extended
coordinates of the brane, while the other (extra) dimensions are of the order
of the core size. This new twist in the idea of extra dimensions is fashionable
because by accommodatiing the core size one can bring the gravitational Planck
energy scale close to the TeV range. That is why there is hope that the deviations
from the Newton law can become observable at the distance of order 1 mm. At
the moment the Newton law has been tested for distances > 0.2 mm by Hoyle
et al. (2001).

The popular mechanism of why matter is localized on the brane is that the
fermionic matter is represented by fermion zero modes, whose wave function is
concentrated in the core region. Outside the core the fermions are massive and
thus are frozen out at low T . Such an example of topologically induced Kaluza–
Klein compactification of multi-dimensional space is provided by the condensed
matter analogs of branes, namely domain walls and vortices. These topological
defects contain fermion zero modes which can live only within the core of defects.
These fermions form the 2+1 world within the domain wall and the 1+1 world
in the core of the vortex. The modification of these condensed matter branes to
higher dimensions is illuminating. The fermion zero modes in the 3+1 domain
wall separating the 4+1 vacua of quantum liquid with different momentum space
topology have Fermi points (see Sec. 22.2.4). Due to these Fermi points the
chiral fermions, gauge and gravitational fields emerge in the same manner as
was discussed in Sec. 8.2. As distinct from modern relativistic theories (Randall
and Sundrum 1999), this scenario does not require the existence of 4+1 gravity
in the bulk.

Another aspect of the interplay of fermion zero modes and topological de-
fects is related to the drastic change of the fermionic vacuum in the presence
of the topological defect. Because of this the defect itself in some cases acquires
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fermionic charge and half-integer spin; even the quantum statistics of the de-
fect is reversed: it becomes a fermion (Jackiw and Rebbi 1976a, 1984), as we
discussed in Sec. 21.1.2.

22.1 Index theorem for fermion zero modes on soliton

22.1.1 Chiral edge state – 1D Fermi surface

The p-space topology is also instrumental for investigating the response of the
fermionic system to the non-trivial topological background in r-space. Here we
consider the 2+1 system where the non-trivial topological background is provided
by a domain wall (more specifically by a domain line, since a wall in 2D space
is a linear object). We assume that each of the two vacua separated by the wall
is fully gapped. Such vacua are described by the topological charges Ñ3, which
are Ñ3(right) and Ñ3(left) for the vacua on the left and right sides of the wall
respectively. Though the spectrum of quasiparticles is fully gapped outside the
domain wall, it can be gapless inside this topological object; such mid-gap states
in 1+1 systems have been analyzed by Su et al. (1979), see also the review
paper by Heeger et al. (1988). Because of the gap in the bulk material all the
low-temperature physics is determined by the gapless excitations living inside
the topological object.

Inside the domain wall (the domain line) only the linear momentum p‖, which
is along the line, is a good quantum number. The fermion zero modes, by defi-
nition, are the branches of the quasiparticle spectrum Ea(p‖) that as functions
of p‖ cross the zero-energy level. Close to zero energy the spectrum of the a-th
fermion zero mode is linear:

Ea(p‖) = ca(p‖ − pa) . (22.1)

The points pa are zeros of co-dimension dc = 1, and thus belong to the uni-
versality class of Fermi surfaces, described by the momentum space topological
charge N1 in eqn (8.3) for the Green function G−1 = ip0−Ea(p‖). In our case the
N1 invariant coincides with the sign of the slope ca of the fermionic spectrum:
N1a = sign ca.

Let us introduce the algebraic number of the fermion zero modes in the core
of the domain wall defined by the difference between the number of modes with
positive and negative slopes:

ν =
∑

a

N1a =
∑

a

sign ca . (22.2)

We shall see that this total topological charge of fermion zero modes in the wall
is determined by the difference of the topological charges Ñ3 of the vacua on the
two sides of the interface:

ν = Ñ3(right) − Ñ3(left) . (22.3)

This illustrates the topology of dimensional reduction in momentum space: the
momentum space topological invariant Ñ3 of the bulk 2+1 system gives rise
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to the 1+1 fermion zero modes described by the momentum space topological
invariant N1. This relation is similar to the Atiyah-Singer index theorem, which
relates the number of fermion zero modes (actually the difference of the number
of left-handed and right-handed modes) to the topological charge of the gauge
field configuration (Atiyah and Singer 1968, 1971; Atiyah et al. 1976, 1980). In
our consideration this is a topological property which does not depend on the
precise form of the Hamiltonian, and it does not require relativistic invariance.

In systems exhibiting the quantum Hall effect, whose vacuum states are also
described by the invariant Ñ3 (Ishikawa and Matsuyama 1986, 1987; Matsuyama
1987), such fermion zero modes are called chiral edge states (Halperin 1982; Wen
1990a; Stone 1990). For modes on the boundary of the system eqn (22.3) is also
applicable, with Ñ3 = 0 on one side.

22.1.2 Fermi points in combined (p, r) space

As an illustration and also to derive the index theorem let us discuss the fermion
zero modes in the domain wall between the vacua with Ñ3 = ±1: for exam-
ple, the domain wall in a thin film of 3He-A separating domains with l̂ = ẑ

and l̂ = −ẑ. The vacuum states in 2+1 systems with Ñ3 = ±1 have been dis-
cussed in Sec. 11.2.1. Let us introduce the coordinate y along the wall (line),
the coordinate x normal to the line, and the operator Px = −i∂x of the momen-
tum transverse to the wall; the momentum py remains a good quantum number.
Then the Hamiltonian for the fermions in the presence of the wall is given by
the following modification of eqn (11.2):

H = τ̌bgb(p) , g3 =
P2

x + p2
y

2m∗
− µ , g1 =

1

2
(c(x)Px + Pxc(x)) , g2 = c0py .

(22.4)
In 3He-A film the parameter c0 = c⊥. The function c(x) changes sign across the

wall reflecting the change of orientation of l̂ = ±ẑ across the wall. As a result the
topological invariant Ñ3 of the vacuum state also changes from Ñ3(x = +∞) =
+1 to Ñ3(x = −∞) = −1 (Fig. 22.1 top left).

Since the topology of the spectrum of fermion zero modes does not depend
on the details of the function c(x), one may choose any function which reverses
sign across the wall, c(x = ∓∞) = ∓c0: for example,

c(x) = c0 tanh
x

d
, (22.5)

where d is the thickness of the domain wall. Later we shall use this example to
discuss surfaces with infinite red shift: in this example the speed of light c(x)
becomes zero at the center of the wall (at x = 0).

Let us first consider the classical limit, where px and x are considered as
independent coordinates:

Hqc =
p2

x + p2
y − p2

F

2m∗
τ̌3 + pxc(x)τ̌

1 + c0pyτ̌
2 . (22.6)
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Fig. 22.1. Fermion zero modes on domain walls separating 2+1 vacua with
different topological charge Ñ3. The domain wall in chiral p-wave supercon-
ductor separating vacua with Ñ3 = 1 and Ñ3 = −1 (top left) gives rise to
two fermion zero modes (bottom left), or four if the spin degrees of freedom
are taken into account. The domain wall in chiral d-wave superconductor
separating vacua with Ñ3 = 2 and Ñ3 = −2 (top right) gives rise to four
fermion zero modes (bottom right), or eight for two spin components. The
asymmetry of the energy spectrum leads to the net momentum carried by
occupied negative energy levels and thus to net mass and/or electric current
in the y direction inside the domain wall discussed by Ho et al. (1984) for
3He-A texture.

In the combined 3D space (x, px, py) the classical Hamiltonian contains two Fermi
points, where |g| = 0: at (xa, pxa, pya) = (0,±pF , 0). These two points are de-
scribed by the non-zero topological invariant N3 = ±1 in eqn (8.13) where now
the integral is over the 2D surface surrounding the Fermi point at (xa, pxa, pya).
This again illustrates the universality of the manifolds of zeros of co-dimension
dc = 3 – the Fermi points. The non-zero value of the invariant N3 for the clas-
sical Hamiltonian gives rise to the fermion zero mode in the exact quantum
mechanical spectrum.

22.1.3 Spectral asymmetry index

In the exact quantum mechanical problem in eqn (22.4) there is only one con-
served quantum number, namely the momentum projection py ≡ p‖ along the
wall. We are interested in fermion zero modes and we want to know how many
branches Ea(py), if any, cross the zero-energy level. The algebraic sum ν of the



INDEX THEOREM FOR FERMION ZERO MODES ON SOLITON 279

branches of the gapless fermions is defined by the index of the spectral asymme-
try ν(py) of the Bogoliubov operator H in eqn (22.4). This integer-valued index
gives the difference between the numbers of positive and negative eigenvalues
Ea(py) of H at given momentum py; if the index ν(py) abruptly changes by
unity at some pya this means that at this pya one of the energy levels Ea(py)
crosses zero energy. The spectral asymmetry index ν(py) can be expressed in
terms of the Green function, G−1 = ip0 −H:

ν(py) = Tr

∫

dp0

2πi
G∂p0

G−1 (22.7)

= Tr

∫

dp0

2π
G = −Tr

∫

dp0

2π

H
p2
0 + H2

= −1

2

∑

n

signEn(py) . (22.8)

Here Tr means the summation over all the states with given py. The algebraic
sum of branches crossing zero as functions of py is

ν = ν(py = +∞) − ν(py = −∞) . (22.9)

Note the apparent relation of ν(py) in eqn (22.7) to the momentum space invari-
ant N1 in eqn (8.3) which is responsible for the topological stability of the Fermi
surface. Indeed, according to eqn (22.2), the index ν in eqn (22.9) is the number
of Fermi surfaces in the 1D momentum space py.

22.1.4 Index theorem

Now let us relate the index ν in eqn (22.9) for the exact Hamiltonian H to the
topological invariant N3 of the Fermi points in the quasiclassical Hamiltonian
Hqc. Since the core size d is of order of the coherence length d ∼ ξ = h̄/m∗c0
and therefore is much larger than the wavelength p−1

F of the excitations, one
may use the gradient expansion for the Green function. The gradient expansion
is a procedure in which the exact Green function G(p0, py,−i∂x, x) = (ip0 −
H)−1 is expanded in terms of the Green function in the quasiclassical limit
Gqc(p0, py, px, x) = (ip0 −Hqc)

−1:

G(p0, py,−i∂x, x) = Gqc(p0, py, px, x)

+
i

2
Gqc(∂px

G−1
qc G∂xG−1

qc Gqc − ∂xG−1
qc Gqc∂px

G−1
qc Gqc) + . . . (22.10)

Substituting this expansion into the spectral asymmetry index in eqn (22.7) one
obtains

ν(py) =
1

24π2
ejkltr

∫

dV Gqc∂jG−1
qc Gqc∂kG−1

qc Gqc∂lG−1
qc . (22.11)

Here tr means trace only for matrix indices, and dV = dp0dpxdx. This equation is
well-defined only if the Green function has no singularities, which is fulfilled if the
Fermi point in the quasiclassical Hamiltonian is not in the region of integration.
For that it is necessary that py 6= pya.
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Fig. 22.2. The derivation of the index theorem for fermion zero modes on
domain walls separating 2+1 vacua with different topological charge Ñ3.
Left: The spectral asymmetry index ν(py) of the fermionic levels can be
represented in terms of the 3D integral over (x, p0, px) at given py (thick
horizontal lines; axes p0 and px are not shown). The difference of the in-
tegrals, ν(py > 0) − ν(py < 0), represents the integral around the Fermi
points in 4D space (x, py , p0, px) which equals the topological charge N3 of
the Fermi points. Right: The same charge N3 can be expressed in terms
of the difference of two 3D integrals over (p0, px, py) at given x (thick ver-
tical lines; axes p0 and px are not shown). Each of the integrals repre-
sents the topological charge Ñ3 of the 2+1 vacuum state of domains out-
side the wall. As a result one obtains the index theorem for the number
of fermion zero modes in terms of the topological charges of two vacua:
ν = ν(py > 0) − ν(py < 0) = Ñ3(x > 0) − Ñ3(x < 0).

Now the index theorem, eqn (22.3), which relates the number of fermion zero
modes living within the domain wall to the topological charges of vacua on both
sides of the interface comes from the following chain of equations

ν = ν(py = +∞) − ν(py = −∞) (22.12)

=

(

∫

py=+∞

dV −
∫

py=−∞

dV

)

(

Gqc(p0, x, px)∂G−1
qc (p0, x, px)

)3
(22.13)

= N3

=

(∫

x=+∞

dV −
∫

x=−∞

dV

)

(

Gqc(p0, px, py)∂G−1
qc (p0, px, py)

)3
(22.14)

= Ñ3(x = +∞) − Ñ3(x = −∞) . (22.15)

In eqns (22.13) and (22.14) the abbreviation
(

Gqc∂G−1
qc

)3
stands for the 3-form

in eqn (22.11). Integration regions in these two equations are different: in eqn
(22.13) dV = dp0dpxdx (Fig. 22.2 left) and in eqn (22.14) dV = dp0dpxdpy

(Fig. 22.2 right), but both surround Fermi points in the 4D combined space
(p0, x, px, py), and thus the integrals are equal to the total charge N3 of the
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Fermi points. As a result the the spectral asymmetry index in eqn (22.12) is
determined by the momentum space topology of the 2+1 vacua in the bulk, at
x = ±∞, in eqn (22.15).

This proof can be applied to any kind of domain wall (zero modes at kinks
in bilayer graphene were discussed by Martin et al. (2008)). We shall see in the
following Chapter 23 that the same kind of index theorem exists for fermion
zero modes living in the core of vortices, whose spectrum was first calculated by
Caroli et al. (1964) in microscopic theory.

22.1.5 Spectrum of fermion zero modes

From the index theorem (22.3) it follows that within the interface separating

vacua with opposite orientations of the l̂-vector in Sec. 22.1.2 (Fig. 22.1 top left)
there must be ν = 2 (or −2) gapless branches. Let us now calculate the spectrum
of these two fermion zero modes explicitly, i.e. let us find the phenomenological
parameters ca and pa in eqn (22.1). The parameters ca represent the ‘speeds of
light’ of the 1+1 low-energy fermions; their signs represent the ‘helicity’ of the
fermions; the shift of the zero from the origin pa = eaAy introduces the vector
potential Ay of the effective gauge field; and ea = ±1 corresponds to the electric
charge of the fermions. We shall use the quasiclassical approximation, which is
valid if the size of the domain wall, d ∼ ξ, is much larger than the characteristic
wavelength λ ∼ p−1

F of quasiparticles. The same approximation will be used for
the calculation of the fermion zero modes in vortices in Chapter 23.

The lowest-energy states are concentrated in the vicinity of the Fermi points
characterizing the classical energy spectrum in eqn (22.6), pxa = qapF , pya = 0,
where qa = ±1 is another fermionic charge. Near each of the two points one can
expand the x-component of momentum

P ≈ qapF − i∂x , (22.16)

using the transformation of the wave function χ(x) → χ(x) exp(iqapFx). Leaving
only the first-order term in i∂x and taking into account that m∗c0 ≪ pF , one
obtains the Hamiltonian in the vicinity of each of the two points:

Ha = −iqa
pF

m∗
τ̌3∂x + qapF c(x)τ̌

1 + c0py τ̌
2 . (22.17)

To find the fermion zero modes let us consider first the case when py is just
at its Fermi point value, i.e. at py = 0:

Ha(py = 0, px = ±pF ) = qapF

(

−i 1

m∗
τ̌3∂x + c(x)τ̌1

)

. (22.18)

This Hamiltonian is supersymmetric since (i) there is an operator anticommuting
with H, i.e. Hτ2 = −τ2H; and (ii) the potential c(x) has a different sign at
x → ±∞. Thus at py = 0 each of the two Hamiltonians in eqn (22.18) must
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contain an eigenstate with exactly zero energy. These two eigenstates have the
form

χa(py = 0, x) = eiqapF x

(

1
−i

)

exp

(

−
∫ x

dx′c(x′)

)

. (22.19)

These wave functions are normalizable just because c(x) has a different sign at
x→ ±∞.

Now we can consider the case of non-zero py. When py is small the third term
in eqn (22.17) can be considered as a perturbation and its average over the wave
function in eqn (22.19) gives the energy levels in terms of py. For both charges
qa one obtains

Ea(py) = −c0py sign(c(∞) − c(−∞)) . (22.20)

These are two anomalous branches of 1+1 fermions living in the domain wall.
Their energy spectrum crosses zero energy as a function of the momentum py ≡
p‖, in the considered case at py = 0 (Fig. 22.1 bottom left). For the given structure
of the wall the energy spectrum appears to be doubly degenerate. Close to the
crossing point these fermions are similar to relativistic chiral (left- or right-
moving) fermions.

22.1.6 Current inside the domain wall

In general, the domain walls separating vacua with opposite orientations of the
l̂-vector are current carrying (see e.g. the discussion in Volovik and Gor‘kov 1985)
This can be viewed in an example of 3He-A where according to eqn (10.8) there

is a mass (or particle) current proportional to ∇ × l̂. This automatically leads
to the mass current in the y direction inside the wall separating vacua with
l̂ = +ẑ and l̂ = −ẑ, since ∇ × l̂ = −2ŷδ(x). A particular contribution to this
edge current is provided by fermion zero modes due to their spectral asymmetry
as was discussed by Ho et al. (1984) for 3He-A texture. The occupied negative
energy levels in Fig. 22.1 left bottom are not symmetric with respect to the parity
transformation py → −py, that is why they carry momentum and thus the mass
current in superfluids and the electric current in superconductors along the y
direction.

The edge currents exist in most of the domain walls separating vacua with
different Ñ3. The currents are forbidden by time reversal symmetry T and by
parity. In our case T is violated by non-zero value of Ñ3, while the proper parity
is violated for the general orientation of the domain wall with respect to crystal
axes.

22.1.7 Edge states in d-wave superconductor with broken T

Let us consider another example illustrating the topological rule in eqn (22.3),
namely fermion zero modes within the domain wall in a d-wave superconductor
with broken time reversal symmetry T discussed in Sec. 11.2.3. The supercon-
ducting state with broken T is fully gapped, and thus the gapless fermions can
live only within the brane. Since the wall separates domains with topological
charges Ñ3 = −2 and Ñ3 = +2 per spin (Fig. 22.1 top right), from the index
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theorem in eqn (22.3) it follows that the index ν = 4 (or −4), i.e. there must be
four branches of fermion zero modes per spin per layer which cross zero energy
as a function of p‖.

Let us find these modes explicitly. The relevant Bogoliubov–Nambu Hamil-
tonian is given by eqn (11.7). Since the topological structure of fermion zero
modes does not depend on the detailed structure of the order parameter within
the wall, we shall choose the ansatz for the wall with dxy(x) changing sign, while
dx2−y2 is constant (Fig. 22.1 top right):

H =
P2 + p2

y − p2
F

2m∗
τ̌3 +

py

2
{P , dxy(x)}τ̌1 + (P2 − p2

y)dx2−y2 τ̌2 , P = −i∂x .

(22.21)
The (quasi)classical limit of this Hamiltonian,

Hqc =
p2

x + p2
y − p2

F

2m∗
τ̌3 + pypxdxy(x)τ̌1 + (p2

x − p2
y)dx2−y2 τ̌2 , (22.22)

has four Fermi points in (x, px, py) space situated at x = 0, |pxa| = |pya| =
pF /

√
2. Using the transformation of the wave function χ(x) → χ(x) exp(ipxax)

we can expand the momentum P in the vicinity of these points, P = ±pF /
√

2−
i∂x, and eqn (22.21) acquires the following form:

Ha = −ipxa

m∗
τ̌3∂x + pxapyadxy(x)τ̌1 + c(py − pya)τ̌2sign(pya) , c =

√
2pFdx2−y2 .

(22.23)
This is similar to eqn (22.18) and thus the same procedure can be applied as
in Sec. 22.1.5 to find the energy spectrum. It gives four branches of the energy
spectrum in Fig. 22.1 bottom right:

Ea(py) = ca(py − pya)sign(dxy(∞) − dxy(−∞)) , ca =
√

2pFdx2−y2 , (22.24)

which cross zero as a function of py ≡ p‖. As distinct from eqn (22.20) the

crossing points are now split: pya = eaAy, where ea = ±1 and Ay = pF /
√

2 play
the role of the electric charge and the vector potential of effective electromagnetic
field respectively.

22.2 3+1 world of fermion zero modes

The dimensional reduction discussed in Sec. 22.1 can be generalized to higher
dimensions. We shall start from a quantum liquid in 5+1 spacetime and obtain
a 3+1 world with Fermi points and thus with all their attributes at low energy:
chiral relativistic fermions, gauge fields and gravity. The dimensional reduction
from 5+1 to 3+1 can be made in two steps, as in the case of the reduction from
3+1 to 1+1. First we consider a thin film in 5D space, which effectively reduces
the space dimension to 4, and then consider the domain wall in this space.
Fermions living within this wall form the effective 3+1 world. An alternative
way from 5+1 to 3+1, which gives similar results, is to obtain the 3+1 world
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of fermion zero modes living in the core of a vortex. In relativistic theories the
latter approach was developed by Akama (1983). However, in both cases it is
not necessary to start with the relativistic theory in the original 5+1 spacetime.
The only input is the momentum space topology of vacua on both sides of the
interface, due to which RQFT emergently arises in the world of the fermion zero
modes living within the brane.

22.2.1 Fermi points of co-dimension 5

In 5+1 spacetime a new topologically stable manifold of zeros in the quasiparticle
energy spectrum can exist: zeros of co-dimension dc = 5. Let us recall that co-
dimension is the dimension of p-space minus the dimension of the manifold of
zeros in the energy spectrum. In 5D momentum space the zeros of co-dimension
dc = 5 are points. The relativistic example of the propagator with topologically
non-trivial zeros of co-dimension dc = 5 is provided by G−1 = ip0−H, where the
Hamiltonian in 5D space is H =

∑5
n=1 Γnpn, and Γ1−5 are 4× 4 Dirac matrices

satisfying the Clifford algebra {Γa,Γb} = 2δab. We can choose these matrices as
Γ1 = τ3σ1, Γ2 = τ3σ2, Γ3 = τ3σ3, Γ4 = τ1, Γ5 = τ2:

H5 = τ3σipi + τ1p4 + τ2p5 , i = 1, 2, 3, H2 = E2 = p2 . (22.25)

In this example the Fermi point with dc = 5 is at p = 0. The topological stability
of this point is provided by the integer-valued topological invariant

N5 = C5tr

∫

σ

dSµνλαβ G∂pµ
G−1G∂pν

G−1G∂pλ
G−1G∂pα

G−1G∂pβ
G−1 . (22.26)

The integral here is over the 5D surface in 6D space pµ = (p0, p1−5) around
the point (p0 = 0,p = 0); the prefactor C5 is a normalization factor, so that
N5 = +1 for the particles obeying eqn (22.25). As in the case of 3+1 spacetime,
if the vacuum has a Fermi point with N5 = +1, then in the vicinity of this Fermi
point, after rescaling and rotations, the Hamiltonian acquires the relativistic form
of eqn (22.25). In other words, it is the topological invariant N5 which gives rise
to the low-energy chiral relativistic fermions in 5+1 spacetime.

22.2.2 Chiral 5+1 particle in magnetic field

Let us first consider the dimensional reduction produced by a magnetic field. We
know that the motion of particles in the plane perpendicular to the magnetic field
is quantized into the Landau levels. The free motion is thus effectively reduced to
the rest dimensions, where the particles – fermion zero modes – are again chiral,
but are described by the reduced topological invariant. Let us consider particles
with charge q in the magnetic field F45 = ∂A5/∂x

4 − ∂A4/∂x
5 = constant. The

Hamiltonian in this field becomes

H5 = τ3σipi + τ1
(

p4 −
q

2
F45x

5
)

+ τ2
(

p5 +
q

2
F45x

4
)

. (22.27)

After Landau quantization one obtains the fermion zero mode – the massless
branch on the first Landau level with the ‘isospin’ projection τ3 = sign F45,
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H3 = σipi sign (qF45) , i = 1, 2, 3 . (22.28)

These modes represent chiral particles in 3 + 1 spacetime, whose spectrum con-
tains fermion zero modes of co-dimension dc = 3. Their chirality depends on
the direction of the magnetic field.

Thus the magnetic field reduces the Fermi point with dc = 5 in 5 + 1
momentum–energy space with topological charge N5 to the Fermi point of co-
dimension dc = 3 with charge N3 in 3 + 1 momentum–energy space. Simultane-
ously the dimension of the effective coordinate space in the low-energy corner,
i.e. at energies E2 ≪ |F45|, is reduced from 5 to 3. However, there is still the
degeneracy of the fermion zero modes with respect to the position of orbits in the
magnetic field. As a result the total number of fermion zero modes is determined
by the number of flux quanta ν = Φ/Φ0, where Φ =

∫

dx4dx5F45.

22.2.3 Higher-dimensional anomaly

Adding magnetic field F12 in another two directions one obtains a further di-
mensional reduction and 1 + 1 fermions in the lowest Landau level in this field.
The energy of 1+1 fermions is H1 = (sign F45)(sign F12)pz . The Fermi point at
pz = 0 is the 1D Fermi surface – the manifold of zeros of co-dimension dc = 1. If
now an electric field is introduced along the remaining space direction, E3 = F03,
the chiral anomaly phenomenon arises – the chiral particles are produced from
the vacuum due to spectral flow. The number of chiral particles produced per
unit time and unit volume is proportional to the force qF03 acting on the 1+1
mode, and to the number of fermion zero modes |qF12L1L2/2π| · |qF45L4L5/2π|,
which comes from the degeneracy of the levels in magnetic fields F45 and F12

(see eqn (18.2)). As a result one obtains the (5+1)-dimensional version of the
Adler–Bell–Jackiw equation for the particle production due to the chiral anomaly

ṅ = N5
q3

(2π)3
F03F45F12 = N5

q3

720(2π)3
eαβγµνρFαβFγµFνρ , (22.29)

where N5 is the integer-valued momentum space topological invariant for the
Fermi point in 5+1 dimensions in eqn (22.26). Finally, in the general case of sev-
eral fermionic species with electric charges qa and some other fermionic charges
Ba, the production of charge B per unit time per unit volume is given by

Ḃ =
1

720(2π)3
tr
(

BQ3Ñ5

)

eαβγµνρFαβFγµFνρ , (22.30)

where Ñ5 is the matrix of the topological invariant analogous to eqn (12.9) for
3+1 systems.

22.2.4 Quasiparticle world within domain wall in 4+1 film

Let us now discuss the alternative way of compactification. We start with a thin
film of a quantum liquid in 5D space. If the motion normal to the film is quan-
tized, there remains only the 4D momentum space along the film (p1, p2, p3, p4).
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The gapless quasiparticle spectrum becomes fully gapped in the film because
of the transverse quantization. In the simplest case of one transverse level the
Hamiltonian (22.25) becomes

H = MΓ5 +

4
∑

n=1

Γipn = Mτ2 + τ3σipi + τ1p4 , i = 1, 2, 3 . (22.31)

The vacuum of the fully gapped quantum liquid is characterized by non-trivial
momentum space topology described by the invariant Ñ5 – an analog of Ñ3. It
can be obtained by dimensional reduction from the invariant N5 in eqn (22.26)
of the 5+1 system (analog of N3):

Ñ5 = C5tr

∫

dSµνλαβ G∂pµ
G−1G∂pν

G−1G∂pλ
G−1G∂pα

G−1G∂pβ
G−1 . (22.32)

Here the integral is over the whole 4+1 momentum–frequency space.
Now we introduce the 3+1 domain wall (brane), which separates two do-

mains, each with fully gapped fermions. Then everything can be obtained from
the case of the quantum liquid in 2+1 spacetime just by adding the number 2
to all dimensions involved. In particular, the difference Ñ5(right) − Ñ5(left) of
invariants on both sides of the brane (the analog of Ñ3(right) − Ñ3(left)) gives
rise to the 3+1 fermion zero modes within the domain wall. These fermion zero
modes are described by the momentum space topological invariant N3 (the ana-
log of N1) and thus have Fermi points – fermion zero modes of co-dimension
dc = 3. In the same manner as in eqns (22.2) and (22.3) which relate the num-
ber of fermion zero modes to the topological invariants in bulk 2+1 domains,
the total topological charge of Fermi points within the domain wall is expressed
through the difference of the topological invariants in bulk 4+1 domains:

N3 = Ñ5(right) − Ñ5(left) . (22.33)

Close to the a-th Fermi point the fermion zero modes represent 3+1 chiral
fermions, whose propagator has the general form expressed in terms of the tetrad

field in eqn (8.18). The quantities e
µ(a)
b and p

(a)
µ , which enter the fermionic spec-

trum, are dynamical variables. These are the low-energy collective bosonic modes
which play the part of effective gravitational and gauge fields. The source of such
emergent phenomena is the non-zero value of Ñ5 of vacuua in bulk. Thus, the
brane separating the 4+1 vacua with different Ñ5 gives rise to the Fermi point
universality class of quantum vacua, whose properties are dictated by momen-
tum space topology. In principle, all the ingredients of the Standard Model can be
obtained within the brane as emergent phenomena without postulating gravity
and RQFT in the original 4+1 spacetime.

In a similar manner the gauge and gravity fields can arise as collective modes
on the boundary of the 4+1 system exhibiting the quantum Hall effect as dis-
cussed by Zhang and Hu (2001). Both systems have similar topology. In the
Zhang–Hu model the non-trivial topology is provided by the external field, while



3+1 WORLD OF FERMION ZERO MODES 287

in our case it is provided by the non-zero topological charge Ñ5 of the vacua
in the bulk. The difference is the same as in the 2+1 systems, where the QHE
occurs in the external magnetic field, while the anomalous QHE is provided by
the nontrivial topological invariant Ñ3 of the vacuum.

However, as we know, the non-trivial topology alone does not guarantee that
the effective gravitational field will obey the Einstein equations: the proper
(maybe discrete) symmetry and the proper relations between different Planck
scales in the underlying fermionic system are required. The energy scale which
provides the natural ultraviolet cut-off must be much smaller than the energy
scale at which Lorentz invariance is violated. We hope that within this univer-
sality class one can obtain such the required hierarchy of Planck scales.



23

FERMION ZERO MODES ON VORTICES

23.1 Anomalous branch of chiral fermions

23.1.1 Minigap in energy spectrum

We shall start with the simplest axisymmetric vortex in a conventional isotropic
superconductor, whose scalar order parameter asymptote is given by eqn (14.16).
The spectrum of the low-energy bound states in the core of the vortex with wind-
ing number n1 = ±1 was obtained in microscopic theory by Caroli et al. (1964).
The quantum numbers which characterize the energy spectrum of fermionic ex-
citations living on the line are the linear and angular momenta along the string,
pz and Lz. In the case of a vortex line the angular momentum must be modified,
since the correct symmetry of the vacuum in the presence of the vortex is deter-
mined by the combination of rotation and global gauge transformation, whose
generator Q is given by eqn (14.19): Q = Lz − n1

2 N, where for quasiparticles the
generator N = τ̌3. Caroli et al. (1964) found that the energy spectrum of the
bound states with lowest energy has the following form:

E(Q, pz) = −n1ω0(pz)Q . (23.1)

This spectrum is two-fold degenerate due to spin degrees of freedom; the gen-
eralized angular momentum Q of the fermions in the core was found to be a
half-odd integer, Q = n + 1/2 (Fig. 23.1 top right). The level spacing ω0(pz)
is small compared to the energy gap of the quasiparticles outside the core,
ω0(pz) ∼ ∆2

0/vF pF ≪ ∆0, but is nowhere zero. Its value at pz = 0 is called
the minigap, because ω0(0)/2 is the minimal energy of quasiparticles in the core,
corresponding to Q = ±1/2.

Strictly speaking, the spectrum in the Caroli–de Gennes–Matricon equation
(23.1) does not contain fermion zero modes. However, since the interlevel spacing
is small, in many physical cases, say when temperature T ≫ ω0, the discreteness
of the quantum number Q can be ignored and in the quasiclassical approxima-
tion one can consider Q as continuous. Then from eqn (23.1) it follows that
the spectrum as a function of continuous parameter Q contains an anomalous
branch, which crosses zero energy at Q = 0 (Fig. 23.1 top right). The point
Q = 0 represents the Fermi surface – the manifold of co-dimension dc = 1 –
in the 1D space of the angular momentum Q. The fermions in this 1D ‘Fermi
liquid’ are chiral: positive energy fermions have a definite sign of the generalized
angular momentum Q. These fermion zero modes exist only in the quasiclassical
approximation, and we call them the pseudo-zero modes.
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E (pz , Q) E (pz , Q)

E (Q , pz=0)

E (Q , pz=0) E (Q , pz=0)

E(pz) = –cpz for d quarks

E(pz) =  cpz  for u quarks

E(pz) = –cpz
E(pz) =  cpz

Quarks  in cosmic strings

 

Quasiparticles in 3He-B n1=1 vortex

 

Quasiparticles in 3He-A  n1=1 vortex 

Electrons in n1=1 vortex

in s-wave superconductors

Q

E(Q)  =  – Qω0 (pz)
ω0 = ∆2/ EF  ‹‹ ∆

pz pz

pz pz pz

Q Q

E(Q)  = – Qω0 E(Q)  = – Qω0 

Asymmetric branches:

Levels with exactly zero energy at  Q= 0

Fig. 23.1. Bound states of fermions on cosmic strings and vortices. In super-
conductors and Fermi superfluids the spectrum of bound states contains
pseudo-zero modes – anomalous branches which as functions of the discrete
quantum number Q cross the zero-energy level. The true fermion zero modes
whose spectrum crosses zero energy as a function of pz exist in the core of
cosmic strings and 3He-B vortices. The 3He-A vortex with n1 = 1 contains
the branch with exactly zero energy for all pz.

We shall see that for arbitrary winding number n1, the number of fermion
pseudo-zero modes, i.e. the number of branches crossing zero energy as a func-
tion of Q, equals −2n1 (Volovik 1993a). This is similar to the index theorem for
fermion zero modes in domain walls (Chapter 22) and in cosmic strings in RQFT
in Fig. 15.1 (Jackiw and Rossi 1981; see also Davis et al. (1997) and references
therein). The main difference is that in strings and domain walls the spectrum
of relativistic fermions crosses zero energy as a function of the linear momentum
p‖(= pz) (Fig. 23.1 top left), and the index theorem discriminates between left-
moving and right-moving fermions. In condensed matter vortices the spectrum
crosses zero energy as a function of the generalized angular momentum Q, and
the index theorem discriminates between clockwise and counterclockwise rotat-
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ing fermions: in quasiclassical approximation the quantity ω0 in the Caroli–de
Gennes–Matricon equation is the angular velocity.

23.1.2 Integer vs half-odd integer angular momentum of fermion zero modes

The topological properties of the spectrum E(Q) and E(pz) of fermion zero
modes in the vortex core and string core are universal and do not depend on
the detailed structure of the core. Both modes belong to the universality class
of Fermi surface – the manifold of co-dimension dc = 1 either in momentum
pz-space and or in angular momentum Q-space. ) If we proceed to non-s-wave
superfluid or superconducting states, we find that the situation does not change
so long as the quantum number Q is considered as continuous.

However, at a discrete level of description one finds the following observation:
in some systems (such as n1 = 1 vortex in s-wave superconductors) the quantum
number Q is half-odd integer, while in others it is integer. In the latter vortices
there is an anomalous fermion zero mode: at Q = 0 the quasiparticle energy in
the Caroli–de Gennes–Matricon equation (23.1) is exactly zero for any pz (Fig.
23.1 bottom right). Such anomalous, highly degenerate zero-energy bound states
were first calculated in a microscopic theory by Kopnin and Salomaa (1991) for
the n1 = ±1 vortex in 3He-A. These fermion zero modes are zeros of co-dimension
dc = 0 and thus are topologically unstable. That is why such a degeneracy can be
lifted off if it is not protected by symmetry: for example, in 3He-B vortices in Fig.
23.1 bottom left two anomalous branches corresponding to two spin projections
split leaving the zero-energy state at pz = 0 only. As a result one obtains the
same situation as in cosmic strings in Fig. 23.1 top left, i.e. with the spectrum
of fermion zero modes crossing zero as a function of pz.

The difference between the two types of fermionic spectrum, with half-odd
integer and integer Q, becomes important at low temperature T < ω0. We con-
sider here representatives of these two types of vortices: the traditional n1 = ±1
vortex in an s-wave superconductor (Fig. 23.1 top right) and the simplest form

of the n1 = ±1 vortex in 3He-A with l̂ directed along the vortex axis (Fig. 23.1
bottom right). Their order parameters are

Ψ(r) = ∆0(ρ)e
in1φ ,

∮

dx · vs = n1πh̄/m , (23.2)

eµ i = ∆0(ρ)e
in1φẑµ (x̂i + iŷi) ,

∮

dx · vs = n1πh̄/m , (23.3)

where z, ρ, φ are the coordinates of the cylindrical system with the z axis along
the vortex line; and ∆0(ρ) is the profile of the order parameter amplitude in the
vortex core with ∆0(ρ = 0) = 0. Actually the core structure of the vortex is
more complicated, and there are even some components which are non-zero at
ρ = 0 (see the review by Salomaa and Volovik 1987). But since the structure of
the spectrum of the fermion zero modes does not depend on such details as the
profile of the order parameter in the core, we do not consider this complication.
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23.1.3 Bogoliubov–Nambu Hamiltonian for fermions in the core

Let us consider first 2+1 superconductors and superfluids – thin films of 3He or
superconductors in layered systems. In such systems the motion along z is quan-
tized, and thus there is no dependence of the energy spectrum on the momentum
pz. Also in both systems the energy spectrum is fully gapped when the vortex
is absent, and the vacua of homogeneous 2+1 systems are characterized by the
momentum space invariant Ñ3. It is given by eqn (11.1) in general, or by eqn
(11.6) in the simplest case described by the 2 × 2 Hamiltonian. The invariant
Ñ3 = 0 for the 2+1 superfluid/superconductor with s-wave pairing; Ñ3 = 1 per
spin per transverse level for the 3He-A film; Ñ3 = 1 per spin per crystal layer of
Sr2RuO4 superconductor if it is really a chiral superconductor; and Ñ3 = 2 per
spin per layer for d-wave high-temperature superconductors, if for some reason
time reversal symmetry T is broken there and the order parameter component
dxy 6= 0.

In the 2D systems the vortex is a point defect. Since the topological consider-
ation is robust to the deformation of the order parameter, we choose the simplest
one – axisymmetric in real and momentum space. For each of the two spin com-
ponents, the Bogoliubov–Nambu Hamiltonian for quasiparticles in the presence
of a point vortex with winding number n1 in the vacuum with topological charge
Ñ3 can be written as

H = τ̌bgb(p, r) =







M(p) ∆0(ρ)e
in1φ

(

px+ipy

pF

)Ñ3

∆0(ρ)e
−in1φ

(

px−ipy

pF

)Ñ3

−M(p)






.

(23.4)
Here, as before, M(p) = (p2

x + p2
y − p2

F )/2m∗ ≈ vF (p− pF ).
Introducing the angle θ in momentum (px, py) space, eqn (23.4) can be rewrit-

ten in the form

H =







M(p) ∆0(ρ)
(

p
pF

)Ñ3

ei(n1φ+Ñ3θ)

∆0(ρ)
(

p
pF

)Ñ3

e−i(n1φ+Ñ3θ) −M(p)






. (23.5)

This form emphasizes the interplay between real space and momentum space
topologies: non-trivial momentum space topology of the ground state (vacuum)
enters the off-diagonal terms – the order parameter – in the same way as the
topologically non-trivial background – the vortex. This is more pronounced if
one takes into account that near the vortex axis ∆0(ρ) ∝ ∆0(∞)(ρ/ξ)n1 . The
difference between space and momentum dependence is in the diagonal elements
M(p). We shall discuss how the real space, momentum space and combined space
topology determine and influence the fermion zero modes in the vortex core. We
shall find that in the quasiclassical description the topology of fermion zero modes
is completely determined by the real space topological charge n1. However, the
fine structure of the fermion zero modes, i.e. the two types of the fermion zero
modes, with integer and half-odd integer Q, are determined by the combined real
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space and momentum space topology. These two classes have different parity
(see below)

W = (−1)n1+N3 , (23.6)

which is constructed from the topological charges in real and momentum spaces
(Volovik 1999b).

23.1.4 Fermi points of co-dimension 3 in vortex core

Since outside the core the fermionic spectrum is fully gapped, fermion zero modes
are the only low-energy fermions in the discussed 2+1 systems. To understand
the origin of fermion zero modes, we start with the classical description of the
fermionic spectrum, in which the commutators between coordinates (x, y) and
momenta (px, py) are neglected, and all four variables can be considered as in-
dependent coordinates of the combined 4D space (x, y, px, py). This is justified
since the characteristic size ξ of the vortex core is much larger than the wave-
length λ = 2π/pF of a quasiparticle: ξpF ∼ vF pF /∆0 ≫ 1 and the quasiclassical
approximation makes sense. The quasiparticle energy spectrum in this classical
limit is given by E2(x, y, px, py) = |g(r,p)|2 = M2(p) + ∆2

0(ρ), where it is taken
into account that p is concentrated in the vicinity of pF . This energy spectrum
is zero when simultaneously p2

x + p2
y = p2

F (so that M(p) = 0) and x = y = 0
(so that ∆0(ρ) = 0) (Fig. 23.2 left). This is a line of zeros in the combined 4D
space and thus a manifold of co-dimension dc = 3. So we must find out what is
the topological charge N3 of this manifold.

It is easy to check that this charge is solely determined by the vortex wind-
ing number: N3 = n1 for each spin projection, irrespective of the value of the
momentum space charge Ñ3 of the vacuum state. Let us surround an element of
the line by the closed 2D surface σ (which is depicted as a closed contour in Fig.
23.2). Then the image σ̃ of this surface in the space of the Hamiltonian matrix is
the sphere of unit vector ĝ = g/|g| in eqn (23.4). Thus σ encloses a topological
defect, a ĝ-hedgehog. The winding number of this hedgehog is N3 = n1. Thus
each point on the circumference of zeros is described by the same topological
invariant N3, eqn (8.15), as the topologically non-trivial Fermi point describing
the chiral particles. Figure 23.2 shows the case of a vortex with winding number
n1 = 1, for which hedgehogs have unit topological charge: N3 = 1. Thus in the
classical description the fermion zero modes on vortices are zeros of co-dimension
dc = 3 in the combined (p, r) space.

23.1.5 Andreev reflection and Fermi point in the core

To make the situation clearer let us remove one of the four ‘coordinates’, which
is not relevant for the quasiclassical description of bound states. We shall exploit
the fact that the characteristic size ξ of the vortex core is much larger than
the wavelength of quasiparticle ∼ p−1

F . Due to this the classical trajectories
of quasiparticles propagating through the core are almost straight lines. Such
trajectories are characterized by the direction of the quasiparticle momentum
p and the impact parameter b (Fig. 23.3 left). If the core is axisymmetric, the
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line of Fermi points

E=0
or hedgehogs in g-field



σ

p
x

p
y

x,y

σ
~g(p,r)^

g.g =1^ ^

Fig. 23.2. In the core of the vortex with winding number n1 the classical en-
ergy of a quasiparticle E(x, y, px, py) is zero on a closed line in 4D space
(x, y, px, py). Each point on this line is described by the topological invariant
N3 = n1 for each spin projection. The 2D surface σ surrounding the element
of the line is mapped to the 2D surface σ̃ in the space of the matrix H – the
sphere of unit vector ĝ = g/|g|. This is shown for the vortex with n1 = 1,
in which the singularity in the Hamiltonian represents the line of hedgehogs
with N3 = 1.

quasiparticle spectrum does not depend on the direction of the momentum, and
we choose p along the y axis. Then the impact parameter b coincides with the
coordinate x of the quasiparticle, and one has M(p) ≈ vF (py − pF ). Thus px

drops out of the Hamiltonian, and the classical spectrum E2(py, b, y) = v2
F (py −

pF )2 + ∆2
0(ρ) with ρ =

√

b2 + y2 is determined in the momentum–coordinate
continuum (py, b, y).

During the motion of the quasiparticle in the vortex environment its energy
is conserved. If the quasiparticle energy E is less than the maximum value of the
gap, ∆2

0(∞), the quasiparticle moves back and forth along the trajectory in the
potential well formed by the vortex core, being reflected at points y = ±y0, where
E = ∆0(

√

b2 + y2
0) (Fig. 23.3 right). The main property of such a reflection

is that the momentum of a quasiparticle remains the same, py ≈ pF , while
its velocity vy = dE/dpy = v2

F (py − pF )/E changes sign after reflection. In
condensed matter physics this is called an Andreev reflection. The Caroli–de
Gennes–Matricon bound states are obtained by quantization of this periodic
motion of a quasiparticle (see Sec. 23.2 below).

One can check that the function g(b, y, py) has a hedgehog at the point py =
pF , b = 0, y = 0 with the topological charge N3 = n1. Thus we have a Fermi
point of co-dimension dc = 3 in a mixed space (b, y, py), which is the counterpart
of a Fermi point in momentum space (px, py, pz) describing a chiral particle.
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              of quasiparticle
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v
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Fig. 23.3. Classical motion of quasiparticles in the (x, y) plane of the vor-
tex core. Left: In the classical description the quasiparticle trajectories are
straight lines. Right: Bound states of quasiparticles in the vortex core cor-
respond to periodic motion along the straight lines with Andreev reflection
from the walls of the potential well formed by the vortex core. After an An-
dreev reflection the momentum p of the quasiparticle did not change while
its velocity v changed sign.

23.1.6 From Fermi point to fermion zero mode

Let us demonstrate how the quantization leads to dimensional reduction from
the classical fermion zero modes of co-dimension dc = 3 to the pseudo-zero modes
of co-dimension dc = 1 in Q space.

The first step to quantization is to take into account that the momentum
py and the ‘momentum’ y do not commute. But this is just what happens with
the chiral particles in a magnetic field, where the components of the generalized
moment, px − By and py, do not commute. Thus we arrive at the problem
of a chiral particle in a magnetic field, with the effective magnetic field being
parallel to the b axis. From this problem (see Secs 18.1.2 and 22.2.2) we know
that the magnetic field realizes dimensional reduction: the Fermi point of co-
dimension dc = 3 described by the invariant N3 gives rise to the Fermi point
of co-dimension dc = 1 described by the invariant N1 representing 1D Fermi
surfaces in pz space. Since the role of the momentum pz is played by the impact
parameter b, the fermion zero mode with dc = 1 is the branch of the energy
spectrum Ea(b) = κab, which as a function of the coordinate b crosses zero.

The impact parameter b can be expressed in terms of the angular momentum,
b = Lz/pF . Since in the quasiclassical approximation the momentum Lz coincides
with the quantum number Q, one obtains that close to the crossing point the
spectrum of the a-th fermion zero mode must be Ea(Q) = ωaQ. Thus from the
general topological arguments we obtained the form of the spectrum of fermion
zero modes, which is the continuous limit of the Caroli–de Gennes–Matricon
equation (23.1). In principle, the crossing point of the energy spectrum can be
shifted from the origin, and the anomalous branch has the following general form:

Ea(Q) = ωa(Q−Qa) . (23.7)

The algebraic number of such branches is N1 = N3 = n1 for each spin projection.
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Thus the effective theory of fermion pseudo-zero modes is characterized by
two sets of phenomenological parameters: slopes ωa (effective speeds of light in
the limit of continuous Q or minigaps in the case of discrete Q) and shifts of
zeros Qa (effective electromagnetic field). Let us now calculate the parameter ωa

for the simplest axisymmetric vortices with n1 = ±1.

23.2 Fermion zero modes in quasiclassical description

23.2.1 Hamiltonian in terms of quasiclassical trajectories

Let us consider the quasiclassical quantization of the Andreev bound states whose
classical motion is shown in Fig. 23.3. The low-energy trajectories through the
vortex core are characterized by the direction θ of the trajectory (of the quasi-
particle momentum p) and the impact parameter b (Fig. 23.3). The magnitude
of p is close to pF , and thus for each θ the momentum p is close to the value

p = pF (x̂ cos θ + ŷ sin θ) ; (23.8)

its group velocity velocity is close to vF = p/m∗; and the Bogoliubov–Nambu
Hamiltonian is

H =

(

M(px, py) ∆0(ρ)ei(n1φ+Ñ3θ)

∆0(ρ)e
−i(n1φ+Ñ3θ) −M(px, py)

)

. (23.9)

Substituting χ → eip·rχ and p → p − i∇, and expanding in small ∇, one
obtains the quasiclassical Hamiltonian for the fixed trajectory (p, b):

Hp,b = −iτ̌3vF ·∇+∆0(ρ)
(

τ̌1 cos(Ñ3θ + n1φ) − τ̌2 sin(Ñ3θ + n1φ)
)

. (23.10)

Since the coordinates ρ and φ are related by the equation ρ sin(φ − θ) = b, the
only argument is the coordinate along the trajectory s = ρ cos(φ − θ) and thus
the Hamiltonian in eqn (23.10) has the form

Hp,b = −ivF τ̌
3∂s + τ̌1∆0(ρ) cos

(

n1φ̃+ (n1 + Ñ3)θ
)

− τ̌2∆0(ρ) sin
(

n1φ̃+ (n1 + Ñ3)θ
)

, (23.11)

where φ̃ = φ− θ and ρ are expressed in terms of the coordinate s as

φ̃ = φ− θ , tan φ̃ =
b

s
, ρ =

√

b2 + s2 . (23.12)

The dependence of the Hamiltonian on the direction θ of the trajectory can
be removed by the following transformation:

χ = ei(n1+Ñ3)τ̌
3θ/2χ̃ , (23.13)

H̃p,b = e−i(n1+Ñ3)τ̌
3θ/2Hei(n1+Ñ3)τ̌

3θ/2

= −ivF τ̌
3∂s + ∆0(

√

s2 + b2)
(

τ̌1 cosn1φ̃− τ̌2 sinn1φ̃
)

. (23.14)

The Hamiltonian in eqn (23.14) does not depend on the angle θ and on the
topological charge Ñ3 and thus is the same for s-wave, p-wave and other pairing
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states. The dependence on Ñ3 enters only through the boundary condition for
the wave function, which according to eqn (23.13) is

χ̃(θ + 2π) = (−1)n1+Ñ3χ̃(θ) . (23.15)

With respect to this boundary condition, there are two classes of systems: with

odd and even n1 + Ñ3. The parity W = (−1)n1+Ñ3 in eqn (23.6) is thus instru-
mental for the fermionic spectrum in the vortex core.

23.2.2 Quasiclassical low-energy states on anomalous branch

In the quasiclassical approximation the quasiparticle state with the lowest energy
corresponds to a trajectory which crosses the center of the vortex, i.e. with the
impact parameter b = 0. Along this trajectory one has sin φ̃ = 0 and cos φ̃ =
sign s. So eqn (23.14) becomes

H̃b=0,p = −ivF τ̌
3∂s + τ̌1∆0(|s|)sign s . (23.16)

This Hamiltonian is supersymmetric since (i) there is an operator anticommut-
ing with H, i.e. Hτ2 = −τ2H; and (ii) the potential U(s) = ∆0(|s|)sign s has
opposite signs at s → ±∞. We have already discussed such a supersymmetric
Hamiltonian for fermion zero modes in eqn (22.18). Supersymmetry dictates that
the Hamiltonian contains an eigenstate with exactly zero energy. Let us write
the corresponding eigenfunction including all the transformations made before:

χθ,b=0(s) = eipF sei(n1+Ñ3)τ̌
3θ/2

(

1
−i

)

χ0(s) , (23.17)

χ0(s) = exp

(

−
∫ s

ds′
∆0(|s′|)
vF

sign s′
)

. (23.18)

Now we turn to the non-zero but small impact parameter b ≪ ξ, when the
third term in eqn (23.14) can be considered as a perturbation. Its average over
the zero-order wave function in eqn (23.17) gives the energy levels in terms of b
and thus in terms of the continuous angular momentum Q ≈ pF b:

E(Q, θ) = −n1Qω0 , ω0 =

∫∞

0 dρ∆0(ρ)
pF ρ exp

(

− 2
vF

∫ ρ

0 dρ
′∆0(ρ

′)
)

∫∞

0 dρ exp
(

− 2
vF

∫ ρ

0 dρ
′∆0(ρ′)

) . (23.19)

Thus we obtain the parameter ω0 in eqn (23.1) – the minigap – which originally
was calculated using a microscopic theory by Caroli et al. (1964). From eqn
(23.19) it follows that the minigap is of order ω0 ∼ ∆0/(pFR) where R is the
core radius. For singular vortices R is on the order of the coherence length
ξ = vF /∆0 and the minigap is ω0 ∼ ∆2

0/(pF vF ) ≪ ∆0. In a large temperature
region ∆2

0/(pF vF ) ≪ T ≪ ∆0 these bound fermionic states can be considered
as fermion zero modes whose energy as a function of the continuous parameter
Q crosses zero energy.
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Below we shall extend this derivation to discrete values of Q, and also to the
case of non-axisymmetric vortices, where the quasiclassical energy depends also
on the direction of the trajectory (on the angle θ in Fig. 23.3 left). In the latter
case the microscopic theory becomes extremely complicated, but the effective
theory of the low-energy fermion zero modes works well. This effective theory of
fermionic quasiparticles living in the vortex core is determined by the universality
class again originating from the topology.

23.2.3 Quantum low-energy states and W -parity

In exact quantum mechanical problems the generalized angular momentum Q
has discrete eigenvalues. Following Stone (1996) and Kopnin and Volovik (1997),
to find the quantized energy levels we must take into account that the two degrees
of freedom describing the low-energy fermions, the angle θ of the trajectory and
the generalized angular momentum Q, are canonically conjugate variables. That
is why the next step is the quantization of motion in the (θ,Q) plane. It can be
obtained using the quasiclassical energy E(θ,Q) in eqn (23.19) as an effective
Hamiltonian for fermion zero modes, with Q being an operator Q = −i∂θ. For
the axisymmetric vortex, this Hamiltonian does not depend on θ

H = in1ω0∂θ , (23.20)

and has the eigenfunctions e−iEθ/n1ω0 (we consider here a single vortiex with
n1 = ±1; fermion zero modes on multivortex configurations are discussed by
Mel’nikov et al. (2008)). The boundary condition for these functions, eqn (23.15),
gives two different spectra of quantized energy levels, which depend on the W -
parity in eqn (23.6):

E(Q) = −n1Qω0 , (23.21)

Q = n , W = +1 ; (23.22)

Q =

(

n+
1

2

)

, W = −1 , (23.23)

where n is integer.
The phase (n1 + Ñ3)τ3θ/2 in eqn (23.13) plays the part of a Berry phase (see

also March-Russel et al. 1992). It shows how the wave function of a quasiparticle
changes when the trajectory in Fig. 23.3 is adiabatically rotated by angle θ. This
Berry phase is instrumental for the Bohr–Sommerfeld quantization of fermion
zero modes in the vortex core. It chooses between the only two possible quanti-
zations consistent with the ‘CPT-symmetry’ of the energy levels: E = nω0 and
E = (n + 1/2)ω0. In both cases for each positive energy level E one can find
another level with the energy −E. That is why the above quantization is appli-
cable even to non-axisymmetric vortices, though the quantum number n is no
longer the angular momentum, since the angular momentum of quasiparticles is
not conserved in the non-axisymmetric environment.
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23.2.4 Fermions on asymmetric vortices

Most vortices in condensed matter are not axisymmetric. In superconductors the
rotational symmetry is violated by the crystal lattice. In superfluid 3He-B the
SO(2) rotational symmetry of the core is spontaneously broken in one of the two
n1 = 1 vortices (Sec. 14.2) as was demonstrated by Kondo et al. (1991). In super-
fluid 3He-A the axisymmetry of vortices is violated due to A-phase anisotropy: far
from the core there is a preferred orientation of the l̂-vector in the cross-sectional
plane (Fig. 16.6).

Equation (23.7) describing the low-energy fermionic spectrum in the ax-
isymmetric vortex in the limit of continuous Q can be generalized to the non-
axisymmetric case (Kopnin and Volovik 1997, 1998a):

Ea(Q, θ) = ωa(θ)(Q−Qa(θ)) . (23.24)

For given θ the spectrum crosses zero energy at some Q = Qa(θ). This form is
provided by the topology of the vortex, which dictates the number of fermion
zero modes. The energy levels can be obtained using the Bohr–Sommerfeld
quantization of the adiabatic invariant I =

∮

Q(θ, E) dθ = 2πh̄(n + γ), where
Q(θ, E) is the solution of equation ωa(θ)(Q−Qa(θ)) = E (Kopnin and Volovik
1997, 1998a). The parameter γ ∼ 1 (analog of the Maslov index) is not de-
termined in this quasiclassical scheme, so we proceed further introducing the
effective Hamiltonian for fermion zero modes.

The ‘CPT’-symmetry of the Bogoliubov–Nambu Hamiltonian requires that
if Ea(Q, θ) is the energy of the bound state fermion, then −Ea(−Q, θ + π) also
corresponds to the energy of a quasiparticle in the core. Let us consider one pair
of the conjugated branches related by the ‘CPT’-symmetry. One can introduce
the common effective gauge field Aθ(θ, t) and the ‘electric’ charges ea = ±1, so
that Qa = eaAθ. Then the effective Hamiltonian for fermion zero modes becomes

Ha = −n1

2

{

ωa(θ) ,

(

−i ∂
∂θ

− eaAθ(θ, t)

)}

, (23.25)

where { , } is the anticommutator. The Schrödinger equation for the fermions
on the a-th branch is

i

2
(∂θωa)Ψa(θ) + ωa(θ) (i∂θ + eaA(θ)) Ψa(θ) = n1EΨa(θ) . (23.26)

The normalized eigenfunctions are

Ψa(θ) =

〈

1

ωa(θ)

〉−1/2
1

√

2πωa(θ)
exp

(

−i
∫ θ

dθ′
(

n1E

ωa(θ′)
+ eaA(θ′)

)

)

.

(23.27)
Here the angular brackets mean the averaging over the angle θ.

For a single self-conjugated branch, according to the CPT-theorem one has
∫ 2π

0 dθA(θ) = 0. Then using the boundary conditions in eqn (23.15) one obtains
the equidistant energy levels:
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En = −n1 (n+ γ)ω0 , ω0 =

〈

1

ωa(θ)

〉−1

, γ =
1 −W

4
, (23.28)

where n is integer, and W is the parity introduced in eqn (23.6). Thus in spite of
the fact that the angular momentum Q is not a good quantum number, the spec-
trum of of fermion zero modes on non-axisymmetric vortices is the same as in
eqns (23.21–23.23) for axisymmetric vortices, i.e. the spectrum is not disturbed
by non-axisymmetric perturbations of the vortex core structure. The proper-
ties of the spectrum (chirality, equidistant levels and W -parity) are dictated by
real and momentum space topology and are robust to perturbations. The non-
axisymmetric perturbations lead only to renormalization of the minigap ω0.

23.2.5 Majorana fermion with E = 0 on half-quantum vortex

In the 2D case, point vortices with parity W = 1 have fermion zero mode with
exactly zero energy, En=0 = 0. This mode is doubly degenerates due to spin,
and this degeneracy can be lifted off by the spin–orbit coupling. The spin–orbit
interaction splits the zero level in a symmetric way, i.e. without violation of the
CPT-symmetry. This, however, does not happen for the half-quantum vortex,
whose E = 0 state is not degenerate. Because of the CPT-symmetry, this level
cannot be moved from its E = 0 position by any perturbation. Thus this exact
fermion zero mode is robust to any perturbation which does not destroy the
half-quantum vortex or the superconductivity. If there is another half-quantum
vortex in the system, there are two zero levels, one per vortex. In this case the
interaction between vortices and tunneling of quasiparticles between the two zero
levels will split these levels.

Let us consider such a point-like Alice string in 2D 3He-A. The order param-
eter outside the core is given by eqn (15.18):

eµ i = ∆0d̂µ (m̂i + in̂i) = ∆0

(

x̂µ cos
φ

2
+ ŷµ sin

φ

2

)

(x̂i + iŷi) e
iφ/2

=
1

2
(x̂i + iŷi)

(

(x̂µ − iŷµ)eiφ + (x̂µ + iŷµ)
)

. (23.29)

For fermions with spin sz = −1/2 the winding number of the order parameter is
n1 = 1, while for fermions with sz = +1/2 the vacuum is vortex-free: its winding
number is trivial, n1 = 0. In this simplest realization, the Alice string is the
n1 = 1 vortex for a single spin population, and thus there is only one energy
level with E = 0 in the Alice string.

There are many interesting properties related to this E = 0 level. Since the
E = 0 level can be either filled or empty, there is a fractional entropy (1/2)ln 2
per layer per vortex. The factor (1/2) appears because in the pair-correlated
superfluids/superconductors one must take into account that in the Bogoliubov–
Nambu scheme we artificially doubled the number of fermions introducing both
particles and holes. The quasiparticle excitation living at the E = 0 level coin-
cides with its anti-quasiparticle, i.e. such a quasiparticle is a Majorana fermion
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(Read and Green 2000). Majorana fermions at the E = 0 level lead to non-
Abelian quantum statistics of half-quantum vortices, as was found by Ivanov
(2001, 2002): the interchange of two vortices becomes an identical operation (up
to an overall phase) only on being repeated four times (see also Lo and Preskill
1993). It was suggested by Bravyi and Kitaev (2000) that this property of quasi-
particles could be used for quantum computing. More on Majorana fermions see
in (Horava 2005) and (Kitaev 2006).

Also the spin of the vortex in a chiral superconductor can be fractional, as
well as the electric charge per layer per vortex (Goryo and Ishikawa 1999), but
this is still not conclusive. The problem with fractional charge, spin and statistics
related to topological defects in chiral superconductors is still open.

23.3 Interplay of p- and r-topologies in vortex core

23.3.1 Fermions on a vortex line in 3D systems

The above consideration can now be extended to 3D systems, where the energy
levels of the vortex-core fermions depend on quantum number pz, the linear mo-
mentum along the vortex line. The generalization of the quasiclassical spectrum
in eqn (23.19) to excitations living in the vortex line is straightforward. The
magnitude of the momentum of a quasiparticle along the trajectory is close to

p⊥ =
√

p2
F − p2

z(x̂ cos θ + ŷ sin θ) , (23.30)

and its the velocity is close to |p⊥|/m∗ =
√

p2
F − p2

z/m
∗. One must substitute

this velocity into eqn (23.19) instead of vF , and also take into account that the
modified angular momentum is determined by the transverse linear momentum:
Q ≈ |p⊥|b. Then for vortices in s-wave superconductors one obtains the following
dependence of the effective angular velocity (minigap) on pz:

ω0(pz) =

∫∞

0
dρ∆0(ρ)

|p⊥|ρ exp
(

−2 m∗

|p⊥|

∫ ρ

0
dρ′∆0(ρ

′)
)

∫∞

0
dρ exp

(

−2 m∗

|p⊥|

∫ ρ

0
dρ′∆0(ρ′)

) . (23.31)

The exact quantum mechanical spectrum of bound states in the n1-vortex in
s-wave superconductors is shown in Fig. 23.1 top right. For these vortices the
W -parity in eqn (23.6) is W = −1, and the spectrum has no levels with exactly
zero energy.

Figure 23.1 bottom shows the fermionic spectrum in n1 = 1 vortices of the
class characterized by the parity W = 1; this spectrum has levels with exactly
zero energy. In 3He-B, the σipi interaction of spin degrees of freedom with mo-
mentum in eqn (7.48) leads to splitting of the doubly degenerate E = 0 levels
(Misirpashaev and Volovik 1995). The splitting is linear in pz (Fig. 23.1 bottom
left) and thus one obtains the same topology of the energy spectrum of fermion
zero modes as in cosmic strings in Fig. 23.1 top left. The most interesting sit-
uation occurs for the maximum symmetric vortices in 3He-A with n1 = ±1.
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The spin degeneracy is not lifted off, if the discrete symmetry is not violated,
and the doubly degenerate E = 0 level exists for all pz (Fig. 23.1 bottom right).
This anomalous, highly degenerate branch of fermion zero modes of co-dimension
dc = 0 was first found in a microscopic theory by Kopnin and Salomaa (1991).

Fermion zero modes of co-dimension dc = 1 in Fig. 23.1 originate from the
non-trivial topology of a manifold of zeros of co-dimension dc = 3 in the classical
spectrum of quasiparticles in the core of a vortex. The same topology character-
izes the homogeneous vacua in 3He-A and Standard Model. This demonstrates
again the emergency of Fermi points with dc = 3 characterized by the invariant
N3. Let us consider this topological equivalence in more detail.

23.3.2 Topological equivalence of vacua with Fermi points and with vortex

Let us consider a straight vortex along the z axis in such superfluids, where
the states far from the vortex core are fully gapped. We start with the n1 = 1
vortex in s-wave superconductors and the most symmetric n1 = 1 vortex in 3He-
B. As follows from the Hamiltonian in eqn (23.4), the classical energy spectrum
E(r,p) is zero when simultaneouslyM(p) = 0 and ∆0(ρ) = 0, which occurs when

p2
x + p2

y + p2
z = p2

F and ρ =
√

x2 + y2 = 0 (Fig. 23.4 top). The latter equations
determine 3D manifold of zeros in 6D combined space (x, y, z, px, py, pz): 1D line
(the z axis) times 2D spherical surface p2

x + p2
y + p2

z = p2
F . Thus the manifold of

fermion zero modes in the classical spectrum has co-dimension dc = 3. From the
result of Sec. 23.1.4 it follows that this manifold is topologically non-trivial: each
point on this hypersurface is described by the topological invariant N3 = ±1 for
each spin projection.

We can now compare this manifold with the manifold of zeros in the homo-
geneous vacuum of 3He-A, where the quasiparticle energy spectrum in eqn (8.9)
does not depend on r but becomes zero at two Fermi points in momentum space.
In the combined 6D space (x, y, z, px, py, pz) the fermion zero modes also form
the 3D manifold: two Fermi points (px = py = 0, pz = +pF and px = py = 0,
pz = −pF ) times the whole coordinate space. These fermion zero modes of co-
dimension dc = 3 are described by the π3 topological invariant N3 = ∓1 for each
spin projection.

Thus we obtain that the homogeneous vacuum of 3He-A and the n1 = 1 vor-
tex in s-wave superconductors (or in 3He-B) in Fig. 23.4 top contain manifolds
of zeros of co-dimension dc = 3. In the 6D space the orientation of these 3D
manifolds is different, but they are described by the same topological invariant
N3. This implies that these two vacuum states (homogeneous and inhomoge-
neous) can be transformed into each other by continuous deformation of the 3D
manifold (Volovik and Mineev 1982). Below we consider how this transforma-
tion occurs in the real 3He-B vortex giving rise to a peculiar smooth core of this
vortex with Fermi points in Fig. 23.4 bottom.

23.3.3 Smooth core of 3He-B vortex

Fig. 23.4 shows two structures of the quasiclassical energy spectrum in the core
of an axisymmetric vortex with winding number n1 = 1 in 3He-B. On the top it is
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Fig. 23.4. Top: Singular core of a conventional vortex with n1 = 1 in in s-wave
superconductors and of the most symmetric vortex in 3He-B. The order pa-
rameter is zero at x = y = 0, i.e. there is a normal state with Fermi surface on
the vortex axis. The classical energy of quasiparticle E(r,p) is zero on a 3D
manifold p = pF , x = y = 0 in the combined 6D space (x, y, z, px, py, pz) with
topological invariant N3 = 2. Bottom: The singularity on the vortex axis can
be dissolved to form a smooth core. This happens in particular for the 3He-B
vortex with n1 = 1 (Fig. 14.5 top right), where the state very close to 3He-A
appears on the vortex axis instead of the normal state, and vorticity becomes
continuous in the core. Four Fermi points, each with N3 = ±1, appear in the
core region, as in the axiplanar state in Fig. 7.3. The directions to the nodes
are marked by the unit vectors l̂1 and l̂2. At ρ = ρ0 ∼ ξ the Fermi points
with opposite N3 annihilate each other, and at ρ > ρ0 the system is fully
gapped. The manifold of zeros is again the 3D manifold in the combined 6D
space, which, however, is embedded in a different way. Within the smooth
core the Fermi points with N3 = +1 sweep a 2π solid angle each, while the
Fermi points with N3 = −1 sweep −2π each. This satisfies eqn (23.32) which
connects the p-space and r-space topologies of a vortex.

the vortex with the maximum possible symmetry in eqn (14.20) (see also Fig. 14.5
top left). Its structure is similar to that of a vortex in s-wave superconductors.
The amplitude of the B-phase order parameter ∆B(ρ) becomes zero on the vortex
axis, which means that superfluidity is completely destroyed and thus the U(1)N

symmetry is restored. On the vortex axis one has therefore the normal Fermi
liquid with a conventional Fermi surface.
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However, it appears that such embedding of the 3D manifold of zeros in 6D
space with a naked Fermi surface on the vortex axis is energetically unstable. The
system prefers to protect the superfluidity everywhere including on the vortex
axis, and in our case it is possible to reorient the 3D manifold of zeros in 6D
space in such a way that there is no longer any naked Fermi surface, i.e. the
U(1)N symmetry is broken everywhere in r-space. The singularity on the vortex
axis with the naked Fermi surface becomes smoothly distributed throughout a
finite region ρ < ρ0 inside the vortex core in terms of Fermi points (Fig. 23.4
bottom).

On the axis (Fig. 23.4 bottom left), instead of the normal Fermi liquid with the
Fermi surface, there are two Fermi points withN3 = ±2 reflecting the existence of
the A-phase in the vortex core (see Fig. 14.5 top right). Away from the vortex axis
the Fermi points with N3 = ±2 split into four Fermi ponts with unit topological
charges, each with N3 = ±1 (see Fig. 23.4 bottom middle, where the directions to

the Fermi points are marked by the unit vectors l̂1 and l̂2). Locally the superfluid
with four nodes is similar to the axiplanar phase in Fig. 7.3. Further from the axis
the Fermi points with opposite charges attract each other and finally annihilate
at some distance ρ = ρ0 from the vortex axis (Fig. 23.4 bottom right). Since the
point nodes exist at any point of r-space within the radius ρ < ρ0, the manifold
of zeros is again a 3D manifold in the combined 6D space, but it is embedded in
a different way.

This again demonstrates the generic character of fermion zero modes of co-
dimension dc = 3. Moreover, in a given case the Fermi surface on the vortex
axis appears to be energetically unstable toward the formation of the smooth
distribution of Fermi points.

23.3.4 r-space topology of Fermi points in the vortex core

The interplay of real space and momentum space topologies also dictates the
behavior of four Fermi points p(a) = ±pF l̂1,±pF l̂2 as functions of the space
coordinates (x, y). In the particular scenario of Fig. 23.4 bottom, the Fermi points
with N3 = +1 sweep 2π solid angle each, while the Fermi points with N3 = −1
sweep −2π each. This suggests the general rule: if the a-th Fermi point with
the momentum space topological charge N3a sweeps the 4πνa solid angle in the
smooth or soft core of the vortex with winding number n1, then one has the
fundamental relation between three types of topological charges, n1, N3a and νa

(Volovik and Mineev 1982):

n1 =
1

2

∑

a

νaN3a . (23.32)

Let us recall that n1 is the π1 topological charge of the r-space defect – the
vortex – while N3a is the π3 topological charge of the p-space defect – the Fermi
point. These r-space and p-space charges are connected via νa which is the π2

topological charge characterizing the spatial dependence p(a)(r) of the a-th Fermi
point in the vortex core
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νa =
1

4π

∫

dx dy p̂(a) ·
(

∂xp̂
(a) × ∂yp̂

(a)
)

. (23.33)

Because of the continuous distribution of Fermi points, the vorticity ∇× vs

within the smooth core is continuous, as in the case of vortex-skyrmions in 3He-A.
The Mermin–Ho equation (9.17) relating continuous vorticity and the textures
of Fermi points has the following general form:

∇× vs =
h̄

16m
eijk

∑

a

N3ap̂
(a)
i ·

(

∇p̂(a)
j ×∇p̂(a)

k

)

(23.34)

=
h̄

8m
eijk

(

l̂1i∇l̂1j ×∇l̂1k + l̂2i∇l̂2j ×∇l̂2k

)

. (23.35)

Equation (23.35) is applicable to the particular case when two l̂-vectors are

involved, l̂1 and l̂2. In a pure 3He-A one has l̂1 = l̂2 ≡ l̂, and the original
Mermin–Ho relation (9.17) is restored.
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VORTEX MASS

24.1 Inertia of object moving in superfluid vacuum

24.1.1 Relativistic and non-relativistic mass

The mass (inertia) of an object is determined as the response of the momentum
of the object to its velocity:

pi = Mikv
k . (24.1)

If we are interested in the linear response, then the mass tensor is obtained from
eqn (24.1) in the limit v → 0. Let us first consider a relativistic particle with
the spectrum E2 = M2 + gikpipk, where M is the rest energy. Since the velocity
of the particle is vi = dE/dpi, its mass tensor is Mik = Egik. In linear response
theory one obtains the following relation between the mass tensor and the rest
energy:

Mik(linear) = Mgik . (24.2)

The same can be applied to the motion of an object in superfluids in the low-
energy limit when it can be described by the ‘relativistic’ dynamics with an
effective Lorentzian metric gik (acoustic metric in the case of 4He and quasipar-
ticle metric in superfluid 3He-A).

Note that eqns E2 = M2 + gikpipk and (24.2) do not contain the speed of
light c explicitly: the traditional Einstein relation M = mc2 between the rest
energy and the mass of the object (the mass–energy relation) is meaningless
for the relativistic analog in anisotropic superfluids such as 3He-A. What ‘speed
of light’ enters the Einstein relation if this speed depends on the direction of
propagation and is determined by two phenomenological parameters c‖ and c⊥?
Of course, as we discussed above, for an observer living in the liquid the speed
of light does not depend on the direction of propagation. Such a low-energy
observer can safely divide the rest energy by his (or her) c2, and obtain what he
(or she) thinks is the mass of the object. But this mass has no physical meaning
for the well-informed external observer living in either the trans-Planckian world
or the Galilean world of the laboratory.

Here we discuss the inertia of an object moving in the quantum vacuum
of the Galilean quantum liquid. If it is a foreign object like an atom of 3He
moving in the quantum vacuum of liquid 4He, then in addition to its bare mass,
the object acquires an extra mass since it involves some part of the superfluid
vacuum into motion. If the object is an excitation of the vacuum, all its mass is
provided by the liquid. A vortex moving with respect to the superfluid vacuum
has no bare mass, since it is a topological excitation of the superfluid vacuum
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and thus does not exist outside of it. We find that there are several contributions
to the effective mass of the vortex, which suggests different sources of inertia
produced by distortions of the vacuum caused by the motion of the vortex. Till
now, in considering the vortex dynamics we have ignored the vortex mass. The
inertial term MLik∂tv

i
L must be added to the balance of forces acting on the

vortex in eqn (18.29). But this term contains the time derivative and thus at
low frequencies of the vortex motion it can be neglected compared to the other
forces, which depend on the vortex velocity vL. The vortex mass can show up
at higher frequencies.

Here we estimate the vortex mass in superconductors and fermionic super-
fluids and relate it to peculiar phenomena in quantum field theory. But first we
start with the ‘relativistic’ contribution, which dominates in superfluid 4He.

24.1.2 ‘Relativistic’ mass of the vortex

In superfluid 4He the velocity field outside the core of a vortex and thus the
main (logarithmic) part of the vortex energy are determined by the hydrody-
namic equations. Because of the logarithm, whose infrared cut-off is supplied by
the length of the vortex loop, the most relevant degrees of freedom have long
wavelengths. Since the long-wavelength dynamics is governed by the acoustic
metric (4.16) it is natural to expect that the hydrodynamic energy of a vortex
(or soliton or other extended configuration of the vacuum fields) moving in a
superfluid vacuum is connected with the hydrodynamic mass of the vortex by
the ‘relativistic’ equation (24.2), where gik is the acoustic metric. If we are inter-
ested in the linear response, we must take the acoustic metric eqn (24.2) at zero
superfluid velocity vs = 0 to obtain gµν = diag(−1, c−2, c−2, c−2), where c is the
speed of sound. Thus in accordance with eqn (24.2), the hydrodynamic mass of
the vortex loop of length L at T = 0 must be

mL rel =
Evortex

c2
=
mnκ2L

4πc2
ln
L

ξ
. (24.3)

Here Evortex is the ‘rest energy’ of the vortex – the energy of the vortex when
it is at rest in the frame comoving with the superfluid vacuum (see e.g. eqn
(14.7)); n is the particle density in the superfluid vacuum; κ is the circulation
of superfluid velocity vs around the vortex. The mass–energy relation for the
vortex in eqn (24.3) is supported by a detailed analysis of the vortex motion in
compressible superfluids by Duan and Leggett (1992), Duan (1994) and Wexler
and Thouless (1996). According to eqn(24.3), the ‘relativistic’ mass of a vortex
is mL rel ∼ mna2

0L lnL/ξ, where a0 is the interatomic distance.
However, we shall see below that in Fermi superfluids this is not the whole

story. The fermion zero modes attached to the vortex when it moves enhance the
vortex mass. As a result, as was found by Kopnin (1978) the mass of a vortex
in Fermi systems is on the order of the whole mass of the liquid concentrated in
the vortex core

mLK ∼ mnξ2L . (24.4)
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Since the core size is on the order of the coherence length ξ ≫ a0, the Kopnin
mass of a vortex exceeds its ‘relativistic’ mass by several orders of magnitude.

24.2 Fermion zero modes and vortex mass

According to the microscopic theory the Kopnin mass comes from the fermions
trapped in the vortex core (Kopnin 1978, Kopnin and Salomaa 1991; van Otterlo
et al. 1995; Kopnin and Vinokur 1998). This mass can also be derived using the
effective theory for these fermion zero modes (Volovik 1997b). This effective
theory is completely determined by the generic energy spectrum of fermion zero
modes of co-dimension dc = 1, eqn (23.7) for the axisymmetric vortex and eqn
(23.24) if the axial symmetry is violated. The result does not depend on the
microscopic details of the system.

24.2.1 Effective theory of Kopnin mass

If the axisymmetric vortex moves with velocity vL with respect to the superfluid
component, the fermionic energy spectrum in the stationary frame of the vortex
texture is Doppler shifted: Ẽ = E(Q, pz) + p · (vs − vL). Due to this shift the
vacuum – the continuum of the negative energy states – carries the fermionic
charge, the momentum in eqn (10.35). The linear response of the momentum
carried by the negative energy states of fermions to vL − vs gives the Kopnin
mass of the vortex:

P =
∑

Q,pz

pΘ(−Ẽ) −
∑

Q,pz

pΘ(−E)

=
∑

Q,pz

p(p · (vL − vs))δ(E(Q, pz)) = mK(vL − vs) , (24.5)

mK =
1

2

∑

Q,pz

p2
⊥δ(E) . (24.6)

Using
∑

Q,pz
=
∫

dQdpzdz/2πh̄; p2
⊥ = p2

F − p2
z; and the energy spectrum of

fermion zero modes E(Q, pz) = ∓Qω0(pz) one obtains

mK = L

∫ pF

−pF

dpz

4πh̄

p2
F − p2

z

ω0(pz)
. (24.7)

For singular vortices, where ω0 ∼ ∆2
0/vF pF , the estimation of the magnitude

of the Kopnin mass gives eqn (24.4). This vortex mass is determined in essen-

tially the same way as the normal density in the bulk system: P quasiparticles
i =

mnnik(vk
n − vk

s ) in eqn (5.20). Here the role of the normal component is played
by the fermion zero modes bound to the vortex, while the role of the normal
component velocity vn is played by the vortex velocity vL. We know that the
normal component density can be non-zero even at T = 0. This occurs if the
density of states (DOS) at zero energy, N(0) =

∑

δ(E), is non-zero, which is
typical for systems with a Fermi surface, i.e. for vacua with the fermion zero
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modes of co-dimension dc = 1. An example of a finite DOS due to appearance
of the Fermi surface has been discussed in Sec. 10.3.6. For fermion pseudo-zero
modes of co-dimension dc = 1 in the vortex core, the DOS is inversely propor-
tional to the interlevel spacing, N(0) ∝ 1/ω0, which is reflected in eqn (24.7) for
the Kopnin mass.

Equation (24.7) is valid in the so-called clean limit case, when one can neglect
the interaction of the fermion zero modes with impuritiesin superconductors or
with the normal component in the bulk liquid outside the core. This Kopnin
mass was obtained in the limit of low T . On the other hand, eqn (24.7) is valid
only in the limit of continuous Q, i.e. the temperature must still be larger than
the interlevel spacing. In the opposite limit T ≪ ω0 the Kopnin mass disappears.

24.2.2 Kopnin mass of smooth vortex: chiral fermions in magnetic field

To illustrate the general character of eqn (24.7) let us calculate the Kopnin mass
of a smooth vortex core, where one can use the classical energy spectrum of
fermion zero modes. A smooth core is the best configuration to understand
the origin of many effects related to the chiral fermions in the vortex core. Also
the smooth core can be realized in many different situations. We have already
seen in the example of 3He-B vortices that the 1/r-singularity of the superfluid
velocity and the naked Fermi surface on a vortex axis can be removed by in-
troducing Fermi points in the core region (Fig. 23.4 bottom). As a result the
superfluid/superconducting state in the vortex core of any system can acquire
the properties of the A-phase of superfluid 3He, i.e. Fermi points of co-dimension
dc = 3 and continuous vorticity. As an example we can consider the continuous
vortex-skyrmion in 3He-A, but the result can be applicable to any vortex with
a smooth core.

For a smooth or continuous vortex the non-zero DOS comes from the vicinity
of the Fermi points, where the fermions are chiral and the l̂-textures play the
role of an effective magnetic field. We know that in the presence of a magnetic
field the chiral relativistic fermions have finite DOS at zeroth Landau level, eqn
(18.2). To apply this equations to quasiparticles living in the vicinity of the Fermi
points one must make the covariant generalization of the DOS by introducing
the general metric tensor and then replace it by the effective 3He-A metrics. The
general form of the local DOS of the Weyl fermions in a magnetic field is

N(E = 0, r) =

√−g
2π2h̄2

(

1

2
gijgklFikFjl

)1/2

. (24.8)

In systems with Fermi points the effective metric tensor and effective gauge
field are given by eqns (9.11–9.15). For the smooth core with radius ρ0 ≫ ξ
the contribution of the velocity field vs can be neglected and one obtains the
following local DOS at E = 0:

N(0, r) =
pF

2π2h̄2c⊥
|̂l × (∇× l̂)| . (24.9)
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This DOS can be inserted in eqn (10.36) to obtain the local density of the
normal component which comes from the fermions trapped by the vortex at
T = 0:

mnnij(r, T → 0) = l̂i l̂jp
2
FN(0, r) . (24.10)

For the axisymmetric vortex-skyrmion in eqn (16.5) one has

N(0, ρ) =
pF

2π2h̄2c⊥
sin η |∂ρη|. (24.11)

The integral of the normal density tensor over the cross-section of the smooth
core gives the mass trapped by the vortex

mK =
1

2

∫

d3x l̂2⊥p
2
FN(0, ρ) = L

p3
F

2πh̄2c⊥

∫

dρ ρ sin3 η(ρ) |∂ρη| . (24.12)

This is the Kopnin mass expressed in terms of the distribution of the Fermi
points – the l̂-field – in the coordinate space. It coincides with the momentum
representation in eqn (24.7) after the interlevel distance ω0(pz) in the core of

the vortex-skyrmion is expressed in terms of the l̂-texture (Volovik 1997b). The
magnitude of the Kopnin mass of a smooth vortex in eqn (24.12) is mK ∼
mnξLρ0, where ρ0 is the size of the smooth core region (Kopnin 1995). For
conventional singular vortices, ρ0 must be substituted by the coherence length ξ
and eqn (24.4) is restored.

In conclusion of this section, let us mention the relation to the RQFT. The
local hydrodynamic energy of the normal component trapped by a smooth vortex
is

F =
m

2
nnij(r)(vL − vs)i(vL − vs)j . (24.13)

This can be rewritten in the following form, which is valid also for the chiral
fermions in RQFT:

F =
µ2

R + µ2
L

8π2h̄2

√−g
√

1

2
gijgklFikFjl , (24.14)

where, as before in eqn (10.19), the chemical potentials of the left- and right-
handed fermions in 3He-A are expressed in terms of the counterflow: µR = −µL =
pF (̂l·w). Equation (24.14) represents the magnetic energy of the chiral particles
with finite chemical potential in a strong magnetic field B ≫ µ2 at T → 0.

24.3 Associated hydrodynamic mass of a vortex

24.3.1 Associated mass of an object

There are other contributions to the vortex mass, which are related to the defor-
mation of the vacuum fields due to the motion of the vortex. The most important
of them is the associated (or induced) hydrodynamic mass, which is also pro-
portional to the mass of the liquid in the volume of the core. An example of the
associated mass is provided by an external body moving in an ideal liquid or in a
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superfluid – the mass of the liquid involved by the body in translational motion.
This mass depends on the geometry of the body. For a moving cylindrical wire
of radius R it is the mass of the liquid displaced by the wire:

mL associated = mπR2Ln . (24.15)

This must be added to the bare mass of the cylinder to obtain the total inertial
mass of the body. The associated mass arises because of the inhomogeneity of
the density n of the liquid: n(r > R) = n and n(r < R) = 0. When the wire
moves with respect to the liquid, this produces the backflow around the wire and
the liquid acquires a finite momentum proportional to the velocity.

In superfluids, this part of the superfluid vacuum which is involved in the
motion together with the body can be considered as the normal density. But
this normal density is produced not by the trapped quasiparticles, but by the
inhomogeneity of the superflow around the object. Such an inhomogeneity is
responsible for the normal density in porous materials and in aerogel, where
some part of the superfluid is hydrodynamically trapped by the pores, and thus
is removed from the overall superfluid motion. For vortices such an associated
mass has been discussed by Baym and Chandler (1983) and Sonin et al. (1998).
Here we estimate this contribution to the vortex mass for two situations.

First let us consider a vortex trapped by a cylindrical wire of radius R ≫ ξ,
such that the vortex core is represented by the wire. In this case eqn (24.15) gives
the associated vortex mass which results from the backflow of the superfluid
vacuum around the moving core. For such vortex a with the wire as the core
this is the dominating mass of the vortex. The Kopnin mass, which can result
from the normal excitations trapped near the surface of the wire, is considerably
smaller, in particular because it represents a surface effect.

24.3.2 Associated mass of smooth-core vortex

As a second example, let us consider the associated mass of a vortex with a
smooth core. This mass is also caused by the inhomogeneity of the liquid. In a
given case it is the inhomogeneity of the superfluid density ns(r) = n − nn(r),
where nn is the non-zero local normal density in eqn (24.10) caused by fermion
zero modes. Due to the profile of the local superfluid density the external flow
is disturbed near the core according to the continuity equation. In the reference
frame moving with the vortex, the texture is stationary and the trapped normal
component is at rest: vn = 0. The continuity equation in this frame reads

∇ · (nsvs) = 0 . (24.16)

If the smooth core is large, ρ0 ≫ ξ, the DOS of fermion zero modes in eqn (24.9)
is small, and thus the normal density produced by fermion zero modes in eqn
(24.10) is small compared to the total density: nn ∼ nξ/ρ0 ≪ n. As a result it
can be considered as a perturbation. According to continuity equation, the dis-
turbance δvs = ∇α of the superflow (the backflow) caused by this perturbation
is given by
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n∇2α = −vi
L∇jnnij , (24.17)

where we take into account that the asymptotic value of the superfluid velocity
with respect to the vortex is with minus sign the velocity of the vortex, vs∞ =
−vL.

In the simple approximation, when the normal component in eqn (24.10)
trapped by the vortex is considered as isotropic, one obtains the following kinetic
energy of the backflow which gives the associated vortex mass:

1

2
mn

∫

d3x (∇α)
2

=
1

2
mL associatedv

2
L , mL associated = mL

∫

d2x
n2

n(r)

2n
.

(24.18)
Since nn ∼ nξ/ρ0 the associated mass is on the order of mnξ2L and does not
depend on the core radius ρ0: the large area ρ2

0 of integration in eqn (24.18) is
compensated by a small value of the normal component in the core with large ρ0.
That is why in the smooth core with ρ0 ≫ ξ this mass is parametrically smaller
than the Kopnin mass ∼ mnξρ0L in eqn (24.12). But for conventional singular
vortices ρ0 ∼ ξ and these two contributions are of the same order of magnitude.

In conclusion, the behavior of the inertial mass of the vortex demonstrates
that the effective relativistic mass–energy relation m = E/c2, which is valid for
vortices in Bose superfluids, is violated in Fermi superfluids due to the trans-
Planckian physics of fermion zero modes and of the back reaction of the vacuum
to the motion of the vortex.



25

SPECTRAL FLOW IN THE VORTEX CORE

25.1 Analog of Callan–Harvey mechanism of cancellation of

anomalies

25.1.1 Analog of baryogenesis by cosmic strings

In Chapter 18 we discussed how massless chiral fermions – zeros of co-dimension
dc = 3 – influence the dynamics of a continuous vortex-skyrmion due to the effect
of the chiral anomaly. Such a ‘stringy texture’ (as it is called in RQFT) serves
as a mediator for the anomalous transfer of the fermionic charge – the linear
momentum P – from the vacuum to the heat bath of fermions. This anomalous
transfer is described by the Adler–Bell–Jackiw axial anomaly equation (18.5),
where the effective U(1) field acting on the Weyl fermions is produced by the

l̂-fields. Now we shall discuss the same phenomenon of chiral anomaly when
the mediator is a conventional singular vortex, while the corresponding massless
fermions are fermion zero modes in the vortex core.

In 3He-B and in conventional superconductors, fermions are massive out-
side the core, but they have a gapless (or almost gapless) spectrum of fermion
(pseudo)zero modes of co-dimension dc = 1 in eqn (23.1). These core fermions
are chiral and they do actually the same job as chiral fermions in vortex-skyrmions.
However, the spectral flow carried by the fermion zero modes in the singular

core is not described by the Adler–Bell–Jackiw axial anomaly equation (18.5).
Instead of the effective RQFT, we must use the effective theory of fermion zero
modes with dc = 1 discussed in Chapter 23. However, we shall see that in the
limit when the parameter Q of the fermionic spectrum can be considered as con-
tinuous, the result for the generation of momentum by a vortex with singular core
exactly coincides with the axial anomaly result (18.17–18.18) for the generation
of momentum by a moving vortex-skyrmion.

The process of momentum generation by vortex cores is similar to that of gen-
eration of baryonic charge by the cores of cosmic strings (Witten 1985; Vachas-
pati and Field 1994; Garriga and Vachaspati 1995; Barriola 1995; Starkman and
Vachaspati 1996). Also the axial anomaly is instrumental for baryoproduction
in the core of cosmic strings, and again the effect cannot be described by the
the Adler–Bell–Jackiw equation, since the latter was derived using the energy
spectrum of free fermions in the presence of homogeneous electric and magnetic
fields. In cosmic strings these fields are no longer homogeneous, and the massless
fermions exist only in the vortex core as fermion zero modes. Thus both the
baryoproduction by cosmic strings and the momentogenesis by singular vortices
must be studied using the effective theory of fermion zero modes of co-dimension
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dc = 1. Let us see how the momentogenesis occurs in the core of a singular vortex.

25.1.2 Level flow in the core

Let us consider the spectral-flow force, which arises when a singular vortex moves
with velocity vL − vn with respect to the heat bath. In the heat-bath frame the
order parameter (Higgs) field depends on the spacetime coordinates through the
combination r − (vL − vn)t (compare with eqn (18.15) for a moving texture).
We consider first the limit case when the fermionic quantum number Q can be
treated as a continuous parameter and coincides with the angular momentum
of a quasiparticle: Q ≈ Lz/h̄. Since L = r × p, in the heat-bath frame the
parameter Q grows with time, and the energy of the fermion zero mode in the
moving vortex with winding number n1 becomes time dependent:

E(Q, θ) = −n1

(

Q− 1

h̄
ẑ · ((vL − vn) × p⊥)t

)

ω0 . (25.1)

The quantity

Ez =
1

h̄
ẑ · ((vL − vn) × p⊥) (25.2)

acts on fermions localized in the core in the same way as an electric field Ez acts
on chiral fermions on an anomalous branch in a magnetic field (Sec. 18.1.3) or
on chiral fermion zero modes localized in a string in RQFT. The only difference
is that under this ‘electric’ field the spectral flow in the vortex occurs along the
Q axis (Q̇ = Ez) rather than along the direction pz in strings where ṗz = qEz .
Since, according to the index theorem, for each quantum number Q there are
−2n1 quasiparticle levels, the fermionic levels cross zero energy at the rate

ṅ = −2n1Q̇ = −2n1Ez(p⊥) = − 2

h̄
n1ẑ · ((vL − vn) × p⊥) . (25.3)

25.1.3 Momentum transfer by level flow

When the occupied level crosses zero, a quasiparticle on this level transfers its
fermionic charges from the vacuum (from the negative energy states) along the
anomalous branch into the heat bath (‘matter’). For us the important fermionic
charge is linear momentum. The rate at which the momentum p⊥ is transferred
from the vortex to the heat bath due to spectral flow is obtained by integration
over the remaining variable pz (compare with eqn (24.5)):

Ṗ =
1

2

∑

pz

p⊥ṅ = −n1

2h̄
ẑ × (vL − vn)

∑

pz

p2
⊥ (25.4)

= −n1

2h̄
ẑ × (vL − vn)L

∫ pF

−pF

dpz

2πh̄
(p2

F − p2
z)

= −n1
p3

F

3πh̄2Lẑ × (vL − vn) . (25.5)

The factor 1/2 in eqn (25.4) is introduced to compensate the double counting of
particles and holes in pair-correlated systems.
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Thus the spectral-flow force acting on a vortex from the system of quasipar-
ticles is (per unit length)

Fsf = −πn1h̄C0ẑ × (vL − vn). (25.6)

This is in agreement with the result in eqn (18.17) obtained for the n1 = 2
continuous vortex-skyrmion using the Adler–Bell–Jackiw equation. We recall
that the parameter of the axial anomaly is C0 = p3

F /3π
2h̄3 ≈ n.

The first derivation of the spectral-flow force acting on a singular vortex in
conventional superconductors was made by Kopnin and Kravtsov (1976) who
used the Gor’kov equations describing the fully microcopic BCS model. It was
developed further by Kopnin and coauthors to other types of vortices: vortices
in 3He-B (Kopnin and Salomaa 1991); continuous vortex-skyrmions in 3He-A
(Kopnin 1993); non-axisymmetric vortices (Kopnin and Volovik 1997, 1998a);
etc. That is why the spectral-flow force is also called the Kopnin force. Note
that in all the cases the spectral-flow force can be obtained within the effective
theory of fermion zero modes living in the vortex core and forming a special
universality class of Fermi systems – Fermi surface in (Q, θ) space.

The process of transfer of a linear momentum from the superfluid vacuum
to the normal motion of fermions within the core is a realization of the Callan–
Harvey (1985) mechanism for anomaly cancellation. In the case of condensed
matter vortices the anomalous non-conservation of linear momentum in the 1+1
world of the vortex core fermions and the anomalous non-conservation of momen-
tum in the 3+1 world outside the vortex core compensate each other. As distinct
from 3He-A, where this process can be described in terms of Fermi points and
Adler–Bell–Jackiw equation, the Callan–Harvey effect for singular vortices oc-
curs in any Fermi superfluid. The anomalous fermionic Q branch, which mediates
the momentum exchange, exists in any topologically non-trivial singular vortex:
the chirality of these fermion zero modes and the anomaly are produced by the
interplay of r-space and p-space topologies associated with the vacuum in the
presence of a vortex. The effective theory of the Callan–Harvey effect does not
depend on the detailed structure of the vortex core or even on the type of pair-
ing, and is determined solely by the vortex winding number n1 and the anomaly
parameter C0.

25.2 Restricted spectral flow in the vortex core

25.2.1 Condition for free spectral flow

In the above derivation it was implied that the discrete quantum number Q can
be considered as continuous, otherwise the spectral flow along Q is impossible.
To ensure the level flow, the interlevel distance ω0 must be small compared
to the width of the level h̄/τ , where τ is the lifetime of the fermions on the Q
levels. The latter is determined by interaction of the fermion zero modes with the
thermal fermions in the heat bath of the normal component (in superconductors
the interaction of fermion zero modes with impurities usually dominates). Thus
eqn (25.6) for the spectral-flow force is valid only in the limit of large scattering
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rate: ω0τ/h̄ ≪ 1. In the opposite limit ω0τ ≫ 1 the spectral flow is suppressed
and the corresponding spectral-flow force becomes exponentially small. This also
shows the limitation for exploring the macroscopic Adler–Bell–Jackiw anomaly
equation in the electroweak model and in 3He-A.

Since the spectral flow occurs through the zero energy, it is fully determined
by the low-energy spectrum. Thus, to derive the spectral-flow force at arbitrary
value of the parameter ω0τ , one must incorporate the effective theory of fermion
zero modes of co-dimension dc = 1 in the vortex core. Such an effective theory
is similar to the Landau theory of fermion zero modes in systems of the Fermi
surface universality class – the Landau theory of Fermi liquid. Let us consider
the kinetics of the low-energy quasiparticles on an anomalous branch in a vortex
moving with respect to the heat bath.

25.2.2 Kinetic equation for fermion zero modes

We choose the frame of the moving vortex; in the steady–state regime the order
parameter in this frame is stationary and the energy of quasiparticles is well
determined. The effective Hamiltonian for quasiparticles in the moving vortex is
given by

Ea(Q, θ) = ωa(θ)(Q−Qa(θ)) + (vs − vL) · p , (25.7)

where the last term comes from the Doppler shift and vL is the velocity of the
vortex line. For simplicity we discuss the 2+1 case where p = (pF cos θ, pF sin θ),
and the slope ωa (minigap) does not depend on pz.

According to the condition (ii) of Sec. 5.4 the global equilibrium takes place
only if in the texture-comoving frame (i.e in the frame comoving with the vortex)
the velocity of the normal component is zero, i.e. vn = vL. If the velocity of the
normal component vn 6= vL, the motion of a vortex does not correspond to
the true thermodynamic equilibrium and dissipation must take place, which at
low T is determined by the kinetics of fermion zero modes. The effective theory
of fermion zero modes in the vortex core is described in terms of canonically
conjugated variables h̄Q and θ. The role of ‘spatial’ coordinate is played by the
angle θ in momentum space, i.e. the effective space is circumference U(1). This
means that the chiral quasiparticles here are left or right moving along U(1). The
difference between the number of left- and right- moving fermionic species is 2n1

according to the index theorem. The kinetics of quasiparticles is determined
by the Boltzmann equation for the distribution function fa(Q, θ) (Stone 1996).
For the simplest case of the n1 = ±1 axisymmetric vortex with one anomalous
branch, one has ωa(θ) = −n1ω0, Qa(θ) = 0, and the Boltzmann equation is

h̄∂tf − n1ω0∂θf − ∂θ((vs − vL) · p) ∂Qf = −h̄f(Q, θ) − fT (Q, θ)

τ
. (25.8)

It is written in the so-called τ -approximation, where the collision term on the
rhs is expressed in terms of the relaxation time τ due to collisions between
fermion zero modes in the core and quasiparticles in the heat bath far from the
core. The equilibrium distribution fT corresponds to the global thermodynamic
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equilibrium state to which the system relaxes. This is the state where the vortex
moves together with the heat bath, i.e. where vL = vn:

fT (Q, θ) =

(

1 + exp
−n1ω0Q+ (vs − vn) · p

T

)−1

. (25.9)

When vL 6= vn the equilibrium is violated, and the distribution function evolves
according to the Boltzmann equation (25.8).

25.2.3 Solution of Boltzmann equation

Following Stone (1996) we introduce the new variable l = Q−n1(vs −vn) ·p/ω0

and obtain the equation for f(l, θ) which contains the velocity of a vortex only
with respect to the heat bath:

h̄∂tf − n1ω0∂θf + ∂θ((vL − vn) · p) ∂lf = −h̄f(l, θ) − fT (l)

τ
. (25.10)

Since we are interested in the momentum transfer from the vortex to the heat
bath, we write the equation for the net momentum of quasiparticles

P =
1

2

∫

dl

∫

dθ

2π
f(l, θ)p , (25.11)

which is

Ṗ− n1

h̄
ω0ẑ×P+πh̄C0ẑ×(vn−vL)(fT (∆0(T ))−fT (−∆0(T ))) = −P

τ
. (25.12)

At the moment we consider only bound states below the gap ∆0(T ) and thus the
integral

∫

dl∂ln is limited by ∆0(T ). That is why the integral gives fT (∆0(T ))−
fT (−∆0(T )) = − tanh(∆0(T )/2T ). The anomaly parameter C0 which appears
in eqn (25.12) is C0 = p2

F /2πh̄
2 in the 2+1 case. As in the 3D case in eqn (18.18),

C0 ≈ n in the weak-coupling BCS systems.
In the steady state of the vortex motion one has Ṗ = 0, and the solution for

the steady state momentum can be easily found (Stone 1996) As a result one
obtains the following momentum transfer per unit time from the fermion zero
modes to the normal component when the vortex moves with constant velocity
with respect to the normal component:

Fsf bound =
P

τ
= − πh̄C0

1 + ω2
0τ

2
tanh

∆0(T )

2T
[(vL − vn)ω0τ + n1ẑ × (vL − vn)].

(25.13)
This is the contribution to the spectral-flow force due to bound states below
∆0(T ). This equation contains both the non-dissipative (the second term) and
friction (the first term) forces. Now one must add the contribution of unbound
states above the gap ∆0(T ). The spectral flow there is not suppressed, since the
distance between the levels in the continuous spectrum is ω0 = 0. This gives
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the following spectral-flow contribution from the thermal tail of the continuous
spectrum:

Fsf unbound = −πh̄n1C0

(

1 − tanh
∆0(T )

2T

)

ẑ × (vL − vn) . (25.14)

Finally the total spectral-flow force (Kopnin force) is the sum of two con-
tributions, eqns (25.13–25.14). The non-dissipative part of the Kopnin force
is

Fsf = −πh̄n1C0

[

1 − ω2
0τ

2

1 + ω2
0τ

2
tanh

∆0(T )

2T

]

ẑ× (vL − vn) , (25.15)

while the contribution of the spectral flow to the friction part of the Kopnin
force is

Ffr = −πh̄C0 tanh
∆0(T )

2T

ω0τ

1 + ω2
0τ

2
(vL − vn) . (25.16)

This result coincides with that obtained by Kopnin in microscopic theory. In the
limit ω0τ → 0, the friction force disappears, while the spectral-flow force reaches
its maximum value, eqn (25.6), obtained for a continuous vortex-skyrmion using
the Adler–Bell–Jackiw anomaly equation. In continuous vortices the interlevel
spacing is very small, ω0 ∼ h̄/(mξRcore), and the spectral flow is not suppressed.

25.2.4 Measurement of Callan–Harvey effect in 3He-B

Equations (25.15) and (25.16), with the anomaly parameter C0 in eqn (18.18),
can be applied to the dynamics of singular vortices in 3He-B, where the minigap
ω0 is comparable to the inverse quasiparticle lifetime and the parameter ω0τ is
regulated by temperature. Adding the missing Magnus and Iordanskii forces one
obtains the following dimensionless parameters d⊥ and d‖ in eqn (18.30) for the
balance of forces acting on a vortex:

d⊥ =
C0

ns

(

1 − n

ns

ω2
0τ

2

1 + ω2
0τ

2
tanh

∆0(T )

2T

)

− nn

ns
, (25.17)

d‖ =
C0

ns

ω0τ

1 + ω2
0τ

2
tanh

∆0(T )

2T
. (25.18)

The regime of the fully developed axial anomaly occurs when ω0τ ≪ 1.
This is realized close to Tc, since ω0 vanishes at Tc. In this regime d⊥ = (C0 −
nn)/ns ≈ (n − nn)/ns = 1. At lower T both ω0 and τ increase, and finally
at T → 0 an opposite regime, ω0τ ≫ 1, is reached. In this limit the spectral
flow becomes completely suppressed, the anomaly disappears and one obtains
d⊥ = −nn/ns → 0. This negative contribution to d⊥ comes solely from the
Iordanskii force.

Both extreme regimes and the crossover between them at ω0τ ∼ 1 have
been observed in experiments with 3He-B vortices by Bevan et al. (1995, 1997b,
1997a) and Hook et al. (1996). The friction force (Fig. 25.1 top) is maximal in
the crossover region and disappears in the two extreme regimes, ω0τ ≫ 1 and
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Fig. 25.1. Experimental momentogenesis by vortex-strings in 3He-B: verifica-
tion of the Callan–Harvey and gravitational Aharonov–Bohm effects. Solid
lines are eqns (25.17) and (25.18). The spectral flow transfers the fermionic
charge – the momentum – from the 1+1 fermions in the core to the 3+1
bulk superfluid. This is the analog of the Callan–Harvey effect in 3He-B. The
spectral flow is suppressed at low T but becomes maximal close to Tc. The
negative value of d⊥ at intermediate T demonstrates the Iordanskii force,
which comes from the analog of the gravitational Aharonov–Bohm effect in
Sec. 31.3. (After Bevan et al. 1997a.)

ω0τ ≪ 1. In addition the experimental observation of the negative d⊥ at low T
(Fig. 25.1 bottom) verifies the existence of the Iordanskii force; thus the analog
of the gravitational Aharonov–Bohm effect (Sec. 31.3) has also been measured
in these experiments.



Part VI

Nucleation of quasiparticles and
topological defects
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LANDAU CRITICAL VELOCITY

The superfluid vacuum flows with respect to environment (the container walls)
without friction until the relative velocity becomes so large that the Doppler-
shifted energy of some excitations (quasiparticles or topological defects) becomes
negative in the frame of the environment, and these excitations can be created
from the vacuum. The threshold velocity vLandau at which excitations of a given
type acquire for the first time the negative energy is called the Landau velocity.
This definition is applicable only for a single superfluid. When two or several
superfluid components are involved the criterion will be the same but it cannot
be expressed in terms of a single Landau velocity.

This does not mean that the supercritical flow of the vacuum (the flow with
vs > vLandau) is not possible. If the excitations are macroscopic topological de-
fects, the process of their creation requires overcoming a huge energy barrier.
For example, in superfluid 3He the Landau velocity for vortex nucleation can be
exceeded by several orders of magnitude, and no vortices are created. In some
cases the flow velocity can exceed the Landau velocity for nucleation of fermionic
quasiparticles. Quasiparticles are created and fill the negative energy states. If it
is possible to fill all the negative energy states without destroying the superfluid
vacuum, then the dissipation stops and the supercritical superflow persists.

26.1 Landau critical velocity for quasiparticles

26.1.1 Landau criterion

Let us start with the Landau critical velocity for nucleation of quasiparticles.
The energy of a quasiparticle in the reference frame of the environment (the
container walls) is Ẽ(p) = E(p) + p · vs. It becomes negative for the first time
when the the superfluid velocity with respect to container walls reaches the value

vLandau = min
E(p)

p‖
. (26.1)

Here p‖ is the quasiparticle momentum along vs. It is important that at T = 0
there must be a preferred reference frame of the environment with respect to
which the superfluid vacuum moves, otherwise quasiparticles do not know that
they must be created. In superfluids depending on the physical situation such
a reference frame can be provided by the container walls, by the external body
moving in the liquid, by impurities forming the normal component, or by the
texture. At vs > vLandau, nucleation of quasiparticles from the vacuum is allowed
energetically, and they can be created due to interaction of the supercritically
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moving vacuum with the environment. The Landau critical velocity marks the
onset of quantum friction. However, it is possible that the Landau velocity is
exceeded at a place far from the boundaries, and nucleation of quasiparticles is
suppressed. Such a situation will be discussed in Sec. 31.4 on quantum rotational
friction.

In the anisotropic 3He-A, the Landau critical velocity for nucleation of quasi-
particles depends on the orientation of the flow with respect to the l̂-vector. From
the quasiparticle spectrum (7.58) in the limit c⊥ ≪ vF it follows that

vLandau(vs ⊥ l̂) = c⊥ , (26.2)

vLandau(vs · l̂ 6= 0) = 0 . (26.3)

26.1.2 Supercritical superflow in 3He-A

For all orientations of the l̂-vector except for the transverse one, the Landau
critical velocity is simply zero. Thirty years ago, before 3He-A was discovered,
it was thought that a non-zero value of the Landau velocity is the necessary
condition for superfluidity. However, the 3He-A example shows that this is not
so. 3He-A can still flow along the channel without friction. The reason for such
supercritical suparflow is the following. In the process of quantum friction, the
created fermionic quasiparticles fill the negative energy levels in the frame of the
environment (container) thus transferring the momentum from the vacuum to
the container. In 3He-A, as we discussed in Sec. 10.3.5, it is possible to fill all
the negative levels without completely destroying the superfluid vacuum. After
all the negative levels are occupied the vacuum flows with the same velocity vs

without friction but with the reduced momentum: m(n− nn‖)vs. The reduction

occurs due to the formed normal component with density nn‖ ∝ (vs · l̂)2 in eqn
(10.34) which is trapped by the container walls. The only consequence of such
a supercritical regime is the formation of the Fermi surface which gives the
non-zero DOS and thus the finite density of the normal component at T = 0.

26.1.3 Landau velocity as quantum phase transition

For the transverse orientation of the l̂-vector, where vs · l̂ = 0, the situation
is different: the Landau critical velocity coincides with the transverse ‘speed
of light’ c⊥ – the maximum attainable velocity of the low-energy ‘relativistic’
quasiparticles propagating in the directions perpendicular to l̂.

Can the flow velocity with respect to the walls exceed this value? This is not
clear, since it depends on the behavior at the Planck scale. In the simplest model
considered by Kopnin and Volovik (1998b) the interaction with the boundaries
leads to the collapse of the supercritical superflow, when vs > c⊥.

But this is not the general rule, and in principle there can be two successive
critical velocities (Fig. 26.1 left). The first one is vLandau. Above this threshold the
negative energy states appear and are occupied. This leads to the finite density
of states at zero energy, and as a result this supercritical superflow has the finite
normal density nn(T = 0) proportional to some power of vs − vLandau. At the
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Fig. 26.1. Left: Two critical velocities of the superfluid vacuum with respect
to a container. Above the Landau critical velocity vLandau the vacuum is re-
constructed due to created quasiparticles but remains superfluid (non-dissi-
pative) with reduced but non-zero superfluid density 0 < ns < n. There is no
dissipationless superfluid flow for velocities above the second critical velocity
vc. The Landau critical velocity vLandau marks the quantum phase transition
between vacua with different momentum space topology. Middle: 3He-B at
low pressure. The two critical velocities coincide. Right: 3He-A with vs · l̂ 6= 0
and d-wave superconductor (Sec. 10.3.6). The Landau critical velocity is zero.

second threshold vc > vLandau the superfluid density becomes zero, which means
that superfluidity disappears: the flow becomes dissipative, non-stationary and
finally turbulent.

The flow of 3He-A, if it is not orthogonal to l̂, follows the scenario with
vLandau = 0 in Fig. 26.1 right. According to Nagai (1984), for the superflow

along l̂, the critical velocity at which ns becomes zero is vc = c⊥
√
e.

In 3He-B both scenarios are possible depending on the range of microscopic
parameters as was found by Vollhardt et al. (1980). At high external pressure,
the scenario with two successive critical velocities, vLandau and vc, in (Fig. 26.1
right) takes place. At low external pressure, the two critical velocities coincide,
vLandau = vc, and ns drops from n to zero after the Landau critical velocity is
reached (Fig. 26.1 middle).

In the region between the two critical velocities, vLandau < vs < vc, the
fermionic vacuum is well determined but it belongs to a different universality
class – the class of vacua with a Fermi surface. The formation of a Fermi surface
in 3He-A when it flows with velocity vs > vLandau = 0 has been discussed in
Sec. 10.3.6. In 3He-B, the Fermi surface emerging in the supercritical regime
can be found from the equation Ẽ(p) = 0 with Ẽ(p) = E(p) + p · vs and
E2(p) = v2

F (p− pF )2 + ∆2
0 in eqn (7.50).

In the region vs < vLandau = ∆0/pF , the 3He-B vacuum is topologically
trivial with fully gapped spectrum. Thus in 3He-B, vLandau marks the quantum
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phase transition at T = 0 – the Lifshitz transition at which with the momentum
space topology of fermion zero modes of the quantum vacuum changes. The finite
density of states on the Fermi surface leads to a finite nn(T = 0), which thus
plays the role of the order parameter in this quantum transition.

26.1.4 Landau velocity, ergoregion and horizon

Here we avoid discussing the vacuum stability at supercritical flow, simply by
assuming that the region where the Landau velocity is exceeded is very far from
the boundaries of the vessel. In this case the interaction with the boundaries can
be neglected, the reference frame of the boundaries is lost and thus the boundaries
no longer serve as the environment. Such a situation has a very close relation
to the horizon problem in general relativity. Since the boundaries are effectively
removed, the preferred reference frame is provided only by the inhomogeneity of
the flow: for example, by the l̂-texture or by a spatial dependence of velocity field
vs(r). We know that in 3He-A both of these fields simulate the effective gravity
field. In the region where in the texture-comoving frame (i.e. in the frame where
the texture is stationary) the superfluid velocity exceeds the Landau criterion,
vs(r) > vLandau, a quasiparticle can have negative energy. In general relativity
such a region is called the ergoregion. The surface vs(r) = vLandau which bounds
the ergoregion is called the ergosurface. We shall use the terms ergoregion and
ergosurface in our non-relativistic physics of quantum liquids.

In the case when the Landau velocity coincides with the ‘speed of light’ c (as
in eqn (26.2)), the equation for the ergosurface, vs(r) = c, coincides according to
eqn (4.16) with the equation g00(r) = 0 for the ‘acoustic’ metric. This is just the
conventional definition of the ergosurface in general relativity. When the velocity
vs(r) is normal to the ergosurface, such a surface is called a horizon. If vs(r) is
directed toward the region where vs(r) > c, this imitates the black-hole horizon
(Unruh 1981, 1995). The low-energy ‘relativistic’ quasiparticles cannot escape
from the region behind the horizon because their velocity c in the reference
frame of the superfluid vacuum is less than the ‘frame-dragging’ velocity vs. In
the more general flow the horizon and the ergosurface are separated from each
other, as in the case of a rotating black hole (Jacobson and Volovik 1998a; Visser
1998).

26.1.5 Landau velocity, ergoregion and horizon in case of superluminal
dispersion

The definitions of the horizon and ergosurface must be modified when we leave
the low-energy domain of relativistic physics and take into account the dispersion
of the spectrum at higher energy. There are two possible cases: the initially
relativistic spectrum E(p) bends upward or downward at high energy. We shall
mostly discuss the first case which is physically more attractive, i.e.

E(p) = cp(1 + γp2 + . . .) , (26.4)

with γ > 0. Such dispersion is realized for the fermionic quasiparticles in 3He-
A for the motion in the directions transverse to l̂. If one considers pz = pF ,
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one obtains from eqn (7.58) the following dispersion of the spectrum: E2(p⊥) =
c2⊥p

2
⊥+(p2

⊥/2m
∗)2. This gives γ−1 = 8(m∗c⊥)2, which shows that in this particu-

lar case the role of the Planck momentum, which scales the non-linear correction
to the spectrum, is played by pPlanck = m∗c⊥. The same expression is obtained
for a weakly interacting Bose gas, where the quasiparticle spectrum in eqn (3.17)
is E2(p) = c2p2 + (p2/2m)2.

In this case of positive dispersion parameter γ > 0, the group velocity of
massless quasiparticle is always ‘superluminal’:

vG = dE/dp = c
(

1 + 3γp2
)

> c . (26.5)

That is why there is no true horizon for quasiparticles: they are allowed to leave
the black-hole region. It is, hence, a horizon only for quasiparticles living ex-
clusively in the very low-energy corner p ≪ pPlanck; they are not aware of the
possibility of the ‘superluminal’ motion. Nevertheless, even the mere fact that
there is a possibility of superluminal propagation at high energy is instrumental
for an inner observer, who lives deep within the relativistic domain. Some phys-
ical results arising from the fact that γ > 0 do not depend on the value of γ (see
Sec. 30.1.5).

The Landau critical velocity (26.1) for quasiparticles with spectrum (26.4) co-
incides with the ‘speed of light’, vLandau = c. Thus the ergosurface is determined
by the same equation vs(r) = c, as for fully relativistic quasiparticles.

26.1.6 Landau velocity, ergoregion and horizon in case of subluminal
dispersion

In superfluid 4He the negative dispersion of the quasiparticle spectrum is realized,
γ < 0, with the group velocity vG = dE/dp < c (we ignore here a possible
small upturn of the spectrum at low p in Fig. 6.1). In such superfluids the
‘relativistic’ ergosurface at vs(r) = c does not coincide with the true ergosurface,
at vs(r) = vLandau, since the Landau velocity is determined by the roton part of
the spectrum in Fig. 6.1: vLandau ≈ E(p0)/p0, where p0 is the position of the roton
minimum. vLandau is about four times less than c. In the case of radial flow inward,
the true ergosphere occurs at vs(r) = vLandau < c. There is also the inner surface
vs(r) = c, which marks the true horizon, since c is the maximum attainable speed
for all quasiparticles (Fig. 32.3). This is in contrast to relativistically invariant
systems, for which the ergosurface for a purely radial gravitational field of the
chargless non-rotating black hole.

26.2 Analog of pair production in strong fields

Different values of the Landau velocity in 3He-A for different orientations of the l̂-
vector, eqn (26.2) and eqn (26.3), reflect the double role played by the superfluid
velocity vs in the effective low-energy theory of Fermi systems. According to
eqns (9.11–9.15) vs enters both the metric field and the potential of the effective

electric field: A0 = pF l̂ · vs. The latter disappears only when the superflow is
exactly orthogonal to l̂. For massless fermions any non-zero value of the potential
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A0 leads to the formation of fermions from the vacuum, that is why vLandau = 0
if l̂ · vs 6= 0.

An analog of the creation of massive fermions in strong fields is presented by
3He-B, whose spectrum (7.49–7.50) is fully gapped. The Doppler-shifted energy
spectrum in the container frame is

Ẽ(p) = ±
√

M2(p) + c2p2 + p · vs ≈ ±
√

v2
F (p− pF )2 + ∆2

0 + pF p̂ · vs . (26.6)

This spectrum is non-relativistic; nevertheless the velocity term acts in a manner
similar to the potential A0 of an electric field, especially if the direction of the
momentum p̂ is fixed. The quasiparticles are created when the Landau velocity
vLandau ≈ ∆0/pF is reached somewhere in space. This corresponds to the case
when the depth of the potential well created by the effective A0(r) for the massive
fermions becomes comparable to their rest energy M(= ∆0). A superfluid analog
of the pair creation in a constant electric field – the Schwinger pair production
– has been discussed by Schopohl and Volovik (1992).

26.2.1 Pair production in strong fields

Let us start with relativistic fermions. In nuclear physics a deep potential well can
be obtained during the collision of two heavy bare nuclei with the total charge
Z greater than the supercritical Zc, at which the electron bound state enters the
continuum spectrum in the ‘valence’ band with energy E < −M (Gershtein and
Zel’dovich 1969) [156]), and the production of electron–positron pairs from the
vacuum becomes favurable energetically.

Let us recall the essential features of the Gershtein and Zel’dovich (1969)
mechanism of pair production in strong fields [156] (see Calogeracos et al. (1996)
for a detailed review). Consider an electron-attractive potential produced by a
heavy bare nucleus, which has a vacant discrete level (Fig. 26.2(a)). The potential
increases in strength when the second nucleus approaches. The level will cross
E = 0 for some value of the potential, but there is nothing critical happening
during the crossing. For some greater value the level crosses E = −M and thus
merges with the negative energy continuum – the valence band according to
the terminology of solid-state physics (Fig. 26.2(b)). The vacant state is now
occupied by an electron from the negative energy continuum, which means that
the electron vacancy (positron) occupies a scattering state and escapes to infinity
(Fig. 26.2(c)). When the second nucleus goes away, the potential becomes weak
again (Fig. 26.2(d)) and the level returns to its original position, but the bound
state is now filled by an electron. During the whole cycle the total electric charge
is conserved, since both a positron and an electron are created, with the positron
escaping to infinity and the electron filling the bound state.

26.2.2 Experimental pair production

The production of the electron–positron pairs has an analog in superfluids and
superconductors, where it is called pair breaking, since it can be described as the
breaking of a Cooper pair into two quasiparticles. The experiments, in which the
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Fig. 26.2. Pumping of electron–positron pairs from the Dirac sea using
draw-well.

mechanism of the pair production is similar to the Gershtein–Zel’dovich mecha-
nism, have been conducted by Castelijns et al. (1986) and Carney et al. (1989).
A cylindrical wire was vibrating in superfluid 3He-B and the pair production was
observed when the amplitude of the velocity of the wire exceeded some critical
value. Since the Bogoliubov–Nambu fermions in 3He-B are in many respects sim-
ilar to Dirac electrons, we can map the quasiparticle radiation by a periodically
driven wire in a supercritical regime to the particle production in an alternating
electric field.

Let us discuss the rough model of how pair creation occurs in 3He-B when
the wire is oscillating with velocity v = v0 cos(ωt) (Lambert 1990; Calogeracos
and Volovik 1999b). There are two features of the energy spectrum which are
important: the continuous spectrum at |E| > ∆0 and bound states which appear
near the surface of the wire, where the gap is reduced providing the potential well
for quasiparticles in Fig. 26.3 and Fig. 26.4(a). Let ∆0−ǫ be the energies of bound
states in the range ∆0 > ∆0 − ǫ ≥ ∆0 − ǫ0 ≥ 0. When the wire is oscillating, in
the reference frame of the wire which can serve as an environmentthe the energy
spectrum exhibits the Doppler shift. The velocity field around the wire is non-
uniform: it equals the velocity of wire v at infinity and reaches the maximal value
αv near the surface of the wire (for a perfect cylindrical wire α = 2). That is why
in the frame of the wire the continuous spectrum in the bulk and bound state
energies at the surface are Doppler shifted in a different way, with the maximal
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Fig. 26.3. Bound states at the surface of the superfluid. ∆0 − ǫ0 is the lowest
bound state.

shift ∆0 → ∆0 ± pF |v| and ∆0 − ǫ → ∆0 − ǫ ± αpF |v| in the bulk and at the
surface correspondingly (Fig. 26.4(b)).

When the velocity of the wire increases one can reach the point where the
unoccupied lowest bound state level with the energy ∆0−ǫ0−αpF |v| merges with
the negative energy continuum in the bulk at −∆0 + pF |v| (Fig. 26.4(c)). Then
the vacant state is now occupied by a quasiparticle from the negative energy
continuum, while the quasihole escapes to infinity (Fig. 26.4(d)). After half a
period the velocity of the wire becomes zero and the energy levels return to their
original positions in Fig. 26.4(a). But a pair of quasiparticles have been created:
one of them occupies the bound state at the surface, and the other is radiated
away. The critical velocity, at which this mechanism of pair breaking occurs, is
v0 = (2∆0−ǫ0)/(1+α)pF . The measured pair-breaking critical velocity, at which
the quasiparticle emission has been observed by Castelijns et al. (1986), Carney
et al. (1989) and Fisher et al. (2001), appeared to be close to v0 = ∆0/3pF . This
corresponds to a perfect cylindrical wire, where α = 2, and a strongly suppressed
gap at the surface, i.e. ∆0 − ǫ0 = 0.

26.3 Vortex formation

26.3.1 Landau criterion for vortices

Nucleation of vortices remains one of the most important problems in quantum
liquids, with possible application to the formation of cosmic strings, magnetic
monopoles and other topological defects in cosmology and quantum field theory.

From the energy consideration the formation of vortices becomes possible
when the Landau criterion applied for the energy spectrum of vortices is reached.
The energy spectrum of the vortex ring at T = 0 can be found from the equations
for the energy and momentum of the ring in terms of its radius R:

Ẽ = E(R) + vs · p(R) , (26.7)
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E(R) =
1

2
mnκ2R ln

R

Rcore
, (26.8)

p(R) = πmnκR2p̂ . (26.9)

Here E(R) is the loop energy in the superfluid-comoving frame; E(R)/2πR is
the line tension; Rcore is the core radius; Ẽ is the loop energy in the reference
frame of the boundaries of the container (the environment frame) in which the
normal component velocity is zero in a global equilibrium, vn = 0; the linear
momentum p(R) of the loop is directed perpendicular to the plane of the vortex
ring.

From eqn (26.1) it follows that the Landau critical velocity for nucleation of
vortex rings vLandau = min[E(R)/p(R)] = 0. For any non-zero velocity vs of the
flow of the superfluid vacuum with respect to the container, the energy Ẽ of the
vortex ring in the frame of the container becomes negative if the momentum (or
the radius) of the vortex ring is large enough. A finite value of the Landau velocity
is obtained if one takes into account the finite dimension of the container which
provides the infrared cut-off for the Landau velocity: vLandau ∼ κ/Rcontainer.



330 LANDAU CRITICAL VELOCITY

R
R0Rsph

E
~

(quantum tunneling)
instanton

sphaleron

Fig. 26.5. Energy Ẽ = E + p · vs of a vortex ring in the laboratory frame in
the presence of superflow in eqn (26.7). Three states of the vortex loop are
important. The state with zero radius R = 0 and energy Ẽ = 0 is the vor-
tex-free vacuum state. The vortex ring with radius Rsph (eqn (26.10)) is the
sphaleron. It is the saddle-point solution. The energy of the sphaleron deter-
mines the energy barrier and thus the thermal activation rate exp−(Ẽsph/T ).
At low T thermal activation is substituted by quantum tunneling from the
state with R = 0 to the vortex ring with radius R = R0 given by eqn (26.19),
whose energy is also zero, Ẽ = 0.

In reality the observed critical velocities for nucleation of singular vortices
in 3He-B are larger by several orders of magnitude (Parts et al. 1995b). This
demonstrates that the energetical advantage for the nucleation of a vortex ring
does not mean that vortex loops will be really nucleated. The vortex loop of
large radius must be grown (together with the singularity in the core) from an
initially smooth configuration. This requires the concentration of a large energy
within a small region of the size of the core of the defect. Such a process involves
an energy barrier (see Fig. 26.5), which must be overcome either by quantum
tunneling or by thermal activation.

26.3.2 Thermal activation. Sphaleron

Thermal nucleation of vortices in the presence of counterflow was calculated by
Iordanskii (1965).

In general, a thermally activated topological defect, which is the intermediate
object between two vacuum states with different topological charges, is called a
sphaleron (see the review paper by Turok 1992). It is the thermodynamically
ustable, saddle-point stationary solution of, say, Ginzburg–Landau equation or
other Euler–Lagrange equations. In superfluids, the sphaleron is represented by
a metastable vortex loop, which, being the saddle-point solution, is stationary
in the heat-bath frame. It is the critical vortex ring at the top of the barrier
(Fig. 26.5). It represents the stationary solution of the equations in the presence
of the counterflow vn − vs, and satisfies the thermal equilibrium conditions. Let
us recall that in the global equilibrium the normal component velocity vn must
be zero in the frame of the container, while all the objects must be stationary in
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this frame. At the top of the barrier the group velocity of the vortex ring is zero,
dẼ/dp = 0, and thus the ring is at rest in the heat-bath frame of the normal
component. However, this thermal equilibrium state is locally unstable: the ring
as the saddle-point solution will either shrink or grow.

The radius and the energy of the sphaleron are

Rsph =
κ

4π|vs − vn|
ln
Rsph

Rcore
, Ẽsph =

1

2
mnsκ

2Rsph ln
Rsph

Rcore
. (26.10)

The energy of the sphaleron determines the thermal activation rate, e−Ẽsph/T .
In a toroidal geometry the sphaleron is shown in Fig. 26.6(d). If the length

of the toroidal channel is large enough, the intermediate saddle-point solution
corresponds to a straight vortex line, which has the maximum length and thus the
maximum energy among all intermediate vortices in Fig. 26.6. If the vortex has
elementary circulation quantum, κ = κ0, then the sphaleron is the intermediate
object between the initial and final vacua with topological charges n1 and n1−1,
which describe the circulation of the superflow along the channel.

In superfluid 3He-B thermal nucleation is practically impossible, because of
(i) the low temperature; and (ii) the huge barrier. The vortex ring is well deter-
mined only when its radius exceeds the core radius, which for the singular vortex
is of order ξ, and for the continuous vortex-skyrmion is of order of dipole length
ξD. As a result the maximal activation rate is about exp(−106) for a singular
vortex and exp(−109) for a continuous one. This is too small in any units. Ther-
mal activation or quantum tunneling can assist the nucleation only in the very
closest vicinity of the instability threshold, where the energy barrier is highly
suppressed. However, in this region external perturbations appear to be more
effective.

26.3.3 Hydrodynamic instability as mechanism of vortex formation

Since thermal activation, and also quantum tunneling, are excluded from consid-
eration in superfluid 3He, the only remaining mechanism is local hydrodynamic
instability of the laminar superfluid flow. This means that the threshold of the
instability is determined not only by the Landau criterion, which marks the ap-
pearance of the negative energy states, but also by the requirement that the
energy barrier between the initial vacuum state and the negative energy state
disappears.

One can estimate the threshold of instability. According to eqn (26.10) the
barrier for vortex nucleation in Fig. 26.5 disappears at such velocities where the
radius of the sphaleron (the critical vortex ring) becomes comparable to the
core size of the vortex:

vc ∼ κ

2πRcore
. (26.11)

At this velocity topology no longer supports the barrier between the vortex
and vortex-free states. Let us stress that this is not the general rule for many
reasons, in particular: (i) though at Rsph ∼ Rcore the topology no longer provides



332 LANDAU CRITICAL VELOCITY

initial vacuum final vacuum

sphaleron

n1

n1n1–1

n1–1

n1–1

n1–1

n1–1(a)

(b)

(c)

(d)

(e)

(f)

(g)

n1

n1

n1

Fig. 26.6. (a–g) A vortex segment nucleated at the wall of the channel sweeps
the cross-section of the channel and annihilates at the wall. If the vortex
winding number is n1 = 1, the topological charge of the vacuum – the circu-
lation along the channel – changes in this process from κ0n1 to κ0(n1 − 1).
The vortex serves as an intermediate object in the process of transition be-
tween vacuum (a) and vacuum (g), which have different topological charges.
If the transition from (a) to (g) occurs via quantum tunneling, the process
is called an instanton. If the transition occurs via thermal activation, the
intermediate saddle-point stationary configuration (d) is called a sphaleron.
Its energy determines the energy barrier between the two vacua.

the energy barrier for vortex nucleation, the non-topological barriers are still
possible; (ii) the vortex formation can start earlier because of the roughness of
the walls of container where the local superfluid velocity is enhanced.

Nevertherless the general trend is confirmed by experiments in three different
liquids with substantially different sizes of the core (Fig. 26.7): in superfluid
4He, Rcore ∼ a0, the interatomic space; in 3He-B, Rcore ∼ ξ; and in the case
of continuous vortex-skyrmions in 3He-A, Rcore ∼ ξD. The large difference
in critical velocities for nucleation of singular vortices in 3He-B and vortex-
skyrmions in 3He-A allows for the creation of the interface between rotating
3He-A and stationary 3He-B in Fig. 17.9.

26.4 Nucleation by macroscopic quantum tunneling

26.4.1 Instanton in collective coordinate description

In superfluid 4He the typical temperature is three orders of magnitude higher
than in 3He-B, while the minimal radius of the vortex loop is three orders of
magnitude smaller. That is why the vortex formation by thermal activation and
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Fig. 26.7. Critical velocity of vortex formation in three different superfluids as
a function of the size Rcore of the core of nucleated vortices (after Parts et
al. 1995b). Solid line is eqn (26.11).

even by quantum tunneling is possible. The parameters of high-temperature
superconductors can also be favorable for this.

Macroscopic quantum nucleation of extended or topological objects is an in-
teresting phenomenon not just in condensed matter: in cosmology the quantum
nucleation of the Universe and black holes is considered; in RQFT the corre-
sponding object is an instanton (Belavin et al. 1975). Quantum nucleation of
vortices bears both features of instantons in RQFT. (i) It is the process of quan-
tum tunneling through a barrier. (ii) It is the tunneling between vacuum states
with different topology. In the toroidal geometry (Fig. 26.6), in the process of
tunneling between the flow states with winding numbers n1 and n1−1, the vortex
segment with winding number n1 = 1 is nucleated at the wall of the container,
sweeps the cross-section of the channel, and finally is annihilated at the wall.

The instanton is usually described by quantum field theory. But in many cases
one can find the proper collective coordinates, and then the instanton is reduced
to the process of quantum tunneling of a single effective particle instead of a field.
Vortex nucleation in superfluid 4He was calculated using both approaches, which
gave very similar results: using the many-body wave function, which corresponds
to quantum field theory (Sonin 1973); and in terms of collective coordinates for
the vortex ring (Volovik 1972).

26.4.2 Action for vortices and quantization of particle number in quantum
vacuum

The tunneling exponent is determined by the classical action for the vortex. This
action is the same as in a classical perfect liquid:
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S =

∫

dt Ẽ{rL} + κρVL{rL} . (26.12)

Ẽ in the first term is the energy of the vortex loop – the total hydrodynamic
energy

∫

d3r(1/2)ρv2
s of the superflow generated by the vortex. The energy de-

pends on the position of the elements of the vortex line rL(t, l), where l is the
coordinate along the vortex line; ρ = mn is the mass density of the liquid. In
the infinite liquid the energy of the vortex loop is given by eqn (26.7).

The second term is topological, where κ = n1κ0, and VL is the volume
bounded by the area swept by the vortex loop between nucleation and anni-
hilation (Rasetti and Regge 1975):

VL{rL} =
1

3

∫

dt dl rL · (∂trL × ∂lrL) . (26.13)

The volume law for the topological part of vortex action follows from the general
laws of vortex dynamics governed by the Magnus force; variation of the volume
term leads to the classical Magnus force (18.27) acting on the vortex

FM = −κρδVL

δrL
= κρ∂lrL × vL , (26.14)

where vL = ∂trL is the velocity of the vortex line. This force is of topological
origin and thus depends only on fundamental parameters of the system (see also
eqn (18.24) for the similar volume law in the anomalous action: the axial anomaly
is determined by the term in action which is proportional to the volume of the
extended (r,p) space – the phase space). An inner observer living in the liquid
who can measure the circulation around the vortex line and the force acting
on the vortex would know such a fundamental quantity of the ‘trans-Planckian’
world as the mass density of the ‘Planck’ liquid.

The volume law for the topological action is a property of global vortices
where the field vs generated by a vortex line is not screened by the gauge field. For
local cosmic strings and for fundamental strings the action is determined by the
area swept by the string (Polyakov 1981). For vortices, the area law is obtained
when the kinetic energy term (1/2)MLv

2
L (where ML is the mass of a vortex)

is larger than the topological term. Vortex formation by quantum tunneling in
this situation is similar to nucleation of electron–positron pairs in the presence
of uniform electric field (Davis 1992).

For a quantized vortex in a quantum liquid, the topological volume term in
action is related to quantization of the number of original bare particles com-
prising the vacuum, Nvac = nV , where V is the total volume of the system. This
relation follows from the multi-valuedness of the topological action: ambiguity
of the action with respect to the choice of the volume swept by the loop. For
the closed loop nucleated from a point and then shrunk again to a point, it can
be the volume VL inside the surface swept by the loop, or the complementary
volume VL − V outside the surface (we have written VL − V instead of V − VL

since the sign of the volume is important). The multi-valuedness of the action
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has no consequences in classical physics, because the constant term is added to
the action, when VL is shifted to VL − V . But in quantum mechanics this shift
leads to an extra phase of the wave function of the system. Since the exponent
eiS/h̄ should not depend on the choice of the volume, the difference between the
two actions must be a multiple of 2πh̄:

S(VL) − S(VL − V ) = mκ0n1Nvac = 2πh̄p , (26.15)

where p is integer. In the same manner the Wess–Zumino action for ferromagnets
in eqn (6.14) leads to the quantization of spin: M = ph̄/2.

For 4He, where κ0 = 2πh̄/m, eqn (26.15) suggests that for any winding
number n1 the quantity Nvacn1 must be integer, and thus gives an integral value
of Nvac. Equation (26.15) also gives the relation between the angular momentum
of the liquid and Nvac in the presence of a rectilinear vortex with winding number
n1:

Lz =
h̄

2
p = h̄n1Nvac . (26.16)

For superfluid 3He-B (or s-wave superfluids), where Cooper pairing takes
place and thus the mass of the elementary boson – the Cooper pair – is twice the
mass of the 3He atom (or electron), the circulation quantum is κ0 = 2πh̄/2m.
As a result Nvacn1 = 2p, i.e. the same arguments prescribe an even number of
atoms in the vacuum. This is justified, because with an odd number of atoms
there is one extra atom that is not paired, and thus instead of the pure vacuum,
the ground state represents the vacuum plus matter – a quasiparticle with energy
∆0. The action in eqn (26.12) is applicable to the vacuum state only. Equation
(26.16) relating angular momentum of the vortex to winding number n1 and the
number of particles in this system becomes Lz = (h̄/2)n1Nvac in agreement with
eqn (14.19).

In general, if the mass of the elementary boson is km, where k is integer,
the number of atoms in the vacuum must be a multiple of k, and the circulation
quantum is κ0 = 2πh̄/km. The topological action for the vortex with winding
number n1 becomes

Stop = 2πh̄
n1

k
N , (26.17)

where N is the number of atoms in the volume bounded by the area swept by
the vortex loop between nucleation and annihilation.

26.4.3 Volume law for vortex instanton

In quantum tunneling the action along the instanton trajectory contains an imag-
inary part, which gives the nucleation rate Γ ∝ e−2ImS/h̄. For nucleation of vor-
tices at T = 0 as well as for radiation of quasiparticles from the vacuum, we need
two competing reference frames. One of them is provided by the superfluid vac-
uum. If only the homogeneous vacuum is present, its motion can be gauged away
by Galilean transformation to obtain the liquid at rest. Thus we need another ref-
erence frame – the frame of the environment which violates Galilean invariance.
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Fig. 26.8. Left: Two vortex trajectories with Ẽ = 0 around the pinning site with
the shape of a hemisphere. Rf (z) is the trajectory of the vortex ring with zero
energy whose radius is close to R0. Ri(z) is the trajectory which corresponds
to the vortex-free state. The vortex ring has zero radius outside the pinning
site, while at the pinning site the radius follows the spherical shape of the
pinning site. Such a trajectory can be obtained as the limit of trajectories with
Ẽ > 0 when Ẽ → 0. Two trajectories with Ẽ = 0 are separated by the region
where the vortex has positive energy. The sphaleron saddle-point solution in
this region is shown by the filled circle. Right: Two vortex trajectories with
Ẽ = 0 meet each other on the imaginary axis z = iζ. The integral along the
path gives the rate of the macroscopic quantum tunneling of the vortex from
the initial trajectory Ri(z) through the energy barrier to the final trajectory
Rf (z). The tunneling exponent is proportional to the number of atoms inside
the surface swept by the vortex ring.

It can be provided by an external body, by texture of the order parameter, by the
normal component or by boundaries of the vessel. Let us consider the quantum
nucleation of a vortex line in the simplest geometry of a smooth wall with one
pinning site on the wall providing the preferred reference frame (Volovik 1972).
Choosing the pinning site in the form of a hemisphere of radius r0 (Fig. 26.8 left),
one can eliminate the plane boundary by reflection in the plane, and the problem
becomes equivalent to the superfluid vacuum moving with respect to the static
spherical body with the velocity at infinity vs(∞) = v0ẑ. The superfluid motion
is stationary, i.e. time independent in the frame of the body.

We shall use the collective coordinate description of the tunneling in which all
the degrees of quantum field theory are reduced to the slowest ones corresponding
to the bosonic zero mode on a moving vortex loop. Because of the spherical
symmetry of the impurity the nucleated vortex loop will be in the form of a
vortex ring whose plane is oriented perpendicular to the flow. The zero mode
is described by two collective coordinates, the radius of the loop R and the
position z of the plane of the vortex ring. According to the topological volume
term in the action in eqns (26.12) and (26.13), these variables can be made
canonically conjugate, since the momentum of the vortex ring, directed along
ẑ, is determined by its radius, pz = πρn1κ0R

2 (see eqn (26.9)). The topological
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term in the action in such a simple geometry is the adiabatic invariant

Stop(VL) =

∫

dz pz . (26.18)

There are two important trajectories, the initial and final, zi(R) and zf(R)
(Fig. 26.8 left). Both have zero energy with respect to the energy of the moving
liquid. The trajectories are separated by the energy barrier and can be connected
only if the coordinate z is extended to the complex plane (Fig. 26.8 right). The
trajectory zi(R) asymptotically corresponds to the vortex-free vacuum state,
while zf(R) corresponds to the vortex moving away from the pinning site. Far
from the pinning center the energy of the vortex loop of radius R (Fig. 26.8 left)
is given by eqn (26.7).

The vortex nucleated from the vacuum state must have zero energy, Ẽ = 0.
This determines the radius of the nucleated vortex:

R0 =
|κ|

2πv0
ln
R0

a0
, (26.19)

where a0 is interatomic space which determines the core size in 4He. Thus far
from the pinning center the trajectory in the final state is Rf(z) = R0 and does
not depend on z.

The initial state trajectory corresponding to the vacuum state can be ap-
proximated by the vortex loop moving very close to the surface of the spherical
body, in the layer of atomic size a0. Its trajectory is thus z2 + R2 = r20 , or
Ri(z) =

√

r20 − z2. On the imaginary axis z = iζ, the radius of the vortex on
such a trajectory can reach the size R0 of the moving vortex, and thus the tra-
jectory Ri(z) crosses the trajectory Rf(z) = R0 in the complex plane (Fig. 26.8
right). The tunneling exponent is produced by the change of the action along the
path on imaginary axis z = iζ. If R0 ≫ r0, in the main part of the trajectory one
has Ri(z) = iζ and the tunneling exponent is given by the topological action:

2ImS = 2Im

∫

dz(pzf(z) − pzi(z)) = 4πκ0n1ρ

∫ R0

0

dζ (R2
0 − ζ2) (26.20)

=
8π2

3
h̄n1nR

3
0 = 2πh̄n1N0 . (26.21)

Here we introduced the effective number of atoms N0 involved in quantum nucle-
ation of the vortex loop. In the considered limit v0 ≪ κ0n1/r0 this number does
not depend on the size r0 of the impurity: N0 = n(4π/3)R3

0. It is the number of
atoms within the solid sphere whose radius coincides with the radius R0 of the
nucleated vortex loop. This reflects the volume law of the topological term in
the action for vortex dynamics.

The volume law for the tunneling exponent was also found by Sonin (1973),
who calculated the tunneling rate Γ = e−2ImS as the overlapping integral of two
many-body wave functions, Γ = |〈Ψf |Ψi〉|2, where the initial state represents the
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vortex-free vacuum, and the final state is the vacuum with the vortex. The effec-
tive action ImS was then minimized with respect to the velocity field around the
vortex. The extremal trajectory corresponds to the formation of the intermediate
state of the vortex line with the deformed velocity field around the vortex loop.
The resulting effective particle number N0 is logarithmically reduced compared
to eqn (26.21) obtained in the collective coordinate description, which assumed
the equilibrium velocity field:

2ImS/h̄ = 2πn1N0 , N0 =
27

π ln R0

a

nR3
0 . (26.22)

The linear dependence of the tunneling exponent on the number N0 of parti-
cles, effectively participating in the tunneling, was also found in other systems.
For example, it was found by Lifshitz and Kagan (1972) and Iordanskii and
Finkelstein (1972) for the quantum nucleation of the true vacuum from the false
one in quantum solids.

Experiments on vortex nucleation in superfluid 4He and their possible inter-
pretation in terms of quantum tunneling are discussed in the review paper by
Avenel et al. (1993). The problem of vortex tunneling was revived due to ex-
periments on vortex creep in superconductors (see the review paper by Blatter
et al. 1994). For the vortex tunneling in superconductors, and also in fermionic
superfluids such as 3He-A and 3He-B, the situation is more complicated because
of the fermion zero modes in the vortex core discussed in Part V, which lead
to the spectral flow. Nucleation of vortices is supplemented by the nucleation
of fermionic charges, as happens in the instanton process in RQFT. Also the
entropy of the fermion zero modes is important: it increases the probability of
quantum nucleation of vortices in the same manner as discussed by Hawking et
al. (1995) for quantum nucleation of black holes.



27

VORTEX FORMATION BY KELVIN–HELMHOLTZ

INSTABILITY

In the presence of the flexible surface the critical velocity of the hydrodynamic
instability becomes substantially lower. The free surface of the superfluid liquid
or the interface between two superfluids provides the new soft mode which be-
comes unstable in the presence of the counterflow. This is the Kelvin–Helmholtz
(KH) type of instability (Helmholtz 1868; Kelvin 1910). It gives the reasonably
well-understood example of the vortex formation in superfluids, which has been
later used to study new phenomena related to the turbulence of vortex lines, such
as velocity independent Reynolds number, vortex front propagation, etc. (Eltsov
et al. 2006, 2008). We shall modify the result obtained for classical liquids to
our case of superfluid liquids. In Chapter 32.3 we shall see that there is a close
relation between the KH instability in superfluids and the physics of black holes
on the brane between two quantum vacua.

27.1 Kelvin–Helmholtz instability in classical and quantum liquids

27.1.1 Classical Kelvin–Helmholtz instability

Kelvin–Helmholtz instability belongs to a broad class of interfacial instabilities
in liquids, gases, plasma, etc. (see the review paper by Birkhoff 1962). It refers
to the dynamic instability of the interface of the discontinuous flow, and may
be defined as the instability of the vortex sheet. Many natural phenomena have
been attributed to this instability. The most familiar ones are the generation by
the wind of waves in water, whose Helmholtz instability was first analyzed by
Lord Kelvin (1910), and the flapping of sails and flags analyzed by Lord Rayleigh
(1899).

Many of the leading ideas in the theory of instability were originally inspired
by considerations about inviscid flows. The corrugation instability of the inter-
face between two ideal liquids sliding along each other was investigated by Lord
Kelvin (1910). The critical relative velocity |v1 − v2| for the onset of instability
toward generation of surface waves (the capillary–gravity waves) is given by

1

2

ρ1ρ2

ρ1 + ρ2
(v1 − v2)

2 =
√
σF . (27.1)

Here σ is the surface tension of the interface between two liquids; ρ1 and ρ2 are
their mass densities; and F is related to the external field stabilizing the position
of the interface: in the case of two liquids it is the gravitational field

F = g(ρ1 − ρ2) . (27.2)
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The surface mode which is excited first has the wave number corresponding to
the inverse ‘capillary length’

k0 =
√

F/σ , (27.3)

and frequency

ω0 = k0
ρ1v1 + ρ2v2
ρ1 + ρ2

. (27.4)

From eqn (27.4) it follows that the excited surface mode propagates along the
interface with the phase velocity vphase = (ρ1v1 + ρ2v2)/(ρ1 + ρ2).

However, among the ordinary liquids one cannot find an ideal one. That is
why in ordinary liquids and gases it is not easy to correlate theory with ex-
periment. In particular, this is because one cannot properly prepare the initial
state – the plane vortex sheet is never in equilibrium in a viscous fluid; it is not
the solution of the hydrodynamic equations. This is why it is not so apparent
whether one can properly discuss its ‘instability’.

Superfluids are the only proper ideal objects where these ideas can be im-
plemented without reservations, and where the criterion of instability does not
contain viscosity. Recently the first experiment has been performed with two
sliding superfluids, where the non-dissipative initial state was well determined,
and the well-defined threshold was reported by Blaauwgeers et al. (2002). The
initial state is the non-dissipative vortex sheet separating two sliding superfluids
in Fig. 17.9 bottom. One of the superfluids performs the solid-body-like rotation
together with the vessel, while in the other one the superfluid component is in
the so-called Landau state, i.e. it is vortex free and thus is stationary in the in-
ertial frame. The threshold of the Kelvin–Helmholtz type of instability has been
marked by the formation of vortices in the vortex-free stationary superfluid: this
initially stationary superfluid starts to spin up due to the neighboring rotating
superfluid.

27.1.2 Kelvin–Helmholtz instabilities in superfluids at low T

The extension of the consideration of classical KH instability to superfluids adds
some new physics, which finally leads to the possibility of simulation of the
black-hole event horizon and ergoregion (Chapter 32.3). First of all, it is now
the two-fluid hydrodynamics with superfluid and normal components which must
be incorporated. Let us first consider the limit case of low T , where the fraction
of the normal component is negligibly small, and thus the complication of the
two-fluid hydrodynamics is avoided. In this case one may guess that the classical
result (27.1) obtained for the ideal inviscid liquids is applicable to superfluids too,
and the only difference is that in the experiments by Blaauwgeers et al. (2002)
the role of gravity in eqn (27.2) is played by the applied gradient of magnetic
field H , which stabilizes the position of the interface between 3He-A and 3He-B
(see Fig. 27.1):

F =
1

2
∇
(

(χA − χB)H2
)

. (27.5)

Here χA and χB are magnetic susceptibilities of the A- and B-phases respectively.
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Fig. 27.1. Regulation of the ‘gravity’ field F in experiments by Blaauwgeers
et al. (2002). The role of gravity is played by the gradient of magnetic field
in eqn (27.5). The position z0 of the interface is determined by the equation
H(z0) = HAB(T ), where HAB(T ) marks the first-order phase transition line
between A- and B-phases in the (H,T ) plane (left). When the temperature T
is varied (or the magnitude of the field regulated by the valve current I) the
position z0(T ) of the interface is shifted changing the field gradient dH/dz at
the position of the interface. The plane z = z1, where also H(z0) = HAB(T ),
separates the region where the 3He-A vacuum is true (z < z1) and false
(z > z1). The false (metastable) state appears to be extremely stable, and is
destroyed only by ionizing radiation (see Sec. 28.1.4).

However, this is not the whole story. The criterion of KH instability in eqn
(27.1) depends only on the relative velocity of the sliding liquids. However, there
always exists a preferred reference frame of environment. It is the frame of the
container, or, if the container walls are far away, the frame where the inhomo-
geneity of magnetic field H is stationary. Due to interaction of the interface with
the environment, the instability can start earlier. The energy of the excitations of
the surface, ripplons (quanta of the capillary–gravity waves), becomes negative
in the reference frame of environment before the onset of the classical KH in-
stability. The new criterion, which corresponds to appearance of the ergoregion,
will depend on the velocities of superfluid vacua with respect to the preferred
reference frame of environment. Only if this interaction is neglected will the KH
criterion (27.1) be restored. The latter corresponds to the appearance of the
metric singularity in general relativity, as will be discussed in Chapter 32.3.

Let us consider these two criteria. We repeat the same derivation as in the
case of classical KH instability, assuming the same boundary conditions, but
with one important modification: in the process of the dynamics of the interface
one must add the friction force arising when the interface is moving with respect
to the preferred reference frame of the environment – the frame of container
walls, which coincides with the frame of the stable position of the interface. The
instability criterion should not depend on the form and magnitude of the friction
force; the only requirement is that it is non-zero and thus the interaction with
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the preferred reference frame of the environment is established in the equations
of two-fluid dynamics. That is why we choose the simplest form

Ffriction = −Γ (∂tζ − vnz) , (27.6)

where ζ(x, y, t) is perturbation of the position of the interface in the container
frame. It is assumed that the z axis is along the normal to the interface (see
Fig. 27.1), and the normal component velocity is fixed by the container walls,
vnz) = 0. The friction force in eqn (27.6) is Galilean invariant if the whole
system – AB-interface and container – are considered. For the interface alone,
the Galilean invariance is violated if Γ 6= 0. This reflects the interaction with
the environment which provides the preferred reference frame. This symmetry
violation is the main reason for the essential modification of the KH instability
in superfluids.

The parameter Γ in the friction force has been calculated for the case where
the interaction between the interface and container is transferred by the remnant
normal component. In this case the friction occurs due to Andreev scattering of
ballistic quasiparticles by the interface (Yip and Leggett 1986; Kopnin 1987;
Leggett and Yip 1990; see Sec. 29.3 and eqn (29.18)).

The relevant perturbation is

ζ(x, t) = a sin(kx− ωt) , (27.7)

where the x axis is along the local direction of the velocities. In the rotating
container the velocities vs1 and vs2 of both superfluids are along the wall of
the container, and thus are parallel to each other. Because of the friction, the
spectrum of these surface perturbations (ripplons) is modified compared to the
classical result in the following way:

ρ1

(ω

k
− v1

)2

+ ρ2

(ω

k
− v2

)2

=
F + k2σ

k
− iΓ

ω

k
. (27.8)

or

ω

k
=
ρ1v1 + ρ2v2
ρ1 + ρ2

± 1√
ρ1 + ρ2

√

F + k2σ

k
− iΓ

ω

k
− ρ1ρ2

ρ1 + ρ2
(v1 − v2)2 . (27.9)

If Γ = 0 the instability occurs when the classical threshold value in eqn (27.1)
is reached. At this KH threshold the spectrum of ripplons with k = k0 in eqn
(27.3) acquires the imaginary part, Im ω(k) 6= 0. This imaginary part has both
signs, and thus above the classical threshold perturbations grow exponentially
in time. This is the conventional KH instability.

The frame-fixing parameter Γ changes the situation completely. Because of
the friction, the ripplon spectrum always has the imaginary part Im ω(k) 6= 0
reflecting the attenuation of the surface waves. At some velocities the imaginary
part Im ω(k) crosses zero and the attenuation transforms to amplification causing
the instability. This occurs first for ripplons with the same value of the wave
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Fig. 27.2. Sketch of imaginary and real parts of frequency of critical ripplon
(with k = k0) at the interface between 3He-A and 3He-B under the conditions
vsA = vnA = vnB = 0, and T → 0, i.e. v1 = 0, v2 = vsB 6= 0; and ρ1 = ρ2 = ρ.
The imaginary part crosses zero, and the attenuation of ripplons transforms
to the amplification, just at the same moment when the real part of the
ripplon frequency crosses zero. The region where Re ω < 0, i.e. where the
ripplon has negative energy, is called ergoregion. The slope of the imaginary
part is proportional to the friction parameter Γ. If Γ is strictly zero, and
thus the connection with the frame of the environment is lost, the surface
instability starts to develop when the classical KH criterion in eqn (27.1) is
reached.

vector, as in eqn (27.3) (see Fig. 27.2 for the case when v1 = vsA = 0 and
v2 = vsB 6= 0). The onset of instability is given by

1

2
ρ1v

2
1 +

1

2
ρ2v

2
2 =

√
σF . (27.10)

The group velocity of the critical ripplon is vgroup = dω/dk = 0, i.e. the critical
ripplon is stationary in the reference frame of the container. The frequency of
the critical ripplon is ω = 0, i.e. both the real and imaginary parts of the spec-
trum cross zero at the threshold. The negative value of the real part above the
threshold means the appearance of the ergoregion in the frame of the environ-
ment, that is why this instability is the instability in the ergoregion. We call it
the ergoregion instability.

The ergoregion instability is important for physics of rotating black holes (see
Kang 1997 and references therein). As distinct from the Zel’dovich–Starobinsky
mechanism of the black-hole ergoregion instability which will be discussed in Sec.
31.4.1, the instability of the ergoregion in the brane world of the AB-interface is
caused by the interaction with the bulk environment. The relativistic version of
this mechanism will be discussed in Sec. 32.3.
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The criterion for the ergoregion instability in eqn (27.10) does not depend on
the relative velocities of superfluids, but is determined by the velocities of each
of the two superfluids with respect to the environment (to the container or to
the remnant normal component). According to this criterion the instability will
occur even in the following cases. (1) Two liquids have equal densities, ρ1 = ρ2,
and move with the same velocity, v1 = v2. This situation is very similar to the
phenomenon of a flag flapping in the wind, discussed by Rayleigh in terms of
the KH instability – the instability of the passive deformable membrane between
two distinct parallel streams having the same density and the same velocity (see
the latest experiments by Zhang et al. 2000). [556]) In our case the role of the
flag is played by the interface, while the flagpole which pins the flag serves as the
reference frame of the environment which violates the Galilean invariance. (2)
The superfluids are on the same side of the surface, i.e. there is a free surface of a
superfluid which contains two or more interpenetrating superfluid components,
say neutron and proton components in neutron stars. (3) There is only a single
superfluid with a free surface. This situation which corresponds to ρ2 = 0 was
discussed by Korshunov (1991; 2002).

Note that eqn (27.10) does not depend on the frame-fixing parameter Γ and
thus is valid for any non-zero Γ even in the limit Γ → 0. But eqn (27.10) does not
coincide with the classical equation (27.1) obtained when Γ is exactly zero. Such
a difference between the limit and exact cases is known in many areas of physics,
where the gapless bosonic or fermionic modes are involved. Even in classical
hydrodynamics the normal mode of inviscid theory may not be the limit of a
normal mode of viscous theory (Lin and Benney 1962). Below we discuss how
the crossover between the two criteria, (27.10) and (27.1), occurs when Γ → 0.

27.1.3 Ergoregion instability and Landau criterion

Let us first compare both results, (27.10) and (27.1), with the Landau criterion
in (26.1). The energy E(p) (or ω(k)) in this Landau criterion is the quasiparticle
energy (or the mode frequency) in the superfluid-comoving frame. In our case
there are two moving superfluids, which is why there is no unique superfluid-
comoving frame. The latter appears either when instead of the interface one
considers the surface of a single liquid (i.e. if ρ2 = 0), or if both supefluids move
with the same velocity v1 = v2. In these particular cases the Landau criterion in
its simplest form must work. Using the well-known spectrum of capillary–gravity
waves on the interface between two stationary liquids

ω2(k)

k2
=

1

ρ1 + ρ2

F + k2σ

k
, (27.11)

one obtains the following Landau critical velocity:

v2
Landau = min

ω2(k)

k2
=

2

ρ1 + ρ2

√
Fσ . (27.12)

The Landau criterion coincides with eqn (27.10) for the ergoregion instability
if v1 = v2, or if ρ2 = 0 (for the case when ρ2 = 0 see Andreev and Kompaneetz
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1972). But this does not coincide with the canonical KH result (27.1): there is
no instability at v1 = v2 in the canonical KH formalism.

Let us now consider the general case when v1 6= v2, and the Landau criterion
in the form of equation (27.12), i.e. for a single superfluid velocity, is no longer
applicable. For example, in the case of v1 = 0, v2 = v, ρ1 = ρ2 = ρ one obtains:

v2
naive Landau =

1

ρ

√
Fσ , v2

ergoregion =
2

ρ

√
Fσ , v2

KH =
4

ρ

√
Fσ . (27.13)

Such a criterion agrees neither with the canonical KH criterion for Γ = 0, nor
with the ergoregion criterion for Γ 6= 0. This demonsrates that in our case of the
two sliding superfluids the Landau criterion must be used in its more fundamental
formulation given in the beginning of Chapter 26 : the instability occurs when
in the frame of the environment the frequency of the surface mode becomes zero
for the first time: ω(k; v1, v2) = 0. This corresponds to the appearance of the
ergoregion and coincides with the criterion in eqn (27.10). As distinct from
the Landau criterion in the form of (26.1) valid for a single superfluid velocity,
where it is enough to know the quasiparticle spectrum in the superfluid-comoving
frame, in the case of two or several superfluid velocities one must calculate the
quasiparticle spectrum as a function of all the velocities in the frame of the
environment.

27.1.4 Crossover from ergoregion instability to Kelvin–Helmholtz instability

The difference in the result for the onset of the interface instability in the two
regimes – with Γ = 0 and with Γ 6= 0 – disappears in the case when two su-
perfluids move in such a way that in the reference frame of the environment
the combination ρ1v1 + ρ2v2 = 0. In this arrangement, according to eqn (27.4),
the frequency of the critical ripplon created by classical KH instability is zero
in the container frame. Thus at this special condition the two criteria, original
KH instability (27.1) and ergoregion instability (27.10), must coincide; and they
really do.

If ρ1v1 + ρ2v2 6= 0, the crossover between the two regimes occurs by varying
the observation time. Let us consider this in an example of the experimental
set-up (Blaauwgeers et al. 2002) with the vortex-free B-phase and the vortex-
full A-phase in the rotating vessel. In the container frame one has v1 = vsA =
0, v2 = vsB = −Ω×r; the densities of the two liquids, 3He-A and 3He-B, are the
same with high accuracy: ρA = ρB = ρ = mn. If Γ 6= 0 the instability occurs at
the boundary of the vessel, where the velocity of the 3He-B is maximal, and when
this maximal velocity reaches the value vergoregion in eqn (27.13). This velocity
is smaller by

√
2 than that given by the classical KH equation: vergoregion =

vKH/
√

2.
From eqn (27.8) it follows that slightly above the threshold vc = vergoregion

the increment of the exponential growth of the critical ripplon is

Im ω(k0) =
Γk0

2ρ

(

vsB
vc

− 1

)

, at vsB − vc ≪ vc . (27.14)
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In the limit of vanishing frame-fixing parameter, Γ → 0, the increment becomes
small and the ergoregion instability of the interface has no time to develop if the
observation time is short enough. The interface becomes unstable only at a higher
velocity of rotation when the classical threshold of KH instability, vKH in eqn
(27.1), is reached (see Fig. 27.2). Thus, experimental results in the limit Γ → 0
would depend on the observation time – the time one waits for the interface to
be coupled to the environment and for the instability to develop. For sufficiently
short time one will measure the classical KH criterion (27.1). For example, in
experiments with constant acceleration of rotation Ω̇, the classical KH regime is
achieved if the acceleration is fast enough: Ω̇ ≫ λΓ, where λ = v3

KH/σR, and R is
the radius of the vessel. For slow acceleration, Ω̇ ≪ λΓ, the ergoregion instability
criterion (27.10) will be observed.

27.2 Interface instability in two-fluid hydrodynamics

27.2.1 Thermodynamic instability

Let us now consider the case of non-zero T , where each of the two liquids contain
superfluid and normal components. In this case the analysis requires the 2 × 2-
fluid hydrodynamics. This appears to be a rather complicated problem, taking
into account that in some cases the additional degrees of freedom related to the
interface itself must also be added. The two-fluid hydrodynamics has been used
by Korshunov (1991; 2002) to investigate of the instability of the free surface
of superfluid 4He triggered by the relative motion of the normal component of
the liquid with respect to the superfluid one. We avoid all these complications
assuming that the viscosity of the normal components of both liquids is high, as
actually happens in superfluid 3He. In this high-viscosity limit we can ignore the
dynamics of the normal components, which are clamped by the container walls.
Then the problem is reduced to a problem of the thermodynamic instability of
the superflow in the presence of the interface.

We start with the following initial non-dissipative state corresponding to the
thermal equilibrium in the presence of the interface and superflows. In thermal
equilibrium the normal component must be at rest in the container frame, vn1 =
vn2 = 0, while the superfluids can move along the interface with velocities vs1 and
vs2 (here the velocities are in the frame of the container). The onset of instability
can be found from free energy consideration: when the free energy of static
perturbations of the interface becomes negative in the frame of the environment
(the container frame) the initial state becomes thermodynamically unstable. The
free energy functional for the perturbations of the interface in the reference frame
of the container contains the potential energy in the ‘gravity’ field, surface energy
due to surface tension, and kinetic energy of velocity perturbations ṽs1 = ∇Φ1

and ṽs2 = ∇Φ2 caused by deformations of the interface:

F{ζ} =
1

2

∫

dx

(

Fζ2 + σ(∂xζ)
2 +

∫ ζ

−∞

dzρs1ikṽ
i
s1ṽ

k
s1 +

∫ ∞

ζ

dzρs2ikṽ
i
s2ṽ

k
s2

)

.

(27.15)
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For generality we discuss anisotropic superfluids, whose superfluid densities ρs =
mns are tensors. The velocity perturbation fields ṽsk = ∇Φk, obeying the conti-
nuity equation ∂i(ρ

ik
s ṽsk) = 0, have the following form:

Φ1(x, z < 0) = A1e
k1z cos kx , Φ2(x, z > 0) = A2e

−k2z cos kx ,

ρs1zk
2
1 = ρs1xk

2 , ρs2zk
2
2 = ρs2xk

2 . (27.16)

The connection between the deformation of the interface, ζ(x) = a sin kx,
and the velocity perturbations follows from the boundary conditions. Because
of the large viscosity of the normal component it is clamped by the boundaries
of the vessel. There are two possible boundary conditions for the superfluid
velocity: either the mass current across the interface is zero, or the superfluid
velocity component normal to the interface is zero. In the first case the following
boundary conditions for perturbations are obtained (Ruokola and Kopu 2005)

ρs1z∂zΦ1 = ρs1xvs1∂xζ , ρs2z∂zΦ2 = ρs2xvs2∂xζ . (27.17)

Substituting this in the free-energy functional (27.15), one obtains the quadratic
form of the free energy of the surface modes

F{ζ} =
1

2

∑

k

|ζk|2
(

F + k2σ − k

(

√

ρ3
sx1/ρsz1v

2
s1 +

√

ρ3
sx2/ρsz2v

2
s2

))

.(27.18)

This energy becomes negative for the first time for the critical ripplon with
k0 = (F/σ)1/2 when

1

2

(

√

ρ3
sx1/ρsz1v

2
s1 +

√

ρ3
sx2/ρsz2v

2
s2

)

=
√
σF . (27.19)

The alternative set of boundary conditions leads to ∂zΦ1 = vs1∂xζ, ∂zΦ2 =
vs2∂xζ and gives the following criterion for instability of the interface:

1

2

(√
ρsx1ρsz1v

2
s1 +

√
ρsx2ρsz2v

2
s2

)

=
√
σF . (27.20)

At T = 0, when the normal components of the liquids disappear and one has
ρsx1 = ρsz1 = ρ1 and ρsx2 = ρsz2 = ρ2, this transforms to the criterion (27.10) for
the ergoregion instability. Equation (27.20) reproduces the experimental data
obtained by Blaauwgeers et al. (2002) without any fitting parameters (see Fig.
27.3).

27.2.2 Non-linear stage of instability

In experiments by Blaauwgeers et al. (2002) the onset of the interface ergoregion
instability is marked by the appearance of the vortex lines in 3He-B which are
monitored in NMR measurements. Vortices appear at the non-linear stage of
the instability. The precise mechanism of the vortex formation is not yet known.
One may guess that the A-phase vorticity concentrated in the vortex layer at the
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Fig. 27.3. Critical velocity of KH type of instability of the AB-interface as a
function of T in experiments by Blaauwgeers et al. (2002). When the temper-
ature changes the equilibrium position of the interface also changes, together
with the critical velocity determined by the field gradient at the interface
playing the role of gravity. The critical velocity of the instability tends to
zero when the position of the interface approaches minimal or maximal val-
ues of the magnetic field in the cell, where dH/dz → 0 (see Fig. 27.1). Tem-
peratures at which dH/dz → 0 are marked by arrows. Three sets of data
correspond to three different values of the maximum of the applied magnetic
field, which is regulated by applying different currents Ivalve. Solid curves
are from the ergoregion instability criterion in eqn (27.20) at the conditions
vs1 ≡ vsB = ΩR, vs2 ≡ vsA = vnA = vnB = 0. No fitting parameters were
used.

interface (Fig. 17.9) bottom) is pushed by the Magnus force toward the vortex-
free B-phase region as was suggested by Krusius et al. (1994) to interpret their
experiments on vortex penetration through the moving AB-interface. When the
potential well for vortices is formed by the corrugation of the interface (see Fig.
27.4), the interfacial vortices are pushed there further deepening the potential
well until it forms the droplet of the A-phase filled by vorticity. The vortex-full
droplet propagates to the bulk B-phase where such a multiply-quantized vortex
relaxes to the singly-quantized vortex lines.

Under the conditions of the experiment, penetration of vortices into the B-
phase decreases the counterflow there below the instability threshold, and the
vortex formation is stopped. That is why one may expect that the vortex-full
droplet is nucleated during the development of the instability from a single seed.
The size of the seed is about one-half of the wavelength λ0 = 2π/k0 of the
perturbation. The number of created vortices is found from the circulation of
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Fig. 27.4. Possible scenario of vortex formation by the surface instability.

superfluid velocity carried by a piece of the vortex sheet of size λ0/2, which
is determined by the jump of superfluid velocity across the sheet: κ = |vsB −
vsA|λ0/2. Dividing this by the circulation quantum κ0 of the created B-phase
vortices, one obtains the number of vortices produced as the result of growth of
one segment of the perturbation:

N =
κ

κ0
∼ vcλ0

2κ0
. (27.21)

It is about 10 vortices per event under the conditions of the experiment. This
is in good agreement with the measured number of vortices created per event
(Blaauwgeers et al. 2002), which confirms the droplet mechanism of vortex
penetration.

Probably, the experiments on surface instability in superfluids will allow the
solution of the similar problem of the non-linear stage of instability in ordinary
liquids (see e.g. Kuznetsov and Lushnikov (1995).

The vortex formation by surface instability is a rather generic phenomenon.
It occurs in laser-manipulated Bose gases (Madison et al. 2001; Sinha and Castin
2001). It can be applied to different kinds of interfaces, in particular to the bound-
ary between the normal and superfluid liquids whose shear flow instability has
been discussed by Aranson et al. (2001), see Sec. 28.2.4. Such an interface natu-
rally appears, for example, as a boundary of a gaseous Bose–Einstein condensate,
or at the rapid phase transition into the superfluid state as will be discussed in
the next chapter.

The instability of the free surface of superfluid under the relative flow of
the normal and superfluid components of the same liquid has been recently
reexamined by Korshunov (2002), who also obtained two criteria of instability
depending on the interaction with the environment. In his case, the frame-fixing
parameter which regulates the interaction with the environment is the viscosity
η of the normal component of the liquid. For η 6= 0 the critical counterflow for
the onset of surface instability is η-independent:

1

2
ρs (vs − vn)

2
=

√
σF . (27.22)

It corresponds to eqn (27.20), but as expected it does not coincide with the
result obtained for exactly zero viscosity. The same eqn (27.22) was obtained by
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Kagan (1986) and Uwaha and Nozieres (1986) for the threshold of excitation of
crystallization waves at the solid–liquid interface by the liquid flow

1

2
ρs (vs − vsolid)

2
=

√
σF . (27.23)

The environment reference frame here is provided by the crystal lattice.
One can argue that the formation of the singular-core vortices on the rough

sample boundary (Parts et al. 1995b) is also an example of surface instability.
When the Landau criterion for quasiparticles is reached at the sharpest surface
spike, a bubble of normal liquid is created around this spike. Since the surround-
ing superfluid moves at a high relative velocity, the normal-superfluid interface
undergoes the surface instability creating vortices (Fig. 28.6 in Chapter 28).



28

VORTEX FORMATION IN IONIZING RADIATION

28.1 Vortices and phase transitions

Let us now return to vortex nucleation in a single superfluid liquid 3He-B. The
threshold vc of the hydrodynamic instability of the flow in 3He-B in Fig. 26.7,
at which vortices are nucleated, is several orders of magnitude larger than the
Landau criterion for vortex nucleation. Because of a huge energy barrier for
vortex nucleation in superfluid 3He, the energetically metastable superflow with
vs ≫ vLandau will persist on a geological time scale if vs < vc. However, Ruutu et
al. (1996a, 1998) observed that ionizing radiation helps vortices to overcome the
barrier. They found that under neutron irradiation vortices are formed below
vc, in the velocity region vneutron < vs < vc. The new experimental threshold
vneutron roughly corresponds to the Landau velocity for formation of vortices in
the confined region of the size Rb of the fireball formed by a neutron (see Fig.
28.1), vneutron ∼ κ0/πRb.

According to current belief, the vortex formation observed in the subcritical
regime v < vc under ionizing radiation occurs via the Kibble–Zurek (KZ) mech-
anism, which was originally developed to describe the phase transitions in the
early Universe. In this scenario a network of cosmic strings is formed during a
rapid non-equilibrium second-order phase transition, owing to thermal fluctua-
tions. Though it is possible that the KZ mechanism never occurred in the early
Universe, it was exploited in 3He-B experiments to study new phenomena of the
vortex turbulence (Eltsov el. 2006).

The formation of topological defects in non-equilibrium phase transitions is
a very generic phenomenon. It is sometimes called the phase ordering, which
reflects the process of the establishment of the homogeneous order parameter
state when the defects generated by the transition are decaying. That vortices are
necessarily produced in non-equilibrium phase transition can be viewed from the
general consideration of the superfluid phase transition in terms of proliferation
of vortices (Onsager 1949; Feynman 1955; see Fig. 28.2). The description of the
broken-symmetry phase transition in terms of topological defects is especially
useful for such transitions where in the low-T state the order parameter cannot
be introduced. This happens for example in 2+1 systems where the transition –
the Berezinskii–Kosterlitz–Thouless transition – is exclusively described in terms
of the unbinding of vortex pairs and formation of the vortex plasma.

28.1.1 Vortices in equilibrium phase transitions

Qualitatively the phase transition with broken U(1) symmetry can be described
as the topological transition. Let us consider the algebraic sum of the topological
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Fig. 28.1. Vortex formation in a micro Big-Bang event caused by neutron irra-
diation in experiments by Ruutu et al. (1996a).

charges n1(C) of all vortices which cross the surface σ stretched on a big loop C
as a function of the length of the loop L.

The disordered state is characterized by an infinite cluster of vortex lines
– ‘a connected tangle throughout the liquid’ according to Onsager (1949). The
number of positive and negative charges is equal on average, and thus their
algebraic sum is determined by statistical noise. Below the superfluid transition
there are finite-size vortex loops instead of the infinite cluster, and thus the
statistical properties of the topological noise become different. In the case of 2D
systems the statistical noise of the topological charges above and below the phase
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Fig. 28.2. Infinite vortex cluster in disordered state is topologically different
from the array of vortex loops in the ordered state. That is why after the
quench of the disordered state the infinite cluster persists in the superfluid
state.

transition has been discussed by Kosterlitz and Thouless (1978).
Above the phase transition the isolated point vortices form the plasma state,

so that the amplitude of the noise is proportional to the square-root of the total
number of point vortices. Thus the algebraic number of vortices in the disordered
phase is proportional the square root of area of the surface σ: |n1(L)| ∼

√

S/ξ2 ∼
L/ξ when L/ξ → ∞. In the ordered superfluid state, only pairs of vortices are
present. In this case the statistical noise |n1(L)| is produced by the number of
pairs cut by the loop C. As a result the topological charge is proportional to the
square root of the perimeter of the loop, |n1(L)| ∼ (L/ξ)1/2.

Such a difference between the superfluid (ordered) and non-superfluid (dis-
ordered) states can be expressed in terms of the loop function (see e.g. Toulouse
1979):
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g(L) =

〈

e
i(2π/κ0)

∮

C
vs·dr

〉

, (28.1)

where κ0 is the circulation quantum. In the superfluid state of 2D system the loop
function decays as g(L) ∼ e−L/ξ, while in the normal state the exponent contains

an area of the loop: g(L) = e−L2/ξ2

(application to the disordered Larkin-Imry-
Ma state of 3He-A in aerogel has been discussed in (Volovik 2007b)). This can be
mapped to the quantum phase transitions in gauge theories, if vs is substituted
by the gauge field; the state with the area law is called the confinement phase,
because the charges are confined there (see the book by Polyakov 1987).

The equilibrium phase transition between the area law and the perimeter
law occurs at the temperature at which the coherence length ξ(T ) in eqn (10.5)
becomes infinite, ξ(Tc) = ∞.

28.1.2 Vortices in non-equilibrium phase transitions

In the non-equilibrium rapid cooling through the transition, the coherence length
cannot follow its thermodynamic equilibrium value determined by temperature
because of the slow-down of processes near the transition point. Thus ξ does not
cross infinity, and as a result the infinite cluster of the disordered state inevitably
persists below Tc. This is observed as formation of U(1) vortices after a rapid
phase transition into the state with broken U(1) symmetry.

The qualitative theory of defect formation after quench has been put forward
by Zurek (1985). His theory determines the moment – called Zurek time – at
which the vortices or strings belonging to the infinite cluster become well defined
in the low-T state, i.e. when they become resolved from the background thermal
fluctuations in the ordered phase. The density of vortices in this cluster, which
starting from this point can be experimentally investigated, is called the initial
vortex density. It is determined by the interplay of the cooling time τQ and
the internal characteristic relaxation time τ(T ) of the system, which diverges at
T → Tc (the so-called critical slow-down). At infinite cooling time an equilibrium
situation is restored, and no vortices of infinite length will be observed in the
superfluid state. The cooling rate shows how fast the temperature changes when
the phase transition temperature is crossed: 1/τQ = ∂tT/Tc. If t = 0 is the
moment when Tc is crossed one has

T (t)

Tc
= 1 − t

τQ
. (28.2)

Far above transition the intervortex distance ξv in the infinite cluster is de-
termined by the coherence length: ξv = ξ(T ) = ξ0|1−T/Tc|−1/2 if the Ginzburg–
Landau expansion is applicable. When T → Tc the intervortex distance ξv(t) in-
creases together with the thermodynamic coherence length. The relaxation time
of the system also increases; if the time-dependent Ginzburg–Landau theory (see
below) is applicable, one has

τ(t) = τ0

∣

∣

∣

∣

1 − T (t)

Tc

∣

∣

∣

∣

−1

=
τ0τQ
t

. (28.3)
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Fig. 28.3. Non-equilibrium region where the system does not follow the tem-
perature change and the infinite vortex cluster is quenched.

At some moment t = −tZ the relaxation time approaches the characteristic time
of variation of temperature. After that the system parameters can no longer
follow their equilibrium thermodynamic values (Fig. 28.3). This is the Zurek
time tZ, which is found from the equation tZ = τ(tZ):

tZ =
√
τ0τQ . (28.4)

Thus in the vicinity of the phase transition, at |t| < tZ, the infinite vortex cluster
is quenched with the intervortex distance being equal to ξv = ξ(tZ). This vortex
spaghetti persists into the ordered state, and finally becomes observable when
the core size ξ(T ) becomes smaller than ξv, i.e. at t > tZ. Thus ξv(tZ)

ξv = ξ(tZ) ∼ ξ0

(

τQ
τ0

)1/4

(28.5)

determines the initial density of vortices in the ordered state: nv ∼ ξ−2
v =

ξ−2
0

√

τ0/τQ.
At t > tZ the system represents the superfluid state contaminated by the

vortex spaghetti gradually relaxing to the thermodynamic equilibrium super-
fluid state. The topological noise – an extra topological charge accumulated in
the infinite vortex cluster – escapes to the boundaries, the cluster is rarefied,
and finally disappears. However, it is possible that one or several vortex lines
remain pinned between the opposite boundaries forming the remnant vortic-
ity. If the cosmological phase transition occurred in the expanding (and thus
non-equilibrium) Universe, the ‘remnant vorticity’ could also arise: the ‘infinite’
cosmic string can stretch from horizon to horizon (see the reviews by Hindmarsh
and Kibble (1995) and Vilenkin and Shellard (1994)).



356 VORTEX FORMATION IN IONIZING RADIATION

Here we discussed the formation of topological defects of a global U(1) group.
On the formation of topological defects in gauge field theories see the review pa-
per by Rajantie (2002). This review contains the most complete list of references
to papers dealing with the KZ scenario.

28.1.3 Vortex formation by neutron radiation

The details of experiments by Ruutu et al. (1996a) in superfluid 3He-B are shown
in Fig. 28.1. A cylindrical container is rotating with angular velocity below the
hydrodynamic instability threshold Ωc = vc/R, where R is the radius of the
container. Thus the superfluid component is in the vortex-free Landau state, i.e.
it is at rest with respect to the inertial frame. Such a state stores a huge amount
of kinetic energy in the frame of the environment which is now the frame of the
rotating container. In a container with typical radius R = 2.5 mm and height
L = 7 mm, rotating with angular velocity Ω = 3 rad s−1, the kinetic energy
of the counterflow is (1/2)

∫

dV ρs(vs − vn)2 ∼ 10 GeV. This energy cannot be
released, since as we know the intrinsic half-period of the decay of the superflow
due to vortex formation is essentially larger than, say the proton lifetime.

Ionizing radiation assists in releasing this energy by producing vortex loops.
Experiments with irradiated superfluid 3He were started in 1992 in Stanford,
where it was found that the irradiation assists the transition of supercooled 3He-
A to 3He-B (see the discussion by Leggett 1992). Later Bradley et al. (1995)
demonstrated that the neutron irradiation of 3He-B produces a shower of quasi-
particles. Then Ruutu et al. (1996a) observed that in a rotating vessel, neutrons
produce vortices. In experiments with stationary 3He-B, Bäuerle et al. (1996)
accurately measured the energy deposited from a single neutron to quasiparti-
cles in the low-T region and found an energy deficit indicating that in addition
to quasiparticles vortices are also formed.

The decay products from the neutron absorption reaction n + 3
2He = p +

3
1H + 764 keV generate ionization tracks. The details of this process are not well
known in liquid 3He, but it causes heating which drives the temperature in a small
volume of ∼ 100µm size above the superfluid transition (Fig. 28.1). Inside the hot
spot the U(1) symmetry is restored. Subsequently the heated bubble cools back
below Tc into the broken-symmetry state with a thermal relaxation time of order
1µs. This process forms the necessary conditions for the KZ mechanism within
the cooling bubble. But as in each real experiment there are several complications
when compared to the assumptions made when the theory was derived.

Most of these complications are related to the finite size of the fireball. The
temperature distribution within the cooling bubble is non-uniform; the mean
free path of quasiparticles is comparable to the characteristic size of the bubble;
the phase of the order parameter is fixed outside the bubble; there is an external
bias – the counterflow; etc. All this raises concerns whether the original KZ
scenario is responsible for the vortex formation observed in neutron experiments
(Leggett 2002). There are, however, some experimental observations which are
in favor of the KZ mechanism. (i) As was found by Ruutu et al. (1996a) the
statistics of the number of vortices created per event is in qualitative and even
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in quantitative agreement with the KZ theory; (ii) further measurements by
Eltsov et al. (2000) demonstrated that the spin–mass vortex (the combination
of a conventional (mass) vortex and spin vortex, see Sec. 14.1.4) is also formed
and is directly observed in the neutron irradiation experiment. This strengthens
the importance of the KZ mechanism, which is applicable to the nucleation
of different topological defects, and places further constraints on the interplay
between it and other competing effects, which must be included as modifications
of the original scenario.

28.1.4 Baked Alaska vs KZ scenario

Unfortunately, the complete theory of the vortex formation in 3He-B after nuclear
reaction, as well as the theory of the formation of 3He-B bubbles in supercooled
3He-A by ionizing radiation, must include several very different energy scales,
and thus it cannot be described in terms of the effective theory only. If the mean
free path is long and increases with decreasing energy, a ‘Baked Alaska’ effect
takes place, as has been described by Leggett (1992). A thin shell of the radiated
high-energy particles expands with the Fermi velocity vF , leaving behind a region
at reduced T . In this region, which is isolated from the outside world by a warmer
shell, a new phase can be formed. This scenario provides a possible explanation
of the formation of the B-phase in the supercooled A-phase.

Such a Baked Alaska mechanism for generation of the bubble with the false
vacuum has also been discussed in high-energy physics, where it describes the
result of a hadron–hadron collision. In the relativistic case the thin shell of ener-
getic particles expands with the speed of light. In the region separated from the
exterior vacuum by the hot shell a false vacuum with a chiral condensate can be
formed (Bjorken 1997; Amelino-Camelia et al. 1997).

However, there can be other scenarios of the process of the formation of the
B-phase in the supercooled A-phase. In particular, an extension of the KZ mech-
anism to the formation of the domain walls – interfaces between A- and B-phases
– has been suggested (Volovik 1996). It was numerically simulated by Bunkov
and Timofeevskaya (1998). A- and B-phases represent local minima of almost
equal depth, but are separated from each other by a large energy barrier. The
interface between them can be considered in the same manner as a topologi-
cal defect, and can be nucleated in thermal quench together with vortices. This
also has an analogy in cosmology (see the book by Linde 1990). The unification
symmetry group at high energy (SU(5), SO(10) or G(224)) can be broken in
different ways: into the phase G(213) = SU(3) × SU(2) × U(1), which is our
world, and into G(14) = SU(4) × U(1), which corresponds to a false vacuum
with higher energy. In some models both phases represent local minima of al-
most equal depth, but are separated from each other by a large energy barrier in
the same manner as the A- and B-phases of 3He. The non-equilibrium (cosmo-
logical) phase transition can create a network of AB interfaces (G(213)–G(14)
interfaces) which evolves either to the true or false vacuum.

In the case of the vortex formation the competing mechanism to the KZ
scenario is the instability of the propagating front of the second-order phase
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transition (Aranson et al. 1999, 2001, 2002), which is an analog of the surface
instability discussed in Chapter 27.

Due to all these complications, at the moment one can discuss only some
fragments of the processes following the ‘Big Bang’ caused by neutron reaction.
Here we shall concentrate on two such fragments: modification of the KZ sce-
nario to the cases when (i) there is a temperature gradient; and (ii) in addition
the counterflow is present. This can be considered using the effective theory –
the time-dependent Ginzburg–Landau theory. Though the applicability of this
theory to the real situation is under question, the results reveal some generic
behavior, which will most probably survive beyond the effective theory.

28.2 Vortex formation at normal–superfluid interface

28.2.1 Propagating front of second-order transition

In the presence of the temperature gradient the phase transition does not occur
simultaneously in the whole space. Instead the transition propagates as a phase
front between the normal and superfluid phases. For a rough understanding of
the modification of the KZ scenario of vortex formation to this situation let us
consider the time-dependent Ginzburg–Landau (TDGL) equation for the one-
component order parameter Ψ = ∆/∆0:

τ0
∂Ψ

∂t
=

(

1 − T (r, t)

Tc

)

Ψ − Ψ|Ψ|2 + ξ20∇2Ψ . (28.6)

Here, as before, τ0 ∼ h̄/∆0 and ξ0 are correspondingly the relaxation time of the
order parameter and the coherence length far from Tc.

If the quench occurs homogeneously in the whole space r, the temperature
depends only on one parameter, the quench time τQ:

T (t) ≈
(

1 − t

τQ

)

Tc . (28.7)

In the presence of a temperature gradient, say along x, a new parameter appears:

T (x− ut) ≈
(

1 − t− x/u

τQ

)

Tc . (28.8)

Here u is the velocity of the temperature front which is related to the temperature
gradient

∇xT =
Tc

uτQ
. (28.9)

The limit case u = ∞ corresponds to the homogeneous phase transition, where
the KZ scenario of vortex formation is applicable.
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In the opposite limit case u → 0 at τQu = constant, the order parameter is
almost in equilibrium and follows the transition temperature front:

|Ψ(x, t)|2 =

(

1 − T (x− ut)

Tc

)

, T < Tc . (28.10)

In this case the phase coherence is preserved behind the transition front and thus
no defect formation is possible. It is clear that there exists some characteristic
critical velocity uc of the propagating temperature front, which separates two
regimes: at u ≥ uc the vortices are formed, while at u ≤ uc the defect formation
either is strongly suppressed (Kibble and Volovik 1997; Kopnin and Thuneberg
1999) or completely stops (Dziarmaga et al. 1999).

28.2.2 Instability region in rapidly moving interface

Let us consider how vortices are formed in the limit of large velocity of the front.
As was found by Kopnin and Thuneberg (1999), if u ≫ uc the phase transition
front – the interface between the normal and superfluid liquids – – cannot follow
the temperature front: it lags behind (see Fig. 28.4). In the space between these
two boundaries the temperature is already below the phase transition temper-
ature, T < Tc, but the phase transition has not yet happened, and the order
parameter is still not formed, Ψ = 0.

Let us estimate the width of the region of the supercooled normal phase. In
steady laminar motion the order parameter depends on x − ut. Introducing a
dimensionless variable x̃ and a dimensionless parameter a,

x̃ = (x− ut)(uτQξ
2
0)−1/3 , a =

(

uτ0
ξ0

)4/3(
τQ
τ0

)1/3

, (28.11)

one obtains the linearized TDGL equation in the following form:

d2Ψ

dx̃2
+ a

dΨ

dx̃
− x̃Ψ = 0 , (28.12)

or

Ψ(x̃) = constant · e−ax̃/2χ(x̃) ,
d2χ

dx̃2
−
(

x̃+
a2

4

)

χ = 0 . (28.13)

This means that Ψ is an Airy function, χ(x̃ − x̃0), centered at x̃ = x̃0 = −a2/4
and attenuated by the exponential factor e−ax̃/2.

At large velocity of the front a ≫ 1, it follows from eqn (28.13) that Ψ(x̃)
quickly vanishes as x̃ increases above −a2/4. Thus there is a supercooled region
−a2/4 < x̃ < 0, where T < Tc, but the order parameter is not yet formed:
the solution is essentially Ψ = 0. The lag between the order parameter and
temperature fronts is x̃0 = a2/4 or in conventional units

x0(u) =
1

4

u3τQτ
2
0

ξ20
. (28.14)
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Fig. 28.4. The superfluid order parameter in the rapidly moving temperature
front of the second-order transition in the frame of the front according to
Kopnin and Thuneberg (1999). The phase transition front lags behind the
temperature front forming the metastable region where T < Tc but the mean–
field order parameter is not developed. This region represents the supercooled
metastable normal 3He. Fluctuations growing in this region produce vortices
according to the KZ scenario.

28.2.3 Vortex formation behind the propagating front

The existence of the supercooled normal phase in a wide region in Fig. 28.4
was obtained as the solution of the TDGL equation, which does not take into
account thermal fluctuations of the order parameter. In reality such a supercooled
region is unstable toward the formation of bubbles of the superfluid phase with
Ψ 6= 0, which, however, cannot occur if there are no seeds provided by external
or thermal noise. If the region is big enough the growth occurs independently
in different regions of the space, which is the source of the vortex formation
according to the KZ mechanism. At a given point of space r the development of
the instability from the seed can be found from the linearized TDGL equation,
since during the initial growth of the order parameter Ψ = |Ψ|eiΦ the cubic term
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can be neglected:

τ0
∂Ψ

∂t
=

t

τQ
Ψ . (28.15)

This gives an exponentially growing order parameter, which starts from some
seed Ψfluc, caused by fluctuations:

Ψ(r, t) = Ψfluc(r) exp
t2

2τQτ0
. (28.16)

Because of the exponential growth, even if the seed is small, the modulus of the
order parameter reaches its equilibrium value |Ψeq| =

√

1 − T/Tc after the Zurek
time tZ:

tZ =
√
τQτ0. (28.17)

This occurs independently in different regions of space and thus the phases of
the order parameter in each bubble are not correlated. The spatial correlation
between the phases becomes important at distances ξv where the gradient term
in eqn (28.6) becomes comparable to the other terms at t = tZ. Equating the
gradient term ξ20∇2Ψ ∼ (ξ20/ξ

2
v)Ψ to, say, the term τ0∂Ψ/∂t|tZ =

√

τ0/τQΨ, one
obtains the characteristic Zurek length scale:

ξv = ξ0 (τQ/τ0)
1/4 . (28.18)

At this scale the bubbles with different phases Φ of the order parameter touch
each other forming vortices if the phases do not match properly. This determines
the initial distance between the defects in homogeneous quench.

We can estimate the lower limit of the characteristic value of the fluctuations
Ψfluc = ∆fluc/∆0, which serve as a seed for the vortex formation. If there is no
other source of fluctuations, caused, say, by external noise, the initial seed is
provided by thermal fluctuations of the order parameter in the volume ξ3v . The
energy of such fluctuation is ξ3v∆2

flucNF (0)/EF , where EF is the Fermi energy
and NF (0) the fermionic density of states in the normal Fermi liquid. Equating
this energy to the temperature T ≈ Tc one obtains the magnitude of the thermal
fluctuations of the order parameter

|Ψfluc|
|Ψeq|

∼
(

τ0
τQ

)1/8
Tc

EF
. (28.19)

Since the fluctuations are initially rather small their growth time exceeds the
Zurek time by the factor

√

ln |Ψeq|/|Ψfluc|.
Now we are able to estimate the threshold uc above which the vortex for-

mation becomes possible. The defects are formed when the time of growth of
fluctuations, ∼ tZ =

√
τQτ0, is shorter than the time tsw = x0(u)/u required for

the transition front to travel through the instability region in Fig. 28.4 whose
size is x0(u) in eqn (28.14). Thus the equation tZ = x0(uc)/uc gives an estimate
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for the critical value uc of the velocity of the temperature front, at which the
laminar propagation becomes unstable:

uc ∼ ξ0
τ0

(

τ0
τQ

)1/4

. (28.20)

This agrees with the estimate uc = ξv/tZ by Kibble and Volovik (1997).
In the case of the fireball formed by a neutron the velocity of the temperature

front is u ∼ Rb/τQ, which makes u ∼ 10 m s−1. The critical velocity uc we can
estimate to possess the same order of magnitude value. This estimate suggests
that the thermal gradient should be sufficiently steep in the neutron bubble such
that defect formation can be expected.

The further fate of the vortex tangle formed under the KZ mechanism is the
phase ordering process: the intervortex distance continuously increases until it
reaches the critical size Rc ∼ κ0/2πvs in eqn (26.10), when the vortex loops are
expanded by the counterflow and leave the bubble. The number of nucleated
vortices per bubble is thus n1 ∼ (Rb/Rc)

3 ∼ (vs/vneutron)
3, where vneutron ∼

κ0/2πRb is the critical velocity for formation of vortices by neutron radiation,
and we consider the limit of large velocities, vs ≫ vneutron. Both the cubic law

n1 ∼
(

vs
vneutron

)3

− 1 (28.21)

and the dependence of the critical velocity on the bubble size are in agreement
with experiments by Ruutu et al. (1996a).

28.2.4 Instability of normal–superfluid interface

Due to external counterflow used in neutron experiments in rotating vessel, an-
other source of the vortex nucleation becomes important – the surface instability
of the propagating front (Aranson et al. 1999, 2001, 2002). This is a variant of
KH instability discussed in Chapter 27. Now it is the interface between normal
and superfluid liquids, which is destabilized by the shear flow. The correspond-
ing shear flow is caused by the counterflow: the normal fluid is at rest with the
rotating vessel due to its viscosity, while the superfluid is in the Landau vortex-
free state and thus is moving in the rotating frame. Such a version of the KH
instability has been calculated analytically using TDGL theory, while the vortex
formation at the non-linear stage of the development of this instability has been
simulated in 3D numerical calculations by Aranson et al. (1999, 2001, 2002).

Let us consider a simple scenario of how such KH instability can occur under
the conditions of the experiment, which is consistent with the numerical simula-
tions made by Aranson et al. (1999, 2001, 2002). The process of development of
this shear flow instability can be roughly split into two stages (see Fig. 28.5). At
the first stage the heated region of the normal liquid surrounded by the super-
flow undergoes a superfluid transition. The transition should occur in the state
with the lowest energy, which corresponds to the superfluid at rest, i.e. with
vs = 0. Thus the superfluid–superfluid interface appears, which separates the
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Fig. 28.5. KH instability scenario of vortex formation in a ‘Big-Bang’ event.
Left: The normal liquid formed in the hot spot is at rest with the vessel.
Middle: It transforms to the superfluid state with vs = 0. Thus we have
a superfluid region with vs = 0, which is separated from the moving bulk
superfluid by the vortex sheet. Right: Due to the shear-flow instability the
vortex sheet decays to vortex lines.

state with superflow (outside) from the state without superflow (inside). Such
a superfluid–superfluid interface with tangential discontinuity of the superfluid
velocity represents a vortex sheet by definition. The vortex sheet in 3He-B is not
supported by topology. It experiences the shear-flow instability and breaks up
into a chain of vortex lines. The development of this instability represents the
second stage of the process in Fig. 28.5.

28.2.5 Interplay of KH and KZ mechanisms

In numerical simulations made by Aranson et al. (1999, 2001, 2002), in addition
to vortices formed by the shear-flow instability at the propagating front, the
formation of vortices by the KZ mechanism discussed in Sec. 28.2.2 has also
been observed. It occurs during shrinking of the interior region with normal
fluid in Fig. 28.5 left. The interplay of the KZ mechanism and KH instability
depends on the parameters of the system. In numerical simulations by Aranson
et al. (1999, 2001, 2002) the chain of vortices formed in shear-flow instability
screen the external superflow so tightly that the vortices formed in the interior
region due to the KZ mechanism do not have a superflow bias and decay.

What the interplay of the bulk and surface effects is in experiments can be
deduced from the experiments. In the share-flow instability scenario the chain
of vortices is formed at the interface. If the counterflow is large the number of
quantized vortices in this chain is n1 ≈ κ/κ0, where κ = πvsRb is the circulation
in the piece of the vortex sheet of length πRb, and κ0 is the elementary circulation
quantum of singular vortex in 3He-B. This gives the number of vortices nucleated
in one event due to KH instability of the propagating front. The vortex formation
starts at threshold velocity vc, at which πvcRb/κ0 reaches unity. Thus the number
of nucleated vortices can be extrapolated as n1 ≈ vs/vc−1, which is what is seen
in numerical simulations. This linear law is, however, in disagreement with the
experiments demonstrating a cubic law in eqn (28.21) which is the characteristic
of the KZ mechanism occurring in the interior of the hot spot. This shows that
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Fig. 28.6. Shear-flow instability scenario of vortex formation near a proturber-
ance at the container wall. The normal liquid formed in the region where the
Landau criterion is exceeded is at rest with respect to the vessel boundary,
vn = 0. The normal liquid is unstable and transforms to the superfluid state
with vs = 0 separated from the moving bulk superfluid by a vortex layer.
The latter is unstable toward formation of vortex lines.

the bulk effects can be more important.

28.2.6 KH instability as generic mechanism of vortex nucleation

Each of these mechanisms of vortex formation, by KH shear-flow instability and
due to the KZ fluctuation mechanism, can be either derived analytically for a
simple geometry, or understood qualitatively with a simple physical picture in
mind. They do not depend much on the geometry and parameters of the TDGL
equation. Probably both mechanisms hold even if TDGL theory cannot be ap-
plied. This suggests that both of them are generic and fundamental mechanisms
of vortex formation in superfluids.

One may guess that most (if not all) of the observed events of formation of
singular vortices in superfluids are related to one of the two mechanisms, KH and
KZ, or to their combination. For example, let us discuss the possible scenario of
conventional vortex formation, i.e. without ionizing radiation (Fig. 28.6). When
the superfluid velocity exceeds the Landau criterion or the critical velocity vc
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of the instability of superflow, the state with the normal phase can be formed
as an intermediate state. Then the discussed hydrodynamic instability of the
normal/superfluid interface in the presence of the tangential flow will result in
the creation of vortices.

Finally let us mention that KZ mechanism is also applicable to non-equilibrium
phase transitions occurring at T = 0, i.e. when the parameter other than tem-
perature crosses the point of the quantum phase transition (Dziarmaga et al.
2008 and references therein). In addition there are other interesting phenomena,
which accompany these transitions. In particular, if in the process of transition
the analog of speed of light changes in time, c(t), this process can be used to
simulate the cosmological inflation (Volovik 1998c; Schützhold 2005) and study
amplification of quantum fluctuations.
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29

CASIMIR EFFECT AND VACUUM ENERGY

29.1 Analog of standard Casimir effect in condensed matter

There are several macroscopic phenomena which can be directly related to the
properties of the physical quantum vacuum. The Casimir effect is probably the
most accessible effect of the quantum vacuum. Casimir predicted in 1948 that
there must be an attractive force between two parallel conducting plates placed
in the vacuum, the force being induced by the vacuum fluctuations of the elec-
tromagnetic field. The Casimir force modified by the imperfections of conducting
plates has been measured in several experiments using different geometries, see
the review paper by Lambrecht and Reynaud (2002).

The calculation of the vacuum pressure is based on the regularization schemes,
which allows the effect of the low-energy modes of the vacuum to be separated
from the huge diverging contribution of the high-energy degrees of freedom.
There are different regularization schemes: Riemann’s zeta-function regulariza-
tion; introduction of the exponential cut-off; dimensional regularization, etc. Peo-
ple are happy when different regularization schemes give the same results. But
this is not always so (see e.g. Esposito et al. 1999, 2000; Ravndal 2000; Falomir
et al. 2001), and in particular the divergences occurring for spherical geometry
in odd spatial dimension are not cancelled (Milton 2001; Cognola et al. 2001).
This raises some criticism about the regularization methods (Hagen 2000, 2001)
or even some doubts concerning the existence and the magnitude of the Casimir
effect.

The same type of Casimir effect arises in condensed matter: for example, in
quantum liquids. The advantage of the quantum liquid is that the structure of
the quantum vacuum is known at least in principle. That is why one can calculate
everything starting from the first principles of microscopic theory – the Theory
of Everything in eqn (3.2). One can calculate the vacuum energy under different
external conditions, without invoking any cut-off or regularization scheme. Then
one can compare the results with what can be obtained within the effective
theory which deals only with the low-energy phenomena. The latter requires
the regularization scheme in order to cancel the ultraviolet divergency, and thus
one can judge whether and which of the regularization schemes are physically
relevant for a given physical situation.

In the analog of the Casimir effect in condensed matter we can use the analo-
gies discussed above. Let us summarize them. The ground state of the quan-
tum liquid corresponds to the vacuum of RQFT. The low-energy bosonic and
fermionic quasiparticles in the quantum liquid correspond to matter. The low-
energy modes with linear spectrum E = cp can be described by the relativistic-
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type effective theory. The speed c of sound or of other collective bosonic or
fermionic modes (spin waves, gapless Bogoliubov fermions, etc.) plays the role of
the speed of light. This ‘speed of light’ is the ‘fundamental constant’ for the ef-
fective theory. It enters the corresponding effective theory as a phenomenological
parameter, though in principle it can be calculated from the more fundamental
microscopic physics playing the role of trans-Planckian physics. The effective
theory is valid only at low energy which is much smaller than the Planck energy
cut-off EPlanck. In quantum liquids the analog of EPlanck is determined either
by the bare mass m of the atom of the liquid, EPlanck ∼ mc2, or by the Debye
temperature, EPlanck ∼ h̄c/a0, where a0 is the interatomic distance which plays
the role of the Planck length. In liquid 4He the two Planck scales have the same
order of magnitude reflecting the stability of the liquid in the absence of the
environment.

The typical massless modes in quantum Bose liquids are sound waves. The
acoustic field is described by the effective theory corresponding to the massless
scalar field. The walls of the container provide the boundary conditions for the
sound wave modes; usually these are the Neumann boundary conditions: the
mass current through the wall is zero, i.e. ŝ · ∇Φ = 0, where ŝ is the normal
to the surface. Because of the quantum hydrodynamic fluctuations the Casimir
force must occur between two parallel plates immersed in the quantum liquid.
Within the effective theory the Casimir force is given by the same equation as
the Casimir force acting between the conducting walls due to quantum electro-
magnetic fluctuations. The only modifications are: (i) the speed of light must
be substituted by the spin of sound; (ii) the factor 1/2 must be added, since we
have the scalar field of the longitudinal sound wave instead of two polarizations
of transverse electromagnetic waves. If a is the distance between the plates and
A is their area, then the a-dependent contribution to the ground state energy of
the quantum liquid at T = 0 which follows from the effective theory must be

EC = Evac restricted − Evac free =
1

2

∑

ν restricted

Eν − 1

2

∑

ν free

Eν (29.1)

=
h̄c

2
V

(

∑

n

∫

d2k⊥
(2π)2

√

k2
⊥ +

π2n2

a2
−
∫

d3k

(2π)3
k

)

(29.2)

= − h̄cπ2A

1440a3
. (29.3)

Here ν are the quantum numbers of phonon modes: ν = (k⊥, n) in the restricted
vacuum, and ν = k in the free vacuum; V = Aa is the volume of the space be-
tween the plates. Equation (29.3) corresponds to the additional negative pressure
in the quantum liquid at T = 0 in the region between the plates

PC = − 1

A
∂aEC = − h̄cπ2

480a4
=

3EC

A
. (29.4)

This pressure is induced by the boundaries.
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Such microscopic quantities of the quantum liquid as the mass of the atom
m or the interatomic space a0 ≡ LPlanck do not explicitly enter eqns (29.3) and
(29.4): the analog of the standard Casimir force is completely determined by
the ‘fundamental’ parameter c of the effective scalar field theory and by the
geometry of the system. Of course, as we already know, the total vacuum energy
of the quantum liquid cannot be described in terms of the zero-point energy of
the phonon field

Evac 6= Ezero point =
1

2

∑

ν

Eν . (29.5)

The value of the total vacuum energy, Evac, as well as of the total pressure in the
liquid, cannot be determined by the effective theory, and the microscopic ‘trans-
Planckian’ physics must be evoked for that. The latter shows that even the sign
of the vacuum energy can be different from that given by the zero-point energy
of phonons (see Sec. 3.3.1). Nevertheless, it appears that the phonon modes are
the relevant modes for the calculation of the small corrections to the vacuum
energy and pressure. The huge ultraviolet divergence of each of the two terms
in eqn (29.2) is simply canceled out by using the proper regularization scheme.
The main contribution to the vacuum energy difference comes from the large
wavelength of order a≫ a0 ≡ LPlanck, where the effective theory does work. As
a result the vacuum energy difference can be expressed in terms of the zero-point
energy of the phonon field in eqn (29.1).

There are several contributions to the vacuum energy imposed by the re-
stricted geometry. They comprise different fractions (LPlanck/a)

n of the main
(bulk) energy of the non-perturbed vacuum, which is of order Evac = ǫvacV ∼
V E4

Planck/(h̄
3c3). (i) The lowest-order correction, i.e. with n = 1, comes from

the surface energy or surface tension of the liquid, and is of order Esurface ∼
AE3

Planck/(h̄
2c2) ∼ Evac(LPlanck/a). The effect of the surface tension will be

discussed later in Sec. 29.4.3. (ii) If the boundary conditions for the order pa-
rameter field gives rise to texture, the textural contribution to the vacuum energy
is Etexture ∼ Evac(LPlanck/a)

2. Finally, (iii) the standard Casimir energy in eqn
(29.4) is of order EC ∼ Evac(LPlanck/a)

4. Zero-, first- and second-order contri-
butions substantially depend on the microscopic Planck-scale physics, while the
Planck scale completely drops out from the standard Casimir effect.

Since the surface energy does not depend on the distance a between the walls,
it does not produce the force on the wall. Thus, in the absence of textures, only
the standard Casimir pressure with n = 4 can be measured by an inner observer,
who has no information on the trans-Planckian physics of the quantum vacuum.
However, in Sec. 29.5 we shall discuss the possibility of the mesoscopic Casimir
effect with n = 3.

The Casimir type of forces in condensed matter comes from the change of the
vacuum pressure provided by the boundary conditions imposed by the restricted
geometry. The similar phenomenon occurs at non-zero temperature and even
in classical systems: the boundary conditions modify the spectrum of thermal
fluctuations (see the review paper by Kardar and Golestanian 1999).
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Fig. 29.1. Interface between two vacua stabilized by the vacuum pressure in-
duced by an external magnetic field. The interface is at z = z0, where
H(z0) = HAB. It separates the true vacuum of 3He-A from the true vac-
uum of 3He-B.

29.2 Interface between two different vacua

29.2.1 Interface between vacua with different broken symmetry

The interface between 3He-A and 3He-B, which we considered in Chapter 27
and Sec. 17.3, appears to be useful for the consideration of the vacuum energy
and Casimir effect in quantum liquids, Fig. 29.1. Such an interface is interesting
because it separates not only the vacuum states with different broken symmetry,
but also between vacua of different universality classes (Fig. 29.2).

The vacua in 3He-A and 3He-B have different broken symmetries, neither of
which is the subgroup of the other (Sec. 7.4). Thus the phase transition between
the two superfluids is of first order. The interface between the two vacua is stable
and is stationary if the two phases have the same vacuum energy ǫ̃ (or the same
free energy if T 6= 0). At T = 0 the difference between the vacuum energies of
3He-A and 3He-B is regulated by the magnetic field. In the presence of an external
magnetic field H the vacuum energy becomes ǫA(H) = ǫA(H = 0)− (1/2)χAH

2

and ǫB(H) = ǫB(H = 0) − (1/2)χBH
2 for A- and B-phases respectively. Due

to the different spin structure of Cooper pairs in 3He-A and 3He-B, the spin
susceptibilities of the two liquids are different. For the proper orientation of the
d̂-vector of the A-phase with respect to the direction of the magnetic field, one
has χA > χB, and at some value HAB of the magnetic field the energies of the
two vacua become equal. This allows us to stabilize the interface between the
two vacua in the applied gradient of magnetic field even at T = 0. The position
of the interface is given by the equation H(r) = HAB.

If the liquids are isolated from the environment, the pressure in the true
equilibrium vacuum state (at T = 0) must be zero and the chemical potential
µ must be constant throughout the system. Outside the interface, where the A
and B vacua are well determined, one has
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Fig. 29.2. Interface between two vacua of different universality classes. The in-
terface between 3He-A and 3He-B corresponds to the interface between the
vacuum of the Standard Model with massless chiral fermions and the vacuum
of Dirac fermions with Planck masses. Since the low-energy (quasi)particles
cannot penetrate from the right vacuum into the left one, the interface rep-
resents a perfect mirror.

0 = P = µnB−ǫB(H = 0)+
1

2
χBH

2(z) = µnA−ǫA(H = 0)+
1

2
χAH

2(z) . (29.6)

Equation (29.6) determines the position z0 of the interface in Fig. 29.1 at T = 0
and P = 0. By reducing the magnitude H of the magnetic field one shifts the
interface upward.

Note that the vacuum energy density ǫ̃ = −P is zero in both vacua outside the
interface. The initial difference in the energies (and pressures) of the two liquids
is compensated by the energy (and pressure) induced by the interaction with
an external magnetic field. As a result the total vacuum energy of the system
comes from the interface only. This is the surface energy – the surface tension
of the interface multiplied by the area A of the interface. The surface energy of
the interface does not contribute to the pressure if the interface is planar, i.e. if
it is not curved. The same occurs for the topological domain wall separating two
degenerate vacua.
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29.2.2 Why the cosmological phase transition does not perturb the zero value
of the cosmological constant

Applying this consideration to the vacuum in RQFT one can suggest that the
first-order phase transition between two vacuum states should not change the
vacuum energy and thus the cosmological constant. The cosmological constant
remains zero after the phase transition, when complete equilibrium is reached
again. In the presence of the interface between the two vacua, the system acquires
the vacuum energy, which is the energy of the interface. This implies that, while
the homogeneous vacuum is weightless, the domain wall separating two vacua is
gravitating, as well as other topological defects, strings and monopoles.

We arrived at this conclusion by considering the first-order phase transition
between the two vacua in quantum liquids. However, the same is valid for the
second-order phase transition when symmetry breaking occurs; for example, the
phase transition from the normal to the superfluid state of a quantum liquid. At
first glance our conjecture, that such a phase transition does not change the zero
value of the vacuum energy and of the cosmological constant, seems paradoxical.
We know for sure that the broken-symmetry phase transition occurs when the
symmetric vacuum becomes the saddle point of the energy functional. Thus it
is energetically advantageous to develop the order parameter, and the energy of
the vacuum must decrease. This is certainly true: the energy difference between
the broken-symmetry superfluid state and the symmetric normal states in eqn
(7.28) is negative, and this is the reason for the phase transition to the superfluid
state to occur.

There is, however, no paradox. The energy difference in eqn (7.28) is consid-
ered at a fixed chemical potential in the normal state, µ = µnormal. We know that
the chemical potential of the system and the particle density n are adjusted to
nullify the relevant vacuum energy: ǫ̃ = 0. This means that, after the phase tran-
sition to the superfluid state occurs at T = 0 and P = 0, the chemical potential
will change from µnormal to µsuper to satisfy the equilibrium condition in a new
(superfluid) vacuum. Thus the second-order broken-symmetry phase transition
also does not violate the zero condition for the vacuum energy in equilibrium.
The wrong unstable vacuum and the true broken-symmetry vacuum at P = 0
and T = 0 have different values of the chemical potential, µsuper 6= µnormal. But
both vacua have zero vacuum energy ǫ̃ = 0. Thermodynamics of the relativistic
quantum vacuum is discussed in detail by Klinkhamer and Volovik (2008).

In superfluid 3He (and in superconductors) the difference between chemical
potentials in superfluid (superconducting) and normal states has the following
order of magnitude: |µsuper − µnormal| ∼ ∆2

0/vF pF . This difference is important
for the physics of Abrikosov vortices in superconductors: the core of a vortex
acquires electric charge (Khomskii and Freimuth 1995; Blatter et al. 1996). The
electric charge per unit length of a vortex with core size ξ can be on the order
of e(dn/dµ)ξ2|µsuper −µnormal|, but actually it must be less due to the screening
effects in superconductors. A discussion of both the theory of the vortex charge
and experiments where the vortex charge has been measured using the NMR
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technique can be found in the review paper by Matsuda and Kumagai (2002).
Probably the same effect could lead to the non-zero electric or other fermionic
charge accumulated by the cosmic string due to the asymmetry of the vacuum.

29.2.3 Interface as perfectly reflecting mirror

At T 6= 0 the equilibrium condition for the interface and its dynamics are in-
fluenced by the fermionic quasiparticles (Bogoliubov excitations). In the 3He-A
vacuum, fermionic quasiparticles are chiral and massless, while in the 3He-B vac-
uum they are fully gapped. At temperatures T well below the temperature Tc

of the superfluid transition and thus much smaller than the gap ∆0, the gapped
3He-B fermions are frozen out, and the only thermal fermions are present on the
3He-A side of the interface.

Close to the gap nodes, the energy spectrum of the gapless 3He-A fermions
is relativistic. These low-energy massless fermions cannot propagate through the
AB-interface to the 3He-B side, where the minimum energy of fermions is on the
order of Planck scale, see Fig. 29.2, and thus they completely scatter from the
interface. Actually such scattering corresponds to Andreev (1964) reflection (see
below in Sec. 29.3.1). However, from the point of view of the inner observer, the
reflection is conventional, and for the ‘relativistic’ world of the 3He-A quasipar-
ticles the AB-interface represents a perfectly reflecting mirror. By moving the
interface one can simulate the dynamic Casimir effects – the response of the
quantum vacuum to the motion of the mirror (see e.g. Maia Neto and Reynaud
1993; Law 1994; Kardar and Golestanian 1999). By moving the interface with
‘superluminal’ velocity one can investigate the problems related to the quantum
vacuum in the presence of the ergoregion and event horizon.

On the other hand, the relativistic invariance emerging at low energy sim-
plifies the calculation of forces acting on a moving interface in the limit of low
T . This is instrumental, for example, for studying the peculiarities of Kelvin–
Helmholtz instability in superfluids (Chapter 27).

29.2.4 Interplay between vacuum pressure and pressure of matter

Considering the interface at non-zero but low temperatures we can discuss the
problem of vacuum energy in the presence of matter. At low T , the matter
appears only on the A-phase side of the interface – the gas of relativistic quasi-
particles which form the normal component of the liquid. This relativistic gas
adds positive pressure of the matter, eqn (10.22), to the pressure of the A-
phase vacuum on the rhs of eqn (29.6). The total pressure must remain zero:
Pvac + Pmatter = 0. Thus the vacuum energy and the vacuum pressure of 3He-A
become non-zero, while those of 3He-B are zero since there is no matter in 3He-B:

ǫ̃vac A = −Pvac A = Pmatter A =
1

3
ǫmatter A =

7π2NF

360

√−gT 4 , (29.7)

ǫ̃vac B = −Pvac B = 0 . (29.8)

In this arrangement one obtains the following relation between the vacuum en-
ergy and the energy of matter on the A-phase side of the Universe: ǫ̃vac A =
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(1/3)ǫmatter A. In this example, where the only source of perturbation of the
vacuum state is the matter, the order of magnitude coincidence between the
vacuum energy density (the cosmological constant) and the energy density of
matter naturally arises and does not look puzzling.

The interplay between the ‘vacuum’ pressure and the pressure of the ‘matter’
(quasiparticles) has been observed in experiments with slow (adiabatic) motion
of the AB-interface at low T by Bartkowiak (et al. 1999) in a geometry similar
to that in Fig. 29.1. In these experiments the relativistic character of the low-
energy fermionic quasiparticles in 3He-A has also been verified. In the adiabatic
process the entropy is conserved. Since the entropy is mostly concentrated in the
relativistic gas of 3He-A quasiparticles, the total number of thermal quasiparti-
cles in 3He-A must be conserved under adiabatic motion of the interface. When
one decreases the magnetic field H , the interface moves upward decreasing the
volume of the 3He-A Universe. As a result the entropy density and the quasi-
particle density increase, and, since both of them are proportional to T 3, the
temperature rises. The released thermal energy – the latent heat of the phase
transition – has been measured and the T 4-dependence of the thermal energy of
the relativistic gas has been observed.

In the reversed process, when the volume of the A-phase increases, the
temperature drops. This can be used as a cooling process at low temperature
T ≪ ∆0.

29.2.5 Interface between vacua with different speeds of light

Similar situations could occur if both vacua have massless excitations, but their
‘speeds of light’ are different: for example, at the interface between Bose conden-
sates with different density n and speed of sound c on the left and right sides of
the interface. The simplest example is

g00
L = − 1

c2L
, g00

R = − 1

c2R
, gij

L = gij
R = δij . (29.9)

This effective spacetime is flat everywhere except for the interface itself where
the curvature is non-zero:

R0101 = c∂2
zc =

1

2
(c2R − c2L)δ′(z) − (cR − cL)2δ2(z) . (29.10)

The difference in pressure of the matter on two sides of the interface (see eqn
(5.31))

∆P =
π2

90h̄3T
4

(√−gR

g2
00R

−
√−gL

g2
00L

)

=
π2

90h̄3T
4

(

1

c3R
− 1

c3L

)

(29.11)

will be compensated by the difference in the vacuum pressures Pvac L −Pvac R =
ǫ̃vac R − ǫ̃vac L. The situation similar to the AB-interface corresponds to the case
when, say, cL ≫ cR, so that there are practically no quasiparticles on the lhs of
the interface, even if the temperature is finite.
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29.3 Force on moving interface

29.3.1 Andreev reflection at the interface

Let us now consider the AB-interface moving with constant velocity vAB . If
vAB = vn 6= vs, the interface is stationary in the heat-bath frame and thus
remains in equilibrium with the heat bath of quasiparticles. The dissipation
and thus the friction force are absent. The counterflow w = vn −vs modifies the
pressure of the matter on the A-phase side. If the interface is moving with respect
to the normal component, vAB 6= vn, global equilibrium is violated leading to
the friction force experienced by the mirror moving with respect to the heat
bath.

The motion of the AB-interface in the ballistic regime for quasiparticles has
been considered by Yip and Leggett (1986), Kopnin (1987), Leggett and Yip
(1990) and Palmeri (1990). In this regime the force on the interface comes from
Andreev reflection at the interface of the ballistically moving, thermally dis-
tributed fermionic quasiparticles.

Let us recall the difference between the conventional and Andreev reflection
in superfluid 3He-A. For a low-energy quasiparticle its momentum is concen-
trated in the vicinity of one of the two Fermi points, p(a) = −CapF l̂, where
Ca = ±1 plays the role of chirality of a quasiparticle. In the conventional reflec-
tion the quasiparticle momentum is reversed, which means that after reflection
the quasiparticle acquires an opposite chirality Ca. The momentum transfer in
this process is ∆p = ±2pF l̂, whose magnitude 2pF is well above the ‘Planck’ mo-
mentumm∗c⊥. The probability of such a process is exponentially small unless the
scattering center has an atomic (Planck) size a0 ≡ LPlanck ∼ h̄/pF . The thick-
ness of the interface is on the order of the coherence length which is much larger
than the wavelength of a quasiparticle: ξ = h̄vF /∆0 = (c‖/c⊥)h̄/pF ∼ 103h̄/pF .
As a result the conventional scattering from the AB-interface is suppressed by
the huge factor exp(−pF ξ/h̄) ∼ exp(−c‖/c⊥). This means that, though the non-
conservation of chirality is possible due to the trans-Planckian physics, it is
exponentially suppressed. In RQFT such non-conservation of chirality can occur
in lattice models, where the distance in momentum space between Fermi points
of opposite chiralities is also of order of the Planck momentum (Nielsen and
Ninomiya 1981).

In Andreev reflection, the momentum p of a quasiparticle remains in the
vicinity of the same Fermi point, i.e. the chirality of a quasiparticle does not
change. Instead, the deviation of the momentum from the Fermi point changes
sign, p−p(a) → −(p−p(a)), and the velocity of the quasiparticle is reversed. For
an external observer Andreev reflection corresponds to the transformation of a
particle to a hole, while for an inner observer this is the conventional reflection. In
this process the momentum change can be arbitrarily small, which is why there
is no exponential suppression for Andreev reflection, and it is the dominating
mechanism of scattering from the interface.

Let us consider this scattering in the texture-comoving frame – the reference
frame of the moving interface, where the order parameter (and thus the metric)
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is time independent and the energy of quasiparticles is well-defined. We assume
that in this frame the superfluid and normal velocities are both along the normal
to the interface: vs = ẑvs and vn = ẑvn. Since Andreev reflection does not
change the position p(a) of the Fermi point, we can count the momentum from
this position. In addition we can remove the anisotropy of the speed of light by
rescaling, to obtain E(p) = cp. Due to the boundary condition for the l̂-vector

at the interface, l̂ · ẑ = 0, one has p(a) · vs = 0. As a result the Doppler-shifted
spectrum of quasiparticles becomes Ẽ = cp+ p · vs.

In the ballistic regime, the force acting on the interface from the gas of these
massless relativistic quasiparticles living in the half-space z > 0 is

Fz =
∑

p

∆pzvGzfT (p) . (29.12)

Here vG is the group velocity of incident particles:

vGz =
dẼ

dpz
= c cos θ + vs , (29.13)

∆pz is the momentum transfer after reflection

∆pz = 2p
cos θ + vs/c

1 − v2
s /c

2
(29.14)

and θ is the angle between the momentum p of incident quasiparticles and the
normal to the interface ẑ. Far from the interface, at the distance of the order
of the mean free path, quasiparticles are in a local thermal equilibrium with
equilibrium distribution function fT (p) = 1/(1+ e(E(p)−p·w)/T ), which does not
depend on the reference frame since it is determined by the Galilean invariant
counterflow velocity w = vn − vs (compare with eqn (25.9) for the case of the
moving vortex).

29.3.2 Force acting on moving mirror from thermal relativistic fermions

It follows from eqns (29.12–29.14) that the force per unit area acting from the
gas of relativistic fermions on the reflecting interface is

Fz(vs, w)

A
= −h̄c7π

2

60

T 4

(h̄c)4
α(vs, w) , (29.15)

α(vs, w) =
1

1 − v2
s

∫ −vs

−1

dµ
(µ+ vs)

2

(1 − µw)4
=

(1 − vs)
2

3(1 + w)3(1 + vs)(1 + vsw)
. (29.16)

Equation (29.16) is valid in the range −c < vs < c, where vs is the superfluid
velocity with respect to the interface and c = 1. The force (29.15) disappears at
vs → c, because the quasiparticles cannot reach the interface if it moves away
from them with the ‘speed of light’. The force diverges at vs → −c, when all
quasiparticles become trapped by the interface, so that the interface resembles
the black-hole horizon.
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If the normal component is at rest in the interface frame, i.e. at vn = vAB = 0,
the system is in a global thermal equilibrium (see Sec. 5.4) with no dissipation.
In this case eqn (29.15) gives a conventional pressure of ‘matter’ acting on the
interface from the gas of (quasi)particles:

Fz(vs, w = −vs)
A

= Ω = h̄c
7π2

180

T 4

(h̄c)4
(

1 − v2
s

c2

)2 =
7π2

180h̄3

√−gT 4
eff . (29.17)

Here again Teff = T/
√−g00 = T/

√

1 − v2
s /c

2 is the temperature measured by
an inner observer, see eqn (5.29), while the real thermodynamic temperature T
measured by the external observer plays the role of the Tolman temperature in
general relativity.

Now let us consider a small deviation from equilibrium, i.e. vn 6= vAB = 0
but small. Then the friction force appears, which is proportional to the velocity
of the interface with respect to the normal component vAB − vn:

Ffriction

A
= −Γ(vAB − vn) , Γ =

3

c
Ω . (29.18)

Equation (29.18) can be extrapolated to the zero-temperature case, when the
temperature T must be substituted by frequency h̄ω of the motion of the wall.
This leads to a friction force which is proportional to the fourth-order time deriva-
tive of the wall velocity, Ffriction ∼ (h̄A/c4)d4vAB/dt

4, in agreement with the
result obtained by Davis and Fulling (1976) for a mirror moving in the vacuum.
This is somewhat counterintuitive, since according to this equation the energy
dissipation is proportional to Ė ∼ vABFfriction ∼ (h̄A/c4)(d2vAB/dt

2)2 and is ab-
sent for the constant acceleration dvAB/dt of the interface in the liquid. The rea-
son is that we consider here the linear response. The non-linear friction can lead
to the energy dissipation containing the acceleration: Ė ∼ (h̄A/c6)(dvAB/dt)

4.
The motion with constant acceleration contains a lot of interesting physics which
can be checked using the analogous effects in superfluids. In particular this is
related to the Unruh (1976) effect: the motion of a body in the vacuum with con-
stant acceleration dvAB/dt leads to the thermal radiation of quasiparticles with
the Unruh temperature TU = h̄|dvAB/dt|/2πc, and thus to the energy dissipation
Ė ∼ (AT 4

U/h̄
3c2) ∼ (h̄A/c6)(dvAB/dt)

4.

29.3.3 Force acting on moving AB-interface

Now let us apply the results obtained to the 3He-A, which has an anisotropic
‘speed of light’ and also contains the vector potential A = pF l̂. Typically l̂ is
parallel to the AB-interface, which is dictated by boundary conditions. In such
a geometry the effective gauge field is irrelevant: the constant vector potential
A = pF l̂0 can be gauged away by shifting the momentum. The scalar potential
A0 = A · vs, which is obtained from the Doppler shift, is zero since l̂ ⊥ vs

in the considered geometry. In the same way the effective chemical potential
µa = −CapF (̂l · w) is also zero in this geometry. Thus if p is counted from eA
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the situation becomes the same as that discussed in theprevious section, and one
can apply eqns (29.17) and (29.18) modified by the anisotropy of the ‘speed of
light’ in 3He-A. In the limit of small relative velocity vAB − vn eqns (29.17) and
(29.18) give

Fz

A
= −7π2

180

√−gT 4
eff

(

1 + 3
vAB − vn

c⊥

)

, Teff =
T√−g00

. (29.19)

The first term represents the pressure of the matter, where now
√−g = 1/c2⊥c‖,

and g00 = 1 − (vs − vAB)2/c2⊥ (see eqns (9.11–9.13)).
The friction coefficient Γ ∼ T 4/c3⊥c‖ obtained here is valid in the relativistic

regime, i.e. below the first Planck scale T ≪ m∗c2⊥ = ∆2
0/vF pF . In the non-

relativistic quasiclassical regime above the first Planck scale, in the region ∆0 ≫
T ≫ m∗c2⊥, the friction coefficient has been obtained by Kopnin (1987). For the

same geometry of l̂ parallel to the interface it is Γ ∼ T 3m∗/c⊥c‖. These two
results match each other at the temperature of order of the first Planck scale,
T ∼ m∗c2⊥.

29.4 Vacuum energy and cosmological constant

Now, with all our experience with quantum liquids, where some kind of gravity
arises in the low-energy corner, what can be said about the following issues?

29.4.1 Why is the cosmological constant so small?

For quantum liquids the vacuum energy was considered in Sec. 3.3.4 for Bose
superfluid 4He and in Sec. 7.3.4 for Fermi superfluid 3He-A. In both cases, if
the liquid is freely suspended and the surface effects are neglected, its vacuum
energy density is exactly zero:

ρΛ ≡ ǫ̃ =
1

V
〈vac|H − µN|vac〉equilibrium = 0 . (29.20)

This result is universal, i.e. it does not depend on details of the interaction of
atoms in the liquid and on their quantum statistics. This also means that it does
not depend on the structure of the effective theory, which arises in the low-energy
corner.

On the contrary, an inner observer is familiar with the effective theory only
and is not aware of a very simple thermodynamic identity, Gibbs-Duhem relation
for quantum vacuum, which follows from the microscopic physics. He or she will
find that the vacuum energy density is determined by the Planck energy scale,
and its sign depends on the fermionic and bosonic content of the vacuum.

In superfluid 4He the effective theory contains phonons as elementary bosonic
particles and no fermions. The vacuum energy computed by an inner observer is
represented by the zero-point energy of phonons:

ρΛ

√−g =
1

2V

∑

phonons

cp ∼ 1

c3
E4

Debye =
√−g E4

Planck . (29.21)
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Here c is the speed of sound; the ‘Planck’ energy cut-off is determined by the De-
bye temperature EPlanck ≡ EDebye = h̄c/a0 with a0 being the interatomic space,
which plays the role of the Planck length, a0 ≡ LPlanck; g is the determinant of
the acoustic metric:

√−g = 1/c3.
The vacuum energy density of the 3He-A liquid estimated by an inner ob-

server living there comes from the Dirac vacuum of quasiparticles:

ρΛ

√−g = − 1

V

∑

quasiparticles

√

gikpipk ∼ −√−g E4
Planck 2 . (29.22)

Here
√−g = 1/c‖c

2
⊥, and the second ‘Planck’ energy cut-off EPlanck 2 ∼ h̄c⊥/a0.

Equations (29.21) and (29.22) are particular cases of the estimate (2.9) of the
vacuum energy within the effective RQFT. Both inner observers will be surprised
to know that their computations are extremely far from reality, just as we are
surprised that our estimates of the vacuum energy are in huge disagreement with
cosmological experiments.

Disadvantages of calculations of the vacuum energy within the effective field
theory are: (i) the result depends on the cut-off procedure; (ii) the result depends
on the choice of the zero from which the energy is counted: a shift of the zero
level leads to a shift in the vacuum energy. These drawbacks disappear in exact
microscopic theory, i.e. in the Theory of Everything in eqn (3.2): (i) eqn (29.20)
does not depend on cut-off(s) of the effective theory(ies); (ii) the energy in eqn
(29.20) does not depend on the choice of zero-energy level: the overall shift of
the energy in H is exactly compensated by the shift of the chemical potential µ;
and finally the most important (iii) in both quantum liquids the vacuum energy
density is exactly zero without any fine tuning. This fundamental result does not
depend on microscopic details of quantum liquids, and thus we can hope that it
is applicable also to the ‘cosmic fluid’ – the quantum vacuum.

The exact theory demonstrates that not just the low-energy degrees of free-
dom of the effective theory (phonons or Bogoliubov quasiparticles) must be taken
into account, but all degrees of freedom of the quantum liquid, including ‘Planck-
ian’ and ‘trans-Planckian’ domains. According to simple thermodynamic argu-
ments, the latter completely compensate the contribution (29.21) or (29.22) from
the low-energy domain.

In exact theory, nullification of the vacuum energy occurs for the self-sustained
systems only, which like liquids can exist as isolated systems. For the gas-like
states the chemical potential is positive, µ > 0, and thus these states cannot ex-
ist without an external pressure. That is why, one may expect that the solution
of the cosmological constant problem can be provided by the mere assumption
that the vacuum of RQFT is the self-sustained rather than the gas-like state
(Klinkhamer and Volovik 2008).

As we have seen on the example of Fermi gas in Sec. 7.3.5, the gas-like state
suggests its own solution of the cosmological constant problem. The gas-like
state can exist only under external pressure, and thus its vacuum energy is non-
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zero, but this non-zero energy is not gravitating if the vacuum is in equilibrium.
However, the price for that is the bi-metric theory of gravity.

Thus in both cases, it is the vacuum stability that guarantees the solution
of the main cosmological constant problem. Being guided by these examples,
in which the trans-Planckian physics is completely known, one may extend the
general principle of the vacuum stability to the physical vacuum too. Then the
problem of the cosmological constant disappears together with the cosmological
constant in equilibrium. Note that this principle of the vacuum stability is ap-
plicable even to such vacuum states which represent the locally unstable saddle
point: what is needed is the stationarity of the vacuum energy with respect to
small linear perturbations.

As was mentioned by Bjorken (2001b) ‘The original (cosmological constant)
problem does not go away, but is restated in terms of why the collective modes of
such a quantum liquid (quantum vacuum) so faithfully respect gauge invariance
and Lorentz covariance, as well as general covariance for the emergent gravitons’.
The universal properties of the fermionic quantum liquids with Fermi points
in momentum space probably show the route to the solution of the restated
problem.

Actually, what we need from condensed matter, where the trans-Planckian
physics is known, is to extract some general principles which do not depend
on details of the substance, but which cannot be obtained within the effective
theory. Superfluid 3He, with its highly distorted gravity and caricature quantum
field theory, is still a confined and self-sustained vacuum; that is why one can
hope that general conclusions based on its properties can be extended to a more
complicated ‘many-body’ system such as the vacuum of RQFT. The principles
of a non-gravitating perfect vacuum, and of zero energy of a perfect vacuum
together with the Fermi point universality could be of this kind.

29.4.2 Why is the cosmological constant of order of the present mass of the
Universe?

Another problem related to vacuum energy is the cosmic coincidence problem.
According to the Einstein equations the cosmological constant ρΛ (the vacuum
energy density) must be constant in time, while the energy density ρM of (dark)
matter must decrease as the Universe expands. Why are these two quantities of
the same order of magnitude just at the present time, as is indicated by recent
astronomical observations (Perlmutter et al. 1999; Riess et al. 2000)? At the
moment it is believed that ρΛ ∼ 2–3ρM , where ρM is mostly concentrated in
the invisible dark matter, while the density of ordinary known matter, such as
baryonic matter, is relatively small being actually within the noise.

In a quantum liquid there is a natural mechanism for the complete cancel-
lation of the vacuum energy. But such a cancellation works only under perfect
conditions. If the quantum liquid is perturbed, the vacuum pressure and energy
will respond and must be proportional to perturbations of the vacuum state.
The perturbations, which disturb zero value of the vacuum pressure, can be: the
non-zero energy density of the matter in the Universe; the non-zero temperature



VACUUM ENERGY AND COSMOLOGICAL CONSTANT 383

of background radiation; space curvature; time dependence caused by expansion
of the Universe; some long-wavelength fields – quintessence, etc., and their self-
consistent combinations. This indicates that the cosmological constant is not a
constant at all but is a dynamical quantity arising as a response to perturbations
of the vacuum, see also recent papers by Klinkhamer and Volovik (2008). At the
moment all the deviations from the perfect vacuum state are extremely small
compared to the Planck energy scale. This is the reason why the cosmological
constant must be extremely small.

Thus from the condensed matter point of view it is natural that ρΛ ∼ ρM .
These two quantities must even be of the same order of magnitude if the pertur-
bations of the vacuum caused by the matter are dominating. In Section 29.2.4 we
considered how this happens if one completely ignores all other perturbations,
including the gravitational field. In that example the quantum vacuum in 3He-A
responds to the ‘matter’ formed by massless relativistic quasiparticles at T 6= 0
(see eqn (29.7)). The ultra-relativistic matter obeys the equation of state

PM =
1

3
ρM =

7π2NF

360h̄3 T
4 . (29.23)

For an isolated liquid the partial pressure of matter PM must be compensated
by the negative vacuum pressure PΛ to support the zero value of the external
pressure,

Ptotal = PΛ + PM = 0 . (29.24)

As a result one obtains the following relation between the energy densities of the
vacuum and ultrarelativistic matter:

ρΛ = −PΛ = PM =
1

3
ρM . (29.25)

The puzzle transforms to the technical problem of how to explain the observed
relation ρΛ ∼ 2–3ρM . Most probably this ratio depends on the details of the
trans-Planckian physics: the Einstein equations must be modified to allow the
cosmological constant to vary in time, and this is where the trans-Planckian
physics may intervene, see recent papers by Klinkhamer and Volovik (2008) on
dynamics of the cosmological ‘constant’.

29.4.3 Vacuum energy from Casimir effect

Another example of the induced non-zero vacuum energy density is provided by
the boundaries of the system. Let us consider a finite droplet of liquid 3He or
liquid 4He with radius R. The stability of the droplet against decay into isolated
3He or 4He atoms is provided by the negative values of the chemical potential:
µ3 < 0 and µ4 < 0. If this droplet is freely suspended the surface tension leads
to non-zero vacuum pressure PΛ, which at T = 0 must compensate the pressure
caused by the surface tension due to the curvature of the surface. For a spherical
droplet one has

Ptotal = PΛ + Pσ = 0 ,
√−gPσ = −2σ

R
, (29.26)
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where σ is the surface tension. As a result one obtains the negative vacuum
energy density:

√−gρΛ = −√−gPΛ = −2σ

R
∼ −

E3
Debye

h̄2c2R
≡ −√−gE3

Planck

h̄c

R
. (29.27)

This is analogous to the Casimir effect, in which the boundaries of the system
produce a non-zero vacuum pressure. The strong cubic dependence of the vacuum
pressure on the ‘Planck’ energy EPlanck ≡ EDebye reflects the trans-Planckian
origin of the surface tension σ ∼ EDebye/a

2
0: it is the energy (per unit area)

related to the distortion of atoms in the surface layer of atomic size a0. The
term of order E3

Planck/R in the Casimir energy has been considered by Ravndal
(2000). Such vacuum energy, with R being the size of the cosmological horizon,
has been connected by Bjorken (2001a) to the energy of the Higgs condensate in
the electroweak phase transition.

The partial pressure Pσ induced by the surface tension can serve as an analog
of the quintessence in cosmology (on quintessence see e.g. Caldwell et al. 1998).
The equation of state for the surface tension is

Pσ = −(2/3)ρσ , (29.28)

where
√−gρσ is the surface energy 4πR2σ divided by the volume of the droplet.

In cosmology the quintessence with the same equation of state is represented by
a wall wrapped around the Universe or by a tangled network of cosmic domain
walls (Turner and White 1997). In our case the quintessence is also related to
the wall – the boundary of the droplet.

29.4.4 Vacuum energy induced by texture

The non-zero vacuum energy density, with a weaker dependence on EPlanck, is
induced by the inhomogeneity of the vacuum. Let us discuss how the vacuum
energy density in an isolated quantum liquid responds to the texture. We choose
the simplest example which can be discussed in terms of the interplay of partial
pressures of the vacuum and texture. It is the soliton in 3He-A, which has the
same topology as the soliton in Fig. 16.2, but with a non-zero twist of the l̂-field:
l̂ · (∇× l̂) 6= 0. As was shown in Sec. 10.5.3 such a texture carries the non-zero
Riemann curvature in the effective gravity of 3He-A. This allows us to relate this
to the problem of vacuum energy induced by curvature in general relativity.

Within the twist soliton the field of the unit vector l̂ is given by l̂(z) =

x̂ cosφ(z)+ ŷ sinφ(z), where φ is the angle between l̂ and d̂ which changes from
φ(−∞) = 0 to φ(+∞) = π. The profile of φ is determined by the interplay of
the spin–orbit energy (16.1) and the gradient energy of the field φ which can
be found from eqn (10.9). Since the spin–orbital interaction is the part of the
vacuum energy which depends on φ we shall write the energy densities in the
following form:

ρ = ρΛ + ρgrad , (29.29)
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√−gρgrad = Kt(̂l · (∇× l̂))2 = Kt(∂zφ)2 , (29.30)√−gρΛ =
√−gρΛ(φ = 0) + gD sin2 φ . (29.31)

The solitonic solution of the sine–Gordon equation for φ is tan(φ/2) = ez/ξD ,
where ξD is the dipole length: ξ2D = Kt/gD. From this solution it follows that
the vacuum and gradient energy densities have the following profile:

√−g (ρΛ(z) − ρΛ(φ = 0)) =
√−gρgrad(z) =

Kt

ξ2D cosh2(z/ξD)
. (29.32)

Let us consider the 1D case, which allows us to use the space-dependent par-
tial pressures. We have two subsystems: the vacuum with the equation of state
PΛ = −ρΛ, and the texture with the equation of state Pgrad = ρgrad. In cosmology
the latter equation of state describes the so-called stiff matter. In equilibrium,
in the absence of the environment the total pressure is zero, and thus the posi-
tive pressure of the texture (stiff matter) must be compensated by the negative
pressure of the vacuum:

Ptotal = PΛ(z) + Pgrad(z) = 0 . (29.33)

Using the equations of state one obtains another relation between the vacuum
and the gradient energy densities:

ρΛ(z) = −PΛ(z) = Pgrad(z) = ρgrad(z) . (29.34)

Comparing this equation with eqn (29.32) one finds that

ρΛ(φ = 0) = 0 . (29.35)

This means that even in the presence of a soliton the main vacuum energy density
– the energy density of the bulk liquid far from the soliton – is exactly zero if
the liquid is in equilibrium at T = 0. Within the soliton the vacuum is not
homogeneous, and the vacuum energy density induced by such a perturbation of
the vacuum equals the energy density of the perturbation: ρΛ(z) = ρgrad(z).

The induced vacuum energy density in eqn (29.32) is inversely proportional
to the square of the size of the region where the field is concentrated:

ρΛ(R) ∼ E2
Planck

(

h̄c

R

)2

. (29.36)

Similar behavior for the vacuum energy density in the interior region of the
Schwarzschild black hole, with R being the Schwarzschild radius, was discussed
by Chapline et al. (2001,2002) and Mazur and Mottola (2001). In the case of the
soliton the size of the perturbed region is R ∼ ξD.

In cosmology, the vacuum energy density obeying eqn (29.36) with R pro-
portional to the Robertson–Walker scale factor has been suggested by Chapline
(1999), and with R proportional to the size of the cosmological horizon has been
suggested by Bjorken (2001a).
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29.4.5 Vacuum energy due to Riemann curvature and Einstein Universe

In Sec. 10.5.3 we found an equivalence between the gradient energy of twisted
texture in 3He-A and the Riemann curvature of effective space with the time
independent metric

− 1

16πG

∫

d3r
√−gR ≡ Kt

∫

d3r(̂l · (∇× l̂))2 . (29.37)

Thus using the example considered in the above Sec. 29.4.4, one may guess that
the space curvature perturbs the vacuum and induces the vacuum energy density
ρΛ = − 1

16πGR. Of course, this is true only as an order of magnitude estimate
since we extended the (1+1)-dimensional consideration of the texture to the 3+1
gravity.

Let us consider an example from general relativity, where one can exactly
find the response of the vacuum energy to the space curvature and to the energy
density of matter. The necessary condition for the applicability of the above
considerations to the vacuum in general relativity is the stationarity of the system
(vacuum + matter). As in condensed matter systems, the stationary state does
not necessarily mean the local minimum of some energy functional, but can
be the locally unstable saddle point as well. This example is provided by the
static closed Universe with positive curvature obtained by Einstein (1917) in
his work where for the first time he introduced the cosmological term. The most
important property of this solution is that the cosmological constant is not fixed
but is self-consistently found from the Einstein equations. In other words, the
vacuum energy density in the Einstein Universe is adjusted to the perturbations
caused by matter and curvature, in the same manner as we observed in quantum
liquids.

Let us consider how this happens using only the equilibrium conditions. In
the static Universe two equilibrium conditions must be fulfilled:

Ptotal = PM + PΛ + PR = 0 , ρtotal = ρM + ρΛ + ρR = 0 . (29.38)

Here ρR is the energy density stored in the spatial curvature and PR is the
partial pressure of the spatial curvature:

ρR = − R
16πG

= − 3k

8πGR2
, PR = −1

3
ρR . (29.39)

Here R is the cosmic scale factor in the Friedmann–Robertson–Walker metric,

ds2 = −dt2 +R2

(

dr2

1 − kr2
+ r2dθ2 + r2 sin2 θdφ2

)

; (29.40)

the parameter k = (−1, 0,+1) for an open, flat or closed Universe respectively.
The equation of state on the rhs of eqn (29.39) follows from the equation PR =
−d(ρRR3)/d(R3).

The first equation in (29.38) is the requirement that for the ‘isolated’ Universe
the external pressure must be zero. The second equation in (29.38) reflects the
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gravitational equilibrium, which requires that the total mass density must be zero
(actually the ‘gravineutrality’ corresponds to the combination of two equations in
(29.38), ρtotal+3Ptotal = 0, since ρ+3P serves as a source of the gravitational field
in the Newtonian limit). The gravineutrality is analogous to the electroneutrality
condition in condensed matter.

We must solve eqns (29.38) together with the equations of state Pa = waρa,
where w = −1 for the vacuum, w = −1/3 for the space curvature, w = 0 for the
cold matter and w = 1/3 for the radiation field. The simplest solution of these
equations is the flat Universe without matter. The vacuum energy density in
such a Universe is zero.

The solution with matter depends on equation of state for matter. For the
cold Universe with PM = 0, eqns (29.38) give the following value of the vacuum
energy density:

ρΛ =
1

2
ρM = −1

3
ρR =

k

8πGR2
. (29.41)

For the hot Universe with the equation of state for the radiation matter PM =
(1/3)ρM , one obtains

ρΛ = ρM = −1

2
ρR =

3k

16πGR2
. (29.42)

Since the energy of matter is positive, the static Universe is possible only for
positive curvature, k = +1, i.e. for the closed Universe.

This is a unique example of the stationary state, in which the vacuum energy
on the order of the energy of matter and curvature is obtained within the effective
theory of general relativity. It is quite probable that the static states of the
Universe are completely within the responsibility of the effective theory and are
determined by eqns (29.38), which do not depend on the details of the trans-
Planckian physics.

Unfortunately (or maybe fortunately for us) the above static solution is un-
stable, and our Universe is non-stationary. For the non-stationary case we cannot
find the relation between the vacuum energy and the energies of other ingredi-
ents being within the effective theory. The reason is that ρΛ must be adjusted
to perturbations and thus must change in time, which is forbidden within the
Einstein equations due to Bianchi identities. That is why the effective theory
must be modified to include the equation of motion for ρΛ. Such a modification
is not universal and depends on the details of the Planckian physics. Thus the
only what we can say at the moment is that the cosmological constant tracks
the development of the Universe.

29.4.6 Why is the Universe flat?

The connection to the Planckian physics can also give some hint on how to solve
the flatness problem. At the present time the Universe is almost flat, which
means that the energy density of the Universe is close to the critical density
ρc. This implies that the early Universe was extremely flat: since (ρ − ρc)/ρc =
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3k/(8πGρcR
3) ∝ R, in the early Universe where R is small one has |ρ−ρc|/ρc ≪

1. At t = 1 s after the Big Bang this was about 10−16.
What is the reason for such fine tuning? The answer can be provided by the

inflationary scenario in which the curvature term is exponentially suppressed,
since the exponential inflation of the Universe simply irons out curved space to
make it extraordinarily flat. The analogy with quantum liquids suggests another
solution of the flatness problem.

According to the ‘cosmological principle’ the Universe must be homogeneous
and isotropic. This is strongly confirmed by the observed isotropy of cosmic
background radiation. Within general relativity the Robertson–Walker metric
describes the spatially homogeneous and isotropic distribution of matter and
thus satisfies the cosmological principle. The metric field is not homogeneous,
but in general relativity the property of the homogeneity must be determined in
a covariant way, i.e. it should not depend on coordinate transformation. In the
Robertson–Walker Universe the covariant quantity – the curvature – is constant,
and thus this Universe is homogeneous.

However, if general relativity is an effective theory, the invariance under the
coordinate transformations exists at low energy only. At higher energy, the con-
travariant metric field gµν itself becomes the physical quantity: an external ob-
server belonging to the trans-Planckian world can distinguish between different
metrics even if they are equivalent for the inner low-energy observer. Accord-
ing to eqn (29.40) the metric field is not homogeneous unless k = 0. If k 6= 0
the ‘Planck’ observer views the Robertson–Walker metric as space dependent.
Moreover, the r2-dependence of the contravariant metric element grr ∝ 1 − kr2

implies a huge deformation of the ‘Planck liquid’, which is strongly prohibited.
That is why, according to the trans-Planckian physics, the Universe must be flat
at all times, i.e. k = 0 and ρΛ + ρM = ρc. This means that the cosmological
principle of homogeneity of the Universe can well be an emergent phenomenon
reflecting the Planckian physics.

29.4.7 What is the energy of false vacuum?

It is commonly believed that the vacuum of the Universe underwent one or several
broken-symmetry phase transitions. Each of the transitions is accompanied by
a substantial change in the vacuum energy. Moreover, there can be false vacua
separated from the true vacuum by a large energy barrier. Why is the true
vacuum so distinguished from the others that it has exactly zero energy, while the
energies of all other false vacua are enormously large? Where does the principal
difference between vacua come from?

The quantum liquid answer to this question is paradoxical (see Sec. 29.2.2):
in the absence of external forces all the vacua including the false ones have
zero energy density and thus zero cosmological constant. There is no paradox,
however, because the positive energy difference between the false and the true
vacuum is obtained at fixed chemical potential µ. Let us suppose that the liquid
is in the false vacuum state. Then its vacuum energy density ǫ̃ = ǫ − µn ≡√−gρΛ = 0. After the transition from the false vacuum to the true one has
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occurred there is an energy release. However, when the equilibrium state of the
true vacuum is reached, the chemical potential µ will be automatically adjusted
to cancel the energy density of the new vacuum. Thus in an isolated system the
vacuum energy density is zero both below and above the phase transition.

This means that the energies of all condensates in RQFT (gluon and quark
condensates in QCD, Higgs field in electroweak theory, etc.) do not violate the
zero value of the cosmological constant in equilibrium.

29.4.8 Discussion: why is vacuum not gravitating?

We found that vacuum energy density is exactly zero, if the following conditions
are fulfilled: there are (i) no external forces acting on the liquid; (ii) no quasi-
particles (matter) in the liquid; (iii) no curvature and inhomogeneity; (iv) no
boundaries which give rise to the Casimir effect; and (v) no time dependence
and non-equilibrium processes. Each of these five factors perturbs the vacuum
state and induces a non-zero value of the vacuum energy density of order of the
energy density of the perturbation. Applying this to the vacuum in the Universe,
one may expect that in each epoch the vacuum energy density is of order of the
matter density of the Universe, and/or of its curvature, and/or of the energy
density of the smooth component – the quintessence. At the present moment
all the perturbations are extremely small compared to the Planck scales, which
is why we have an extremely small cosmological constant. In other words, the
cosmological constant is small because the Universe is old. Small perturbations,
such as the expansion of the Universe and the energy density of matter, repre-
sent small ripples on the surface of the great pacific ocean of the Dirac vacuum.
They do not disturb the depth of the ocean which is extremely close to the com-
plete quietness now. And actually it was quiet even during the violent processes
in early Universe, whose energy scales were still much smaller than the Planck
scale.

However, the actual problem for cosmology is not why the vacuum energy
is zero (or very small), but why the vacuum is not (or almost not) gravitat-
ing. These two problems are not necessarily related since in the effective theory
the equivalence principle is not the fundamental physical law, and thus does
not necessarily hold when applied to the vacuum energy. The condensed matter
analogy gives us examples of how the effective gravity appears as an emergent
phenomenon in the low-energy corner. In these examples the gravity is not fun-
damental: it is one of the low-energy collective modes of the quantum vacuum.
This dynamical mode provides the effective metric for the low-energy quasiparti-
cles serving as an analog of matter. The gravity does not exist on the microscopic
(trans-Planckian) level and emerges only in the low-energy limit simultaneously
with the relativity, with relativistic matter and with the interaction between
gravity and matter.

The vacuum state of the quantum liquid is the outcome of the microscopic
interactions of the underlying 4He or 3He atoms. These atoms, which live in
the ‘trans-Planckian’ world and form the vacuum state there, do not experience
the ‘gravitational’ attraction experienced by the low-energy quasiparticles, since
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the effective gravity simply does not exist at the microscopic scale (of course,
we ignore the real gravitational attraction of bare atoms, which is extremely
small in quantum liquids). That is why the vacuum energy cannot interact with
gravity, and cannot serve as a source of the effective gravity field: the vacuum is
not gravitating.

On the other hand, the long-wavelength perturbations of the vacuum are
within the sphere of influence of the low-energy effective theory, and such per-
turbations can be the source of the effective gravitational field. Deviations of
the vacuum from its equilibrium state, described by the effective theory, are
gravitating.

29.5 Mesoscopic Casimir force

In this section we introduce the type of the Casimir effect, whose source is missing
in the effective theory. In quantum liquids it is related to the discrete quantity –
the particle number N , i.e. the number of bare 3He or 4He atoms of the liquid.
The particle number is the quantity which is missing by an inner observer, but is
instrumental for the Planckian physics. The bare atoms are responsible for the
construction of the vacuum state. The conservation law for particle number leads
to the relevant vacuum energy density ǫ̃ = ǫ− µn, which is invariant under the
shift of the energy, and gives us the mechanism for cancellation of the vacuum
energy density in equilibrium.

Now we turn to the problem of whether the discreteness of N in the vacuum
can be probed. For that we consider the type of the Casimir effect, which is
determined not by the finite size of the system, but by the finite-N effect, which
in condensed matter is referred to as the mesoscopic effect. If in the Casimir-
type effects we naively replace the finite volume V = a3 of the system by the
finite N = nV ∼ a3/a3

0, we obtain the following dependence on N of different
contributions to the vacuum energy:

Ebulk vacuum ∼ EPlanckN , (29.43)

Esurface ∼ EPlanckN
2/3 , (29.44)

Etexture ∼ EPlanckN
1/3 , (29.45)

Emesoscopic ∼ EPlanckN
0 , (29.46)

ECasimir ∼ EPlanckN
−1/3 . (29.47)

We assumed here that all three dimensions of the system are of the same order;
EPlanck = h̄c/a0, where a0 is the interatomic space; and c is the analog of the
speed of light. We also included the missing contribution from the mesoscopic
effect, eqn (29.46), which the effective theory is not able to predict, since it is
the property of the microscopic high-energy degrees of freedom. This mesoscopic
effect cannot be described by the effective theory dealing with the continuous
medium, even if the theory includes the real boundary conditions with the fre-
quency dependence of dielectric permeability.
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The mesoscopic effect has an oscillatory behavior which is characteristic of
mesoscopic phenomena and under certain conditions it can be more pronounced
than the standard Casimir effect.

29.5.1 Vacuum energy from ‘Theory of Everything’

Let us consider this finite-N mesoscopic effect using the quantum ‘liquid’ where
the microscopic Theory of Everything is extremely simple, and the mesoscopic
Casimir forces can be calculated exactly without invoking any regularization
procedure. This is the 1D gas of non-interacting fermions with a single spin
component and with the spectrum E(p) = p2/2m. The 3+1 case of the ideal
Fermi gas in slab geometry can be found in the paper by Bulgac and Magierski
(2001) and in references therein.

At T = 0 fermions occupy all the energy levels below the positive chemical
potential µ, i.e. with E(p)− µ < 0, forming the zero-dimensional Fermi surfaces
at pz = ±pF (zeros of co-dimension dc = 1 with topological chargesN1 = ±1). In
the infinite system, the vacuum energy density expressed in terms of the particle
density n = pF /πh̄ is

ǫ(n) =

∫ pF

−pF

dpz

2πh̄

p2

2m
=

p3
F

6πh̄m
=
π2h̄2

6m
n3 . (29.48)

The equation of state comes from the thermodynamic identity relating the pres-
sure P and the energy (see eqn (3.27)):

P = −ǫ̃ = µn− ǫ = n
dǫ

dn
− ǫ = 2ǫ . (29.49)

The speed of sound is c = pF /m, which coincides with the slope of the relativistic
spectrum of quasiparticles in the vicinity of the Fermi surface: E(p) ≈ ±c(p±pF ).
The Planck energy scale, which marks the violation of ‘Lorentz invariance’, is
played by EPlanck = cpF .

In a 1D cavity of size a, if particles cannot penetrate through the boundaries
their energy spectrum becomes discrete:

Ek =
h̄2π2

2ma2
k2 , (29.50)

where k is integer. The total energy of N fermions in the cavity is

E(N, a) =

N
∑

k=1

Ek =
h̄2π2

12ma2
N(N + 1)(2N + 1) . (29.51)

29.5.2 Leakage of vacuum through the wall

In the traditional Casimir effect the quantum vacuum is the same on both sides of
the conducting plate, otherwise the force on the palte comes from the bulk effect,
i.e. from the infinite difference between the vacuum energy densities across the
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Fig. 29.3. Mesoscopic Casimir effect. Top: Two 1D slabs with Fermi gas sepa-
rated by a penetrable membrane. Bottom: The force acting on the membrane
as a function of its position. Jumps occur due to the discrete number of
fermions in the slabs.

plate. To simulate this situation we consider the force acting on the membrane
between two slabs of sizes a and b with the same Fermi gas (Fig.29.3 top). We
assume the same boundary conditions at all three walls, but we allow the particles
to transfer through the membrane between the slabs to provide the same bulk
pressure in the two slabs avoiding the bulk effect. The connection can be done
due to, say, a very small holes (tunnel junctions) in the membrane. This does not
violate the boundary conditions and does not disturb the particle energy levels,
but still allows the particle exchange between the two vacua.

In the traditional Casimir effect, the force between the conducting plates
arises because the electromagnetic fluctuations of the vacuum in the slab are
modified due to boundary conditions imposed on the electric and magnetic fields.
In reality the reflection is not perfect, and these boundary conditions are appli-
cable only in the low-frequency limit. The plates are transparent for the high-
frequency electromagnetic modes, as well as for the other degrees of freedom of
real vacuum (fermionic and bosonic), that can easily penetrate through the con-
ducting wall. That is why the high-frequency degrees of freedom, which produce
the divergent terms in the vacuum energy, do not contribute to the force. Thus
the imperfect reflection produces the natural regularization scheme.

The dispersion of dielectric permeability weakens the real Casimir force. Only
in the so-called retarded limit a≫ c/ω0, where ω0 is the characteristic frequency
at which the dispersion becomes important, does the Casimir force acquire the
universal behavior which depends only on geometry but does not depend on how
easily the high-energy vacuum leaks through the conducting walls. (Let us recall
that in both the retarded limit a≫ c/ω0 and the unretarded limit a≪ c/ω0, the
Casimir force comes from the zero-point fluctuations. But in the retarded limit
these are the zero-point fluctuations of the electromagnetic vacuum, which are
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important, and they give rise to the Casimir force. In the unretarded limit the
main contribution comes from the zero-point fluctuations of the dipole moments
of atoms, and the Casimir force is transformed to the van der Waals force.)

According to this consideration, our example in which fermions forming the
quantum vacuum are almost totally reflected from the membrane and the pen-
etration of the quantum vacuum through the membrane is suppressed, must
be extremely favorable for the universal Casimir effect. Nevertheless, we shall
show that even in this favorable case the mesoscopic finite-N effects deform the
Casimir effect: the contribution of the diverging terms to the Casimir effect
becomes dominating. They produce highly oscillating vacuum pressure in con-
densed matter (Fig.29.3 bottom). The amplitude of the mesoscopic fluctuations
of the vacuum pressure in this limit exceeds by a factor pPlancka/h̄ the value of
the standard Casimir pressure.

29.5.3 Mesoscopic Casimir force in 1D Fermi gas

The total vacuum energy of fermions in the two slabs in Fig.29.3 top is

E(Na, Nb, a, b) =
h̄2π2

12m

(

Na(Na + 1)(2Na + 1)

a2
+
Nb(Nb + 1)(2Nb + 1)

b2

)

,

(29.52)
where

Na +Nb = N . (29.53)

Since particles can transfer between the slabs, the global vacuum state in this
geometry is obtained by minimization over the discrete particle number Na at
fixed total number N of particles in the vacuum. If the mesoscopic 1/Na correc-
tions are ignored, one obtains Na/a = Nb/b = n, and the pressures acting on
the wall from the two vacua compensate each other.

However, Na and Nb are integer valued, and this leads to mesoscopic fluc-
tuations of the Casimir force. Within a certain range of parameter a there is a
global minimum characterized by integers (Na, Nb). In the neighboring intervals
of parameters a, one has either (Na + 1, Nb − 1) or (Na − 1, Nb + 1). The force
acting on the wall in the state (Na, Nb) is obtained by variation of E(Na, Nb, a, b)
over a at fixed Na and Nb:

F (Na, Nb, a, b) = −dE(Na, Nb, a, b)

da
+
dE(Na, Nb, a, b)

db
. (29.54)

When a increases then at some critical value of a, whereE(Na, Nb, a, b) = E(Na+
1, Nb −1, a, b), one particle must cross the wall from the right to the left. At this
critical value the force acting on the wall changes abruptly (we do not discuss
here the interesting physics arising just at the critical values of a, where the
degeneracy occurs between the states (Na, Nb) and (Na + 1, Nb − 1); at these
positions of the membrane the particle numbers Na and Nb are undetermined
and are actually fractional due to the quantum tunneling between the slabs
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(Andreev 1998)). Using the spectrum in eqn (29.52) one obtains for the jump of
the Casimir force

F (Na ± 1, Nb ∓ 1) − F (Na, Nb) ≈ ± h̄
2π2

m

(

N2
a

a3
+
N2

b

b3

)

≈ ± h̄
2π2n2

m

(

1

a
+

1

b

)

.

(29.55)
In the limit a ≪ b the amplitude of the mesoscopic Casimir force and thus

the difference in the vacuum pressure on two sides of the wall is

|∆Fmeso| = 2
EPlanck

a
, (29.56)

where EPlanck = cpF . It is a factor 1/Na smaller than the vacuum energy density
in eqn (29.48). On the other hand it is a factor pFa/h̄ ≡ pPlancka/h̄ larger than
the traditional Casimir pressure, which in the 1D case is PC ∼ h̄c/a2.

The divergent term which linearly depends on the Planck energy cut-off
EPlanck as in eqn (29.56) has been revealed in many different calculations which
used the effective theory (see e.g. Cognola et al. 2001), and attempts have been
made to invent a regularization scheme which would cancel this divergent con-
tribution.

29.5.4 Mesoscopic Casimir forces in a general condensed matter system

Equation (29.56) for the amplitude of the mesoscopic fluctuations of the vacuum
pressure can be immediately generalized for 3D space. The mesoscopic random
pressure comes from the discrete nature of the underlying quantum liquid, which
represents the quantum vacuum. When the volume V of the vessel changes con-
tinuously, the equilibrium number N of particles changes in a stepwise manner.
This results in abrupt changes of pressure at some critical values of the volume:

Pmeso ∼ P (N ± 1) − P (N) = ± dP

dN
= ±mc

2

V
≡ ±EPlanck

V
, (29.57)

where c is the speed of sound. Here the microscopic quantity – the mass m
of the atom – explicitly enters, since the mesoscopic pressure is determined by
microscopic trans-Planckian physics.

For the pair-correlated systems, such as Fermi superfluids with a finite gap
in the energy spectrum, the amplitude must be two times larger. This is because
the jumps in pressure occur when two particles (the Cooper pair) tunnel through
the junction, ∆N = ±2. The transition with ∆N = ±1 requires breaking the
Cooper pair and costs energy equal to the gap.

29.5.5 Discussion

Equation (29.57) is applicable, for example, for a spherical shell of volume
V = (4π/3)a3 immersed in the quantum liquid. Let us compare this finite-N
mesoscopic effect with vacuum pressure in the traditional Casimir effect obtained
within the effective theories for the same spherical shell geometry. In the case
of the original Casimir effect the effective theory is quantum electrodynamics.
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In superfluid 4He this is the low-frequency quantum hydrodynamics, which is
equivalent to the relativistic scalar field theory. In other superfluids, in addition
to phonons other low-energy modes are possible, namely the massless fermions
and the sound-like collective modes such as spin waves. The massless modes with
linear (‘relativistic’) spectrum in quantum liquids play the role of the relativis-
tic massless scalar fields and chiral fermions. The boundary conditions for the
scalar fields are typically the Neumann boundary conditions, corresponding to
the (almost) vanishing mass or spin current through the wall (let us recall that
there must be some leakage through the shell to provide the equal bulk pressure
on both sides of the shell).

If we believe in the traditional regularization schemes which cancel out the
ultraviolet divergence, then from the effective scalar field theory one must obtain
the Casimir pressure PC = −dEC/dV = Kh̄c/8πa4, where K = −0.4439 for the
Neumann boundary conditions, and K = 0.005639 for the Dirichlet boundary
conditions (Cognola et al. 2001). The traditional Casimir pressure is completely
determined by the effective low-energy theory, and does not depend on the mi-
croscopic structure of the liquid: only the ‘speed of light’ c enters this force. The
same mesoscopic pressure due to massless bosons is valid for the pair-correlated
fermionic superfluids, if the fermionic quasiparticles are gapped and their con-
tribution to the Casimir pressure is exponentially small compared to the contri-
bution of the bosonic collective modes.

However, at least in our case, the result obtained within the effective the-
ory is not correct: the real Casimir pressure in eqn (29.57) is produced by the
finite-N mesoscopic effect. It essentially depends on the Planck cut-off param-
eter, i.e. it cannot be determined by the effective theory, it is much bigger, by
the factor EPlancka/h̄c, than the traditional Casimir pressure, and it is highly
oscillating. The regularization of these oscillations by, say, averaging over many
measurements, by noise, or due to quantum or thermal fluctuations of the shell,
etc., depends on the concrete physical conditions of the experiment.

This shows that in some cases the Casimir vacuum pressure is not within
the responsibility of the effective theory, and the microscopic (trans-Planckian)
physics must be evoked. If two systems have the same low-energy behavior and
are described by the same effective theory, this does not mean that they neces-
sarily experience the same Casimir effect. The result depends on many factors,
such as the discrete nature of the quantum vacuum, the ability of the vacuum to
penetrate through the boundaries, dispersion relation at high frequency, etc. It is
not excluded that even the traditional Casimir effect which comes from the vac-
uum fluctuations of the electromagnetic field is renormalized by the high-energy
degrees of freedom

Of course, the extreme limit of the almost impenetrable wall, which we con-
sidered, is not applicable to the standard (electromagnetic) Casimir effect, where
the overwhelming part of the fermionic and bosonic vacua easily penetrates the
conducting walls, and where the mesoscopic fluctuations must be small. This
difference is fundamental. In the Casimir effect measured in the physical vac-
uum of our Universe, the boundaries or walls are made of the excitations of the
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vacuum. On the contrary, in the Casimir effect discussed for the vacuum of the
quantum liquid, the wall of the container is made of a substance which is foreign
to (i.e. external to) the vacuum of the quantum liquid. That is why the particles
of the vacuum cannot penetrate through the walls of the container. In our world,
we cannot create such a hard wall using our low-energy quasiparticle material.
That is why the vacuum easily penetrates through the wall, and the mesoscopic
effect discussed above must be small. But is it negligibly small? In any case the
condensed matter example demonstrates that the cut-off problem is not a math-
ematical, but a physical one, and the physics dictates the proper regularization
scheme or the proper choice of the cut-off parameters.

Recently the mesoscopic Casimir effect has been discussed by Kolomeisky et
al. (2008).



30

TOPOLOGICAL DEFECTS AS SOURCE OF NON-TRIVIAL

METRIC

Topological defects in 3He-A represent the topologically stable configurations of
the order parameter. Since some components of the order parameter serve as
the metric field of effective gravity, one can use the defects as the source of the
non-trivial effective metric. In this chapter we consider two such defects in 3He-
A, the domain wall and disclination line. In general relativity they correspond
respectively to planar and linear singularities in the field of vierbein. In the
domain wall (Sec. 30.1) one or several vectors of the dreibein change sign across
the wall. At such a wall in 3D space (or at the 3D hypersurface in 3+1 space) the
vierbein is degenerate, so that the determinant of the contravariant metric gµν

becomes zero on the surface. In disclination, the vierbein field and the metric are
degenerate on the line (the axis of a disclination), and the dreibein rotates by 2π
around this defect line. This metric has conical singularity (Sec. 30.2), which is
similar to the gravitational field of the local cosmic string. The degenerate metric
corresponding to the field of a spinning cosmic string, which is reproduced by
the vortex line, will be considered in Chapter 31. In general relativity, there can
be vierbein defects of even lower dimension: the point defects in 3+1 spacetime
(Hanson and Regge 1978; d’Auria and Regge 1982). We do not discuss analogs
of such instanton defects here.

30.1 Surface of infinite red shift

30.1.1 Walls with degenerate metric

In general relativity, two types of walls with the degenerate metric were consid-
ered: with degenerate contravariant metric gµν and with degenerate covariant
metric gµν . Both types of walls could be generic. The case of degenerate gµν was
discussed in details by Bengtsson (1991) and Bengtsson and Jacobson (1998).
According to Horowitz (1991), for a dense set of coordinate transformations the
generic situation is the 3D hypersurface where the covariant metric gµν has rank
3.

The physical origin of walls with the degenerate contravariant metric gµν

has been discussed by Starobinsky (1999). Such a wall can arise after inflation,
if the field which produces inflation – the inflaton field – has a Z2 degenerate
vacuum. This is the domain wall separating domains with two different vacua of
the inflaton field. The metric gµν can everywhere satisfy the Einstein equations
in vacuum, but at the considered surfaces the metric gµν cannot be diagonalized
to the Minkowski metric gµν = diag(−1, 1, 1, 1). Instead, on such a surface the
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diagonal metric becomes degenerate, gµν = diag(−1, 0, 1, 1). This metric cannot
be inverted, and thus gµν has a singularity on the domain wall. In principle, the
domains can have different spacetime topology, as was emphasized by Starobin-
sky (1999).

The degeneracy of the contravariant metric implies that the ‘speed of light’
propagating in some direction becomes zero. We consider here a condensed mat-
ter example when this direction is normal to the wall, and thus the ‘relativistic’
quasiparticles cannot communicate across the wall. Let us recall that in the effec-
tive gravity in liquid 4He, the emergent physical gravitational fields arise as the
contravariant metric gµν . In 3He-A, the emergent physical gravitational field is
the field of the tetrads – the square root of the contravariant metric gµν – which
appear in the propagator for fermions in the vicinity of a Fermi point in eqn
(8.18). In both cases gµν is the property of the quasiparticle energy spectrum at
low energy. That is why the fact that this matrix gµν cannot be inverted at the
wall is not crucial for the quantum liquid. But it is crucial for an inner observer
living in the low-energy relativistic world, since the surface of the degenerate
metric (or the surface of the degenerate vierbein – the vierbein wall) drastically
changes the geometry of the relativistic world, so that some parts of the physical
space are not accessible for an inner observer.

The vierbein wall can be simulated by domain walls in superfluids and su-
perconductors, at which some of the three ‘speeds of light’ cross zero. Such walls
can exist in 3He-B (Salomaa and Volovik 1988; Volovik 1990b); in chiral p-wave
superconductors (Matsumoto and Sigrist 1999; Sigrist and Agterberg 1999); in
d-wave superconductors (Volovik 1997a); and in thin 3He-A films (Jacobson and
Volovik 1998b; Volovik 1999c; Jacobson and Koike 2002). We consider the lat-
ter domain wall. The structure of the order parameter within this domain wall
was considered in Sec. 22.1.2. When this vierbein wall moves, it splits into a
black-hole/white-hole pair, which experiences the quantum friction force due to
Hawking radiation discussed in Sec. 32.2.5 (Jacobson and Volovik 1998b; Jacob-
son and Koike 2002; Sec. 32.1.1).

30.1.2 Vierbein wall in 3He-A film

The vierbein wall we are interested in separates in superfluid 3He-A film domains
with opposite orientations of the unit vector l̂ of the orbital momentum of Cooper
pairs: l̂ = ±ẑ (Sec. 22.1.2). Here ẑ is along the normal to the film, and the
coordinate x is across the domain wall, which is actually the domain line along
the y axis. Let us start with the wall at rest with respect to both the heat bath
and superfluid vacuum. Since the wall is topologically stable, stationary with
respect to the heat bath, and static (i.e. there is no superflow across the wall),
such a wall does not experience any dissipation.

In the 2+1 spacetime of a thin film, the Bogoliubov–Nambu Hamiltonian for
fermionic quasiparticles in the wall background is given by eqn (22.4):

H =
p2

x + p2
y − p2

F

2m∗
τ̌3 + e1(x) · p τ̌1 + e2(x) · pτ̌2 . (30.1)
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When |p| → 0 this Hamiltonian describes the massive Dirac fermions in the field
of the zweibein e1 and e2. We assume the following order parameter texture (the
field of zweibein) within the wall:

e1(x) = x̂c(x) , e2 = ŷc⊥ . (30.2)

Here the speed of ‘light’ propagating along the y axis is constant, while the speed
of ‘light’ propagating along the x axis changes sign across the wall, for example,
as in eqn (22.5):

c(x) = c⊥ tanh
x

d
. (30.3)

The exact solution for the order parameter within the wall (Salomaa and Volovik
1989) is slightly different from this ansatz, but this does not change the topology
of the wall and therefore is not important for the discussed phenomena. At x = 0
the dreibein is degenerate: the vector product e1 × e2 = 0, and thus the unit
vector l̂ = e1 × e2/|e1 × e2| is not determined.

Since the momentum projection py is the conserved quantity, we come to a
pure 1+1 problem. Now we shall manipulate py and other parameters of the
system in order to obtain the relativistic 1+1 physics in the low-energy limit,
which we want to simulate. For that we assume that (i) pF ≪ m∗c⊥; (ii) py =
±pF ; and (iii) the thickness d of the domain wall is larger than the ‘Planck’ length
scale: d ≫ h̄/m∗c⊥. Then, rotating the Bogoliubov spin and ignoring the non-
commutativity of the p2

x term and c(x), one obtains the following Hamiltonian
for the 1+1 particle:

H = M(Px)τ̌3 +
1

2
(c(x)Px + Pxc(x))τ̌

1 , (30.4)

M2(Px) =
P4

x

4m2
+ c2⊥p

2
F , (30.5)

where, as before, the momentum operator Px = −ih̄∂x. If the non-linear term
(P4

x term in eqn (30.5)) is completely ignored, one obtains the 1+1 massive Dirac
fermions

H = Mτ̌3 +
1

2
(c(x)Px + Pxc(x))τ̌

1 , (30.6)

M2 = M2(Px = 0) = c2⊥p
2
F . (30.7)

30.1.3 Surface of infinite red shift

The classical energy spectrum of the low-energy quasiparticles obeying eqn (30.6)

E2 − c2(x)p2
x = M2 , (30.8)

gives rise to the effective contravariant metric

g00 = −1 , gxx = c2(x) . (30.9)
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The inverse (covariant) metric gµν describes the effective spacetime in which the
relativistic quasiparticles propagate. The corresponding line element is

ds2 = −dt2 +
1

c2(x)
dx2 . (30.10)

The ‘vierbein wall’ at x = 0, where the ‘speed of light’ becomes zero, repre-
sents the surface of the infinite red shift for relativistic fermions. Let us consider
a relativistic quasiparticle with the rest energy M moving from this surface to
infinity. Since the metric is stationary the energy of a quasiparticle is conserved,
E =constant, and its momentum is coordinate dependent:

p(x) =

√
E2 −M2

c(x)
. (30.11)

The wavelength of a quasiparticle is infinitely small at the surface x = 0, that
is why the distant observer finds that quasiparticles emitted from the vicinity of
this surface are highly red-shifted.

Though the metric element gxx is infinite at x = 0, the Riemann curvature
is everywhere zero. Thus eqn (30.10) represents a flat effective spacetime for any
function c(x). In general relativity this means that the ‘coordinate singularity’
at x = 0, where gxx = ∞, can be removed by the coordinate transformation.
Indeed, if the inner observer who lives in the x > 0 domain introduces a new
coordinate ξ =

∫

dx/c(x), then the line element takes the standard flat form

ds2 = −dt2 + dξ2 , −∞ < ξ <∞ . (30.12)

The same will be the result of the transformation made by the inner observer
living within the left domain (x < 0). For each of the two inner observers their
half-space is a complete space: they are not aware of existence of their partner
in the neighboring sister Universe.

However, real physical spacetime, as viewed by the Planck-scale external ob-
server, contains both sister Universes. This is an example of the situation when
the effective spacetime, which is complete from the point of view of the low-
energy observer, appears to be only a part of the more fundamental underlying
spacetime. For the external observer, there is no general covariance at the funda-
mental level, and thus the general coordinate transformation is not the symmetry
operation. Moreover, the coordinate transformation ξ =

∫

dx/c(x) is not physi-
cal because it moves the wall to infinity and thus completely removes one of the
two domains from physical space. This demonstrates that if general relativity is
an effective theory, then not all coordinate transformations are innocent: some
of them must be forbidden on physical grounds. But such grounds cannot be
derived within the effective theory, and thus cannot be noticed by an inner ob-
server, unless he (or she) is able to probe the small corrections to the relativistic
physics coming from the Planckian scale.

In our case it is the superluminal dispersion of the spectrum which restores the
correct geometry of the system. Since the ‘speed of light’ c(x) becomes zero at the
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wall, the two flat spacetimes are disconnected in the relativistic approximation.
But this approximation breaks down near x = 0, where the momentum in eqn
(30.11) becomes large and the non-linearity in the energy spectrum becomes
important. The superluminal non-linearity allows the two inner observers to
communicate across the surface of the infinite red shift.

There are other examples of surfaces of the infinite red shift in condensed
matter, at which the speed of ‘light’ for some collective modes becomes zero.
These are the surface of the vanishing speed of sound discussed by Chapline
et al. (2001, 2002), and of the vanishing speed of second sound in superfluids
discussed by Mohazzab (2000). The practical realization of such a surface with an
infinite red shift can be achieved at the second-order phase boundary between two
superfluids, 3He-A and 3He-A1, which can be stabilized by the applied gradient
of magnetic field. At this phase boundary the speed of spin waves becomes zero.
The advantage of this arrangement is that the interface can exist even at T = 0,
which means that the quantum effects in the vacuum in the presence of such a
surface can be simulated. In gravity, an example of the infinite-redshift surface
is also provided by the extremal black hole, whose condensed matter analog will
be discussed in Sec. 32.1.4 (Fig. 32.2).

30.1.4 Fermions across static vierbein wall

Considering the classical dynamics of the low-energy quasiparticles, we found
that within the relativistic domain communication between the two sister Uni-
verses is forbidden. Does this conclusion persist if quantum mechanics is applied?
As we shall see in the example of the event horizon, quantum mechanics does
change the physics of the black hole: the Hawking (1974) radiation from the black
hole appears. Is the physics changing in our situation? The answer is ‘Yes’: quan-
tum mechanics opens the route to communication across the wall. Of course, as
in case of similar subtle problems, there is an uncertainty related to the analytic
continuation of the quasiparticle wave function across the coordinate singularity.
We shall see that in a given problem this uncertainty is resolved within the

relativistic domain merely by the assumption that there is a superluminal com-
munication at high energy, while the details of the non-linear dispersion are not
important. This will be confirmed by direct consideration of the superluminal
dispersion in Sec. 30.1.5.

There are two ways to treat the problem in the relativistic theory. In one
approach one makes first the coordinate transformation ξ =

∫

dx/c(x) in one of
the domains, say, at x > 0, where the line element becomes eqn (30.12). The
standard solution for the wave function of the Dirac particle with the rest energy
M propagating in the flat 1+1 spacetime of this domain is

χ(ξ) =
A√
2

exp (iξǫ)

(

Q
Q−1

)

+
B√
2

exp (−iξǫ)
(

Q
−Q−1

)

,

ǫ =
√

E2 −M2 , Q =

(

E +M

E −M

)1/4

. (30.13)
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Here A and B are arbitrary constants. In this approach it makes no sense to
discuss any connection to the other domain, which simply does not exist in this
representation.

In the second approach we do not make the coordinate transformation and
work with both domains. The wave function for the Hamiltonian (30.6) at x > 0
follows from the solution in eqn (30.13) after restoring the old coordinates:

χ(x > 0) =
A

√

2c(x)
exp (iξ(x)ǫ)

(

Q
Q−1

)

+
B

√

2c(x)
exp (−iξ(x)ǫ)

(

Q
−Q−1

)

, ξ(x) =

∫ x dx

c(x)
. (30.14)

A similar solution exists at x < 0. We can now connect the solutions for the right
and left half-spaces using (i) the analytic continuation across the point x = 0;
and (ii) the conservation of the quasiparticle current across the interface. The
quasiparticle current, e.g. at x > 0, is

j = c(x)χ† τ̌1χ = |A|2 − |B|2 . (30.15)

The analytic continuation depends on the choice of the contour around the
point x = 0 in the complex x plane. If the point x = 0 is shifted to the lower
part of the complex plane one obtains the following solution in the left domain:

χ(x < 0) =
−iA

√

2|c(x)|
exp

(

− ǫ

2TH

)

exp (iξ(x)ǫ)

(

Q
Q−1

)

+
−iB

√

2|c(x)[
exp

(

ǫ

2TH

)

exp (−iξ(x)ǫ)
(

Q
−Q−1

)

, (30.16)

where TH is

TH =
h̄

2π

dc

dx

∣

∣

∣

∣

x=0

. (30.17)

As we shall see later in eqn (32.9) the quantity TH has the meaning of Hawk-
ing temperature, though there is no radiation when the wall is at rest. The
Hawking temperature marks the crossover from the classical to quantum regime.
If the quasiparticle energy ǫ ≫ TH, one has ∂λ/∂x = 4π2TH/ǫ ≪ 1, where
λ = 2πh̄/|px| = 2πh̄c/ǫ is the de Broglie wavelength of the quasiparticle. In this
energy range one can use the quasiclassical approximation for the wave function.

The conservation of the quasiparticle current (30.15) across the point x = 0
gives the connection between coefficients A and B:

|A|2 − |B|2 = |B|2 exp

(

ǫ

TH

)

− |A|2 exp

(

− ǫ

TH

)

. (30.18)

If ǫ≫ TH one has |A| = |B| exp
(

ǫ
2TH

)

≫ |B|, and the wave function across the

wall becomes

χ(x > 0) =
1

√

2|c(x)|
exp (iξ(x)ǫ)

(

Q
Q−1

)

, (30.19)
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χ(x < 0) =
−i

√

2|c(x)|
exp (−iξ(x)ǫ)

(

Q
−Q−1

)

. (30.20)

Though at the classical level the two sister Universes on both sides of the
singularity are not connected, there is a quantum mechanical interaction be-
tween them. The wave functions across the wall are connected by the relation
χ(−x) = iτ̌3χ∗(x).

30.1.5 Communication across the wall via non-linear superluminal dispersion

In the above derivation we relied upon the analytic continuation and on the
conservation of the quasiparticle current across the wall. Let us justify this using
the non-linear correction in eqn (30.5), which was ignored before. We shall work
in the quasiclassical regime, which holds if ǫ ≫ TH. In a purely classical limit
one has the following non-linear spectrum with superluminal dispersion at high
energy:

E2 = M2 + c2(x)p2
x +

p4
x

4(m∗)2
. (30.21)

This spectrum determines two classical trajectories

px(x) = ±
√

2m∗
(

√

ǫ2 + (m∗)2c4(x) −m∗c2(x)
)

. (30.22)

Both of them have no singularity at x = 0: the two trajectories continuously cross
the domain wall in opposite directions, while the Bogoliubov spin continuously
changes its direction to the opposite one. Far from the wall, the quasiclassical
wave function corresponding to the trajectory of a quasiparticle propagating from
the left to the right transforms to eqn (30.20) obtained within the relativistic
domain. This wave function describes the propagation through the wall without
reflection: in the quasiclassical limit the reflection is exponentially suppressed.

The second trajectory, with minus sign in eqn (30.22), describing the propa-
gation from the right to the left, gives rise to the quantum mechanical solution
obtained by the analytic continuation when the point x = 0 is shifted to the
upper part of the complex plane.

This confirms that there is a quantum mechanical coherence between the
two flat worlds, which do not interact classically across the vierbein wall. The
coherence is established by non-linear correction of the spectrum: E2(p) =
M2 + c2p2 + γp4. In our consideration the non-linear dispersion parameter γ
was chosen as positive, which allows superluminal propagation across the wall
at high momenta p. The result, however, does not depend on the magnitude of
γ, i.e. the only relevant input of the ‘Planck’ physics is the mere possibility of
superluminal communication between the worlds across the wall which justifies
the analytic continuation. Thus quantum mechanics may contain more informa-
tion on the sister Universe than classical physics. This is similar to the problem
of the black-hole horizon.

In principle, the two worlds across the vierbein wall can be smoothly con-
nected by a path which does not cross the wall, say, in a Möbius strip geometry



404 TOPOLOGICAL DEFECTS AS SOURCE OF NON-TRIVIAL METRIC

(Silagadze 2001; Foot and Silagadze 2001). In 3He-A film with Möbius geometry,

the domains with opposite orientations of l̂ can be smoothly connected.
Finally, let us consider the limit of the small rest energy, M → 0, when quasi-

particles become chiral with the spin directed along or opposite to the momentum
px. The spin structure of the wave function in a semiclassical approximation is
given by

χ(x) = exp
(

iτ̌2α/2
)

χ(+∞) , tanα =
px

2m∗c(x)
. (30.23)

Since α changes by π across the wall, the spin of the chiral quasiparticle rotates by
π. This means that the right-handed quasiparticle transforms to the left-handed
one when it crosses the vierbein wall.

30.2 Conical space and antigravitating string

Now let us turn to linear defects in the vierbein field at which the metric is
degenerate. The analog of such a vierbein line in 3He-A is represented by the
radial disclination in eqn (15.13) (Fig. 30.1). Around this defect, one of the
vectors of the dreibein in eqn (7.16), say e2, remains constant, e2 = c⊥ẑ, while
the other two are rotating by 2π:

l̂(r) = ρ̂ , e1 = c⊥φ̂ . (30.24)

The vector l̂ is radial, whence the name radial disclination. The interval corre-
sponding to the effective metric in eqn (7.18) outside the core of disclination
is

ds2 = −dt2 +
1

c2⊥
dz2 +

1

c2‖

(

dρ2 +
c2‖

c2⊥
ρ2dφ2

)

. (30.25)

Rescaling the radial and axial coordinates, ρ = c‖R and z = c⊥Z, one obtains

ds2 = −dt2 + dZ2 + dR2 + a2R2dφ2 , a2 =
c2‖

c2⊥
≫ 1 . (30.26)

In relativistic theories this is the conical metric. Such a metric, but with a < 1,
arises outside the local cosmic strings with the singular energy density concen-
trated in the string core

T 0
0 =

1 − a

4Ga
δ2(R) , (30.27)

where G is the gravitational constant. The space outside the string core is flat,
but the proper length 2πRa of the circumference of radius R around the axis
is smaller than 2πR, if a < 1. A similar angle deficit takes place in the conical
geometry, hence the name. Though the space is effectively flat outside the defect,
the conical singularity gives rise to the curvature concentrated on the disclination
axis, at R = 0, see Sokolov and Starobinsky (1977) and Banados et al. (1992):

RRφ
Rφ = 2π

a− 1

a
δ2(R) , δ2(R) = δ(X)δ(Y ) . (30.28)

This curvature and the mass density of the string in eqn (30.27) are coupled via
the Einstein equations.
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l-field: x

y

z

ds2 = – dt2 + dz2  + dρ2  +  a2ρ2dφ2           

In cosmic strings:  angle deficit    a < 1        
In disclination:      angle excess    a  =  c||/c⊥  > 1

geodesic
curve

             Disclination = antigravitating cosmic string

effective space
where fermions live
is conical:

length of circumference:   L =  2πaρ

Fig. 30.1. The radial disclination in 3He-A is equivalent to a cosmic string with
an excess angle. Since all the geodesic curves are repelling from the string,
the dysgyration serves as an example of the antigravitating string.

For the radial disclination in 3He-A, one has a2 > 1, i.e. there is an excess
of the angle, or the ‘negative angle deficit’. Moreover, we have a = c‖/c⊥ ≫ 1,
which would correspond to a cosmic string with a large negative mass on the
order of Planck scale, i.e. the string in 3He-A is antigravitating – the quasiparticle
trajectories are repelled from the string (Fig. 30.1).



31

VACUUM UNDER ROTATION AND SPINNING STRINGS

Here we discuss the properties of the quantum vacuum in superfluids in the pres-
ence of the analog of a gravimagnetic field. Such an effective field arises either
under rotation which is equivalent to the constant in the space gravimagnetic
field, or in the presence of conventional U(1)-vortices, where the effective gravi-
magnetic field is concentrated in the core of the vortex – the gravitational analog
of the Aharonov–Bohm tube with magnetic flux.

31.1 Sagnac effect using superfluids

31.1.1 Sagnac effect

Let us first consider the real (not effective) gravimagnetic field, which is equiv-
alent to the metric in the rotating frame. As we know (see Sec. 20.1.1), the
rotation with angular velocity Ω is equivalent to the following constant gravi-
magnetic field:

Bg = ∇× G = 2
Ω

c2
, Gi ≡ g0i . (31.1)

Here c is a real speed of light in the real vacuum, and g0i are non-diagonal
elements of the metric of the Minkowski spacetime in the rotating frame:

ds2 = −
(

1 − Ω2ρ2

c2

)

dt2 + 2
Ω

c2
ρ2dφdt+

1

c2
(

dz2 + dρ2 + ρ2dφ2
)

= − dt2 +
1

c2
(

dz2 + dρ2 + ρ2(dφ + Ωdt)2
)

. (31.2)

The field Bg is called gravimagnetic because it interacts with particles in a
similar way as the conventional U(1) magnetic field; the role of the charge e of
a particle is played by its energy E. It is illustrated by the Coriolis force acting
on a particle in the rotating frame:

FCoriolis = Ev × Bg = 2
E

c2
v × Ω , (31.3)

where v is the velocity of the particle. The corresponding term in the action,
which gives rise to the Coriolis force, can be written as E

∮

G·dr, which is equiva-
lent to the action e

∮

A·dr for electrically charged particles in an electromagnetic
field.

The Sagnac (1914) effect is the appearance of the phase difference between
the two beams of particles, counterclockwise (ccw) and clockwise (cw), as mea-
sured by a rotating detector (see e.g. Ryder and Mashhoon 2001). Using the
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C

Josephson
junction

φ+

φ-

Ω

Fig. 31.1. Schematic illustration of the Sagnac effect in superfluids.

correspondence between the gravimagnetic and magnetic fields and eqn (31.1),
one obtains a phase difference between the ccw and cw beams measured by a
detector rotating along the path C = dσ:

φ+ − φ− = ∆φSagnac = ω

∮

C

G · dr = ω

∫

σ

dS ·Bg =
2ω

c2

∫

σ

dS ·Ω . (31.4)

Here ω = E/h̄ is either the de Broglie frequency of matter waves or the frequency
of photons.

31.1.2 Superfluid gyroscope under rotation. Macroscopic coherent Sagnac
effect

One can use the important property of superfluids – the phase coherence – to
amplify and observe the effect of rotation (Cerdonio and Vitale 1984, Varoquaux
et al. 1992, Packard and Vitale 1992). In the phase coherent systems, equation
(31.4) gives the shift of the macroscopic phase of the order parameter. This has
been probed using the Josephson effect which allowed the rotation of the Earth to
be measured by superfluid interferometry in superfluid 4He and 3He (Avenel and
Varoquaux 1996; Schwab et al. 1997; Avenel et al. 1997; Packard 1998; Avenel et
al. 1998; Mukharsky et al. 2000). Let us recall that in the Bose superfluid 4He,
the coherent phase entering eqn (31.4) is just the phase of the order parameter,
φcoh = Φ. For the Fermi superfluids, where the Cooper pair consists of two
atoms, it is one-half of the phase of the order parameter, φcoh = Φ/2.

In the experiment, the superfluid is confined in the channel in the form of
a closed loop C containing the weak link – the Josephson junction (Fig. 31.1).
This channel is rotating with constant angular velocity; for example, it is ro-
tating together with the Earth. In the rotating frame, channel walls and tex-
tures are stationary; that is why it is easier to consider the effect in this frame.
The superfluid velocity in the rotating frame is vs = (h̄/m)∇φcoh − Ω × r. If
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one neglects the small current through the Josephson junction and if the chan-
nel is thin enough, the superfluid velocity in the loop is almost zero in the
rotating frame, vs = (h̄/m)∇φcoh − Ω × r ≈ 0, while in the inertial frame
vs = (h̄/m)∇φcoh ≈ Ω × r, i.e. the motion of the superfluid in the channel
mimics the rotational motion to a good precision. Of course, due to the curl-free
condition for vs in the inertial frame, this is not an exact equation, but in a
given almost 1D geometry of thin channel the rotational motion is almost indis-
tinguishable from the translational one. As a result, the phase shift around the
loop is

∆φcoh =

∮

C

∇φcoh · dr =
m

h̄

∫

C

dr · (Ω× r) =
2ω

c2

∫

σ

dS ·Ω , ω =
mc2

h̄
. (31.5)

This coincides with eqn (31.4) for the Sagnac effect with one important improve-
ment: the phase is now coherent and thus the phase difference can be easily
measured using the Josephson effect. A few comments must be made: (i) c here
is a real speed of light (not effective), and thus it is the real Sagnac effect, while
the superfluid serves as a tool for the measurements; (ii) if all relativistic effects
are taken into account, the rest energy mc2 of the atom must be substituted by
the relativistic chemical potential µ, which takes into account the energy of the
interaction of the atom with the other atoms of the liquid, i.e. ω = µ/h̄; (iii)
the same equation (31.5) is applicable to the phase difference around any closed
loop in superfluids which does not contain vortices.

The phase difference across the Josephson junction, given by the Sagnac
equation (31.5), has been measured in superfluids. Observation of the Sagnac
effect in superfluids is an example of the phenomenon of amplification caused by
the macroscopic superfluid coherence discussed by Leggett (1977, 1998).

31.2 Vortex, spinning string and Lense–Thirring effect

31.2.1 Vortex as vierbein defect

Now let us turn to the effective gravimagnetic field emerging in superfluids.
The gravitational analog of the gravimagnetic tube is represented by quantized
vortices. A quantized vortex in 3He-A (Fig. 31.2 top) is another example of linear
topological defects in the vierbein field at which the metric is degenerate. We
shall use the simplest ansatz for the structure of a singular vortex with winding
number n1 given by eqn (23.3), which can be written in terms of the zweibein
vectors e1 and e2 in eqn (7.16). In the case of a vortex with winding number
n1 = 1, these vectors are rotating by 2π around the vortex axis and are zero on
the vortex axis:

l̂ = ẑ , e1 = c(ρ)ρ̂ , e2 = c(ρ)φ̂ , c(0) = 0 , c(∞) = c⊥ . (31.6)

The superfluid velocity circulating around the axis is, according to eqn (9.16),

vs =
h̄

2mρ
φ̂ ,

∮

dx · vs ≡ κ = n1κ0 , (31.7)
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Fig. 31.2. Quantized vortex as spinning string – the cosmic string with the
angular momentum consentrated in the core. Top: The effective metric pro-
duced by superflow circulating around a vortex is similar to the metric pro-
duced by a spinning string. Bottom: As in the case of a spinning string,
there is a constant time difference for a quasiparticle circling with the ‘speed
of light’ around a vortex in clockwise and counterclockwise directions. The
string serves as a gravimagnetic solenoid. Quasiparticles experience the grav-
itational Aharonov–Bohm effect leading to an extra force acting on a vortex
from the system of quasiparticles – the so-called Iordanskii force.

where the circulation quantum is κ0 = πh̄/m in superfluid 3He and κ0 = 2πh̄/m
in superfluid 4He. Let us recall that in 3He-A, n1 can be half-integer: n1 = 1/2
for the half-quantum vortex – the Alice string – in Sec. 15.3.1.

31.2.2 Lense–Thirring effect

The circulating motion of the superfluid vacuum around a vortex leads to the
local Doppler shift of the quasiparticle energy which in the low-energy limit mod-
ifies the contravariant effective metric according to eqn (9.11). The corresponding
covariant metric gµν in eqn (9.13) describing the effective spacetime viewed by
quasiparticles leads to the following interval in the frame where the vortex is at
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rest (the texture-comoving frame):

ds2 = −dt2 +
ρ2

c2(ρ)

(

dφ− κ

2πρ2
dt

)2

+
dρ2

c2(ρ)
+
dz2

c2‖
. (31.8)

Far from the core, where c(ρ) = c⊥, the same metric is applicable to phonons
propagating around the vortex in superfluid 4He after the isotropic ‘speed of
light’ is introduced, c⊥ = c‖ = c. The vierbein in eqn (31.6) and thus the metric
in eqn (31.8) have singularities at ρ = 0, where the vierbein is degenerate and
the effective speed of light in the direction transverse to the vortex axis vanishes,
c(ρ→ 0) → 0. The vortex axis is thus the line of the infinite red shift.

The second term in the metric (31.8) indicates that the local superfluid-
comoving frame is moving with time. In general relativity the term proportional
to (dφ− ωLT(ρ)dt)2 also describes frame dragging, which occurs around a grav-
itating object rotating about its axis, such as a rotating planet, a star or a
black hole. The phenomenon of frame dragging by a rotating body is known as
the Lense–Thirring (1918) effect, and the function ωLT(ρ) is called the Lense–
Thirring angular velocity. It is the velocity with which the observer, who has
zero angular momentum, orbits around a rotating body. In our case of a vortex,
from eqn (31.8) it follows that the Lense–Thirring angular velocity is

ωLT(ρ) =
κ

2πρ2
. (31.9)

31.2.3 Spinning string

Far from the vortex the quadratic terms v2
s /c

2
⊥ can be neglected, and one obtains

the following asymptotic interval:

ds2 = −
(

dt+
dφ

ωF

)2

+
1

c2⊥
(dρ2 + ρ2dφ2) +

1

c2‖
dz2 , ωF =

2πc2⊥
κ

. (31.10)

The connection between the time and the azimuthal angle φ in the interval sug-
gests that there is another characteristic angular velocity ωF, which is constant
for the effective metric produced by a vortex. On the quantum level, this connec-
tion between the time and the angle implies that the physical quantities which
depend on the quasiparticle energy should be periodic functions of the energy
with the period equal to h̄ωF. Thus if the interval (31.10) is valid everywhere
one has a fundamental frequency ωF.

For phonons around the vortex in superfluid 4He this fundamental frequency
is ωF = mc2/n1h̄, while for the 3He-A fermions ωF = 2mc2⊥/n1h̄. Note that
in both cases such a microscopic quantity as the bare mass of 3He and 4He
atoms explicitly enters the effective metric. Let us recall that the quantization
of circulation of superfluid velocity around the vortex, as well as the topological
stability of the vortex, are the properties of the ‘trans-Planckian’ physics. They
do not follow from the effective RQFT arising in 3He-A. The inner observer
living in the relativistic ‘sub-Planckian’ world, if he (or she) finds the vortex loop
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somewhere, can extract the information on the mass of the atoms comprising the
quantum vacuum.

In relativistic theories the metric with rotation similar to that in eqn (31.10)
was obtained for the so-called spinning cosmic string in 3+1 spacetime, and also
for the spinning particle in 2+1 gravity (see Mazur 1986, 1996; Staruszkievicz
1963; Deseret al. 1984). The spinning cosmic string is the string which has its
rotational angular momentum concentrated in the string core. The metric outside
such a string is

ds2 = −
(

dt+
dφ

ωF

)2

+
1

c2
(dz2 + dρ2 + ρ2dφ2) , ωF =

1

4JGc
, (31.11)

where G is the gravitational constant, and J is the angular momentum per unit
length of the string. Thus vortices in superfluids simulate the spinning cosmic
strings (Davis and Shellard 1989) with the following correspondence between the
circulation κ around a vortex and the angular momentum density J of a cosmic
string:

κ =
8π√−gJG . (31.12)

31.2.4 Asymmetry in propagation of light

The effect peculiar to the spinning string, which was modeled in condensed mat-
ter, is the gravitational Aharonov–Bohm effect (Mazur 1986). Outside the string
the metric, which enters the interval ds, is locally flat. But there is a time differ-
ence for particles propagating around the spinning string in opposite directions
(Fig. 31.2 bottom). Let us consider the classical propagation of light along the
circumference of radius R assuming that there is a confinement potential – a
mirror – which keeps the light within the circumference. Then the trajectories
of phonons (null geodesics) at ρ = R and z = 0 are described by the equa-
tion ds2 = 0. At large distances from the core, R ≫ c/ωF, these trajectories
correspond to the cw and ccw rotations with angular velocities

φ̇± =
1

±R
c − 1

ωF

(31.13)

The difference in the periods T± = 2π/φ̇± for cw and ccw motion of the pho-
ton (as well as the phonon or Bogoliubov quasiparticle) is thus related to the
fundamental frequency (Harari and Polychronakos 1988):

2τ =
4π

ωF
. (31.14)

The apparent ‘speed of light’ measured by an inner observer is also different for
‘light’ propagating in opposite directions: c± ≈ c(1 ± c/ωFR).

This asymmetry between quasiparticles moving on different sides of a vortex
is the origin of the Iordanskii force acting on a vortex from the heat bath of
quasiparticles (‘matter’), which we discuss in Section 31.3.



412 VACUUM UNDER ROTATION AND SPINNING STRINGS

31.2.5 Vortex as gravimagnetic flux tube

Using the definition of the gravimagnetic field in eqn (31.1) and expressing it
through the effective metric in superfluid 3He-A one obtains

Bg = ∇× G = − 1

c2⊥
∇× vs = −ẑ

κ

c2⊥
δ2(ρ) = −ẑ

2π

ωF
δ2(ρ) . (31.15)

The gravimagnetic field is concentrated in the core of a vortex or a spinning
string, which plays the role of a gravimagnetic flux tube.

It is also instructive to derive the correspondence between the magnetic flux
tube and the gravimagnetic flux tube, since it allows us to consider the analog
of the Aharonov–Bohm effect and finally to find the Iordanskii force acting on
the vortex. Let us consider the simplest case of isotropic superfluid 4He, where
quasiparticles are phonons with energy Ẽ = cp+p·vs(r) in the texture-comoving
frame, or (Ẽ − p · vs(r))

2 = c2p2. Taking into account that for the stationary
metric of the texture-comoving frame the energy Ẽ is a conserved quantum
number and substituting p = −ih̄∇, one obtains the wave equation for the
sound waves propagating outside the vortex core

1

c2

(

Ẽ + ih̄vs · ∇
)2

α+ h̄2∇2α = 0 . (31.16)

In the asymptotic region far from the vortex core, the quadratic terms v2
s/c

2 can
be neglected and this equation can be rewritten as (Sonin 1997)

Ẽ2α− c2

(

−ih̄∇ +
Ẽ

c2
vs(r)

)2

α = 0 . (31.17)

This equation maps the problem under discussion to the Aharonov–Bohm (1959)
problem for the magnetic flux tube with the vector potential A = −vs/c

2 and
the energy Ẽ playing the part of the electric charge of the particle, e ≡ Ẽ
(Mazur 1987; Jensen and Kučera 1993; Gal’tsov and Letelier 1993). The effective
magnetic field B = ∇× A = −ẑ(κ/c2)δ2(ρ) = −ẑ(2π/ωF)δ2(ρ) concentrated in
the vortex core reproduces eqn (31.15) for the gravimagnetic field.

31.3 Gravitational Aharonov–Bohm effect and Iordanskii force on a

vortex

As we discussed in Secs 18.3 and 18.4, in superfluids, with their two-fluid hydro-
dynamics for the superfluid vacuum and quasiparticles forming ‘matter’, there
are three different topological contributions to the force acting on a quantized
vortex in Fig. 18.3. The more familiar Magnus force arises when the vortex moves
with respect to the superfluid vacuum. For the relativistic cosmic string this force
is absent since the corresponding superfluid density of the quantum physical vac-
uum is zero. However, the analog of this force appears if the cosmic string moves
in the uniform background charge density (Davis and Shellard 1989; Lee 1994).
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The other two forces of topological origin also have analogs for the cosmic strings:
one of them comes from the analog of the axial anomaly discussed in Sec 18.3 and
Chapter 25; and another one – the Iordanskii (1964, 1966) force – comes from the
analog of the gravitational Aharonov–Bohm effect experienced by the spinning
cosmic string discussed by Mazur (1986, 1987, 1996). The connection between
the Iordanskii force and the conventional Aharonov–Bohm effect was developed
by Sonin (1975, 1997) and Shelankov (1998, 2002), while the connection with the
gravitational AB effect on a spinning string was discussed by Volovik (1998a)
and Stone (2000a). A peculiar spacetime metric around the spinning string leads
to the asymmetry in the scattering of quasiparticles on a spinning string and
finally to the Iordanskii lifting force acting on a vortex moving with respect to
the heat bath of quasiparticles (‘matter’).

31.3.1 Symmetric scattering from the vortex

Let us start with phonons scattered by a vortex in 4He. Following the same
reasoning as for the conventional AB effect, one finds that the symmetric part of
the scattering cross-section of a quasiparticle with energy E(p) = cp on a vortex
is (Sonin 1997)

dσ‖

dθ
=

h̄c

2πE(p)
cot2

θ

2
sin2 πE(p)

h̄ωF
, E(p) = cp . (31.18)

This equation satisfies the periodicity of the cross-section as a function of energy
with the period determined by the fundamental frequency, ∆E = h̄ωF, as is
required by the spinning string metric in eqn (31.11). In superfluids, the relevant
quasiparticle energies are typically smaller than h̄ωF, which is comparable to
the Planck energy. For small E ≪ ωF the result in eqn (31.18) was obtained
by Fetter (1964). The generalization of the Fetter result for quasiparticles with
arbitrary spectrum E(p) – rotons in 4He and the Bogoliubov–Nambu fermions
in superconductors – in the range E(p) ≪ h̄ωF was suggested by Demircan et
al. (1995). In our notation it is

dσ‖
dθ

=
κ2h̄p

8πv2
G

cot2
θ

2
, (31.19)

where vG = dE/dp is the group velocity of quasiparticles.
The equation for the particles scattered by a cosmic spinning string in rela-

tivistic theory was suggested by Mazur (1987, 1996). If the mass density of the
spinning string is not taken into account the result is

dσ‖

dθ
=

h̄c

2πE sin2(θ/2)
sin2 πE

h̄ωF
, E = cp . (31.20)

There is a deviation from the result in eqn (31.18) for the vortex, since the
metrics of the vortex and spinning string coincide only asymptotically. However,
eqn (31.20) preserves the most important properties of eqn (31.18): periodicity
in E and the same singular behavior at small scattering angle θ.
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31.3.2 Asymmetric scattering from the vortex

This singularity at θ = 0 is an indication of the existence of the transverse
(or asymmetric) cross-section (Shelankov 1998, 2002). For the conventional AB
effect this asymmetric part leads to the Lorentz force, which acts on the magnetic
flux tube in the presence of an electric current carried by excitations outside the
tube. The Lorentz force is transverse to the current, and it corresponds to the
Iordanskii transverse force, which acts on the vortex in the presence of the mass
current carried by the normal component of the liquid. The asymmetric part in
the scattering of the quasiparticles on the velocity field of the vortex has been
calculated by Sonin (1997) for phonons and rotons in 4He and by Cleary (1968)
for the Bogoliubov–Nambu quasiparticles in conventional superconductors. In
the case of ‘relativistic’ phonons the transverse cross-section is, according to
Sonin (1997) and Shelankov (1998, 2002),

σ⊥(p) =
h̄c

E(p)
sin

2πE(p)

h̄ωF
, E(p) = cp . (31.21)

It is periodic in the phonon energy E again with the fundamental period ωF.

31.3.3 Classical derivation of asymmetric cross-section

The periodicity of the cross-section as a function of E is the result of quan-
tum interference. At low E ≪ ωF, when sinx = x the Planck constant h̄ com-
pletely drops out from eqn (31.21), which means that for the calculation in this
limit we do not need quantum mechanics. In the low-energy limit the anomalous
cross-section can be calculated within purely classical mechanics, using a simple
classical theory of scattering (Sonin 1997). And it can be easily generalized for
arbitrary energy spectrum E(p), if E(p) ≪ ωF.

Far from the vortex, where the circulating velocity is small, the trajectory of a
quasiparticle is almost a straight line parallel, say, to the axis y, with the distance
from the vortex line being the impact parameter x = b. The quasiparticle moves
along this line with almost constant momentum py ≈ p and almost constant
group velocity vG(p) = dE/dp. The change in the transverse momentum during
this motion is determined by the Hamiltonian equations dpx/dt = −∂Ẽ/∂x =
−py∂vsy/∂x, or dpx/dy = −(p/vG)∂vsy/∂x. The deflection angle ∆θ = ∆px/p is
obtained by integration of dθ = dpx/p along the trajectory

∆θ(b, p) =
1

vG(p)
∂x

∫ +∞

−∞

dy vsy =
κ

2vG(p)
∂xsign(x) =

κ

vG(p)
δ(b) . (31.22)

The deflection angle is zero except for the singularity at the origin. The gravimag-
netic AB solenoid looks like a fast-rotating infinitely thin string: the quasiparticle
does not feel the string except when it hits the string directly. Then the quasipar-
ticle gets a kick and scatters in all directions with the preferable direction along
κẑ × p. The total momentum change after scattering is linearly proportional to
the circulation κ and this is the origin of the Iordanskii force.
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The transverse cross-section is obtained by integration of deflection angle
∆θ(b, p) over the impact parameter b:

σ⊥(p) =

∫ +∞

−∞

db ∆θ(b, p) =
κ

vG(p)
. (31.23)

For phonons with vG(p) = c this is the result of eqn (31.21) at E ≪ ωF. In order
to check that the singularity at b = 0 was treated correctly, we can regularize
this singularity by introducing a correction to the vortex velocity field, e.g. vs =
(κ/2π)φ̂ρ/(ρ2 +R2

core), where Rcore is the core radius. Then

∆θ(b, p) =
κ

2πvG(p)
∂b

∫ +∞

−∞

dy
b

y2 + b2 +R2
core

=
κ

2vG(p)
∂b

(

b
√

b2 +R2
core

)

.

(31.24)
Now the deflection angle is a smooth function of b, and integrating it over b one
obtains the same equation (31.23) for the transverse cross-section, which does
not depend of the profile of ∆θ(b). This confirms the topological origin of the
anomalous part of the cross-section.

31.3.4 Iordanskii force on spinning string

This asymmetric part of scattering, σ⊥(p), describes the momentum transfer in
the transverse direction, δP = σ⊥(p)p × ẑ, due to scattering by a vortex. Inte-
gration over the distribution f(p) of quasiparticles gives rise to the momentum
transfer per unit time, and thus to the force acting on a vortex (per unit length)
from the system of quasiparticles:

FIordanskii =

∫

d3p

(2πh̄)3
σ⊥(p)vG(p)f(p)p × ẑ

= − κẑ×
∫

d3p

(2πh̄)3
f(p)p = κP× ẑ . (31.25)

Being of topological origin this force does not depend on details: it is deter-
mined by the momentum density P carried by excitations (matter) and by the
circulation κ around the vortex.

In the case of thermal distribution of quasiparticles, the net momentum den-
sity arises if there is a counterflow, the flow of the normal component with respect
to the superfluid vacuum: P = mnn(vn − vs). Substituting this into eqn (31.25)
one obtains eqn (18.28) for the Iordanskii force, which we used to study the
vortex dynamics in 3He-A and 3He-B. The same Iordanskii force must act on a
spinning cosmic string when it moves with respect to the matter.

The Iordanskii force has been experimentally identified in rotating superfluid
3He-B. According to the theory for the transport of vortices in 3He-B (Sec. 18.4),
at low T , where the spectral flow (and thus the effect of the axial anomaly) is
completely suppressed, the Iordanskii force completely determines the so-called
mutual friction parameter d⊥ (see Sec. 25.2.4). The Iordanskii force dictates that
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it must be negative: d⊥ ≈ −nn/ns. This is in accordance with the experimental
data by Bevan et al. (1995) and Hook et al. (1996) in Fig. 25.1 which demon-
strated that d⊥ does become negative at low T . At higher T the spectral flow
becomes dominating which leads to the sign reversal of d⊥. The observed nega-
tive sign of d⊥ at low T thus provides the experimental verification of the analog
of the gravitational AB effect in 3He-B.

31.4 Quantum friction in rotating vacuum

31.4.1 Zel’dovich–Starobinsky effect

Now we turn to the effective gravimagnetic field in superfluids caused by ro-
tation with constant angular velocity. Let us consider a cylinder of radius R
rotating with angular velocity Ω inside the vortex-free superfluid vacuum which
is asymptotically at rest in the inertial frame (Fig. 31.3). We are interested in
how the angular momentum of a rotating body transfers to the liquid at T = 0,
when there is no viscous normal component, which usually causes the rotational
friction.

When the body rotates in the superfluid vacuum it represents the time-
dependent potential which disturbs the vacuum. In the case of a cylinder, this
potential is caused by imperfections on the surface of the cylinder. If the surface
is atomically smooth, the time-dependent field is provided by the atomic struc-
ture of the body, say by the crystal lattice. Due to the perturbations which are
time dependent in the inertial frame of the superfluid, the quasiparticle energy
is not the conserved quantity in this frame. As a result the rotating cylinder
must radiate quasiparticles. The emission of quasiparticles, phonons and rotons
in superfluid 4He and pairs of Bogoliubov fermions in superfluid 3He leads to
the rotational friction experienced by the body even at T = 0. This corresponds
to the quantum friction experienced by a body rotating in the quantum vacuum
first discussed by Zel’dovich (1971b) and Starobinskii (1973).

Zel’dovich (1971a) was the first to predict that the rotating body (say, the
dielectric cylinder) amplifies those electromagnetic modes which satisfy the con-
dition

ω − LzΩ < 0 . (31.26)

Here ω is the frequency of the mode, Lz is its azimuthal quantum number along
the rotation axis, and Ω is the angular velocity of the rotating cylinder. This
amplification of the incoming radiation is referred to as superradiance (see e.g.
Bekenstein and Schiffer 1998). The wave extracts energy and angular momentum
from the rotating body, slowing down the rotation.

The other aspect of this phenomenon is that due to quantum effects, the
cylinder rotating in the quantum vacuum spontaneously emits the electromag-
netic modes satisfying eqn (31.26) (Zel’dovich 1971a)). The same occurs for any
body rotating in the quantum vacuum, including the rotating black hole as was
discussed by Starobinskii (1973), if the above condition is satisfied. The dissi-
pation of energy and angular momentum due to interaction with the quantum
vacuum is an example of the quantum friction.
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Fig. 31.3. Rotational quantum friction in superfluids as simulation of
Zel’dovich–Starobinsky effect. The inner cylinder rotates in superfluid vac-
uum forming the preferred rotating reference frame. In this frame the effective
metric has an ergoregion, where the negative energy levels are empty. The
process of filling of these levels is similar to the radiation from the rotating
black hole.

It is instructive to consider the quantum friction in the frame rotating with
the inner cylinder.

31.4.2 Effective metric for quasiparticles under rotation

Let us first ignore the radiation from the rotating body and thus the slowing
down of the rotating cylinder. Then in the rotating frame, the cylinder and the
superfluid vacuum are stationary. If the velocity of rotation is not too high, so
that the superfluid velocity vs with respect to the surface of the cylinder does
not exceed the Landau criterion, all the perturbations of the superfluid caused
by the surface roughness of the cylinder are also stationary in the rotating frame.
Hence in the rotating frame the quasiparticle energy is a good quantum number.
Moreover, if the outer cylinder is far away, the inner cylinder represents the
proper environment for the quantum liquid, and the rotating frame becomes the
frame of the environment dictating the equilibrium conditions.

Far from the body the superfluid is at rest in the inertial frame. Thus in the
rotating frame the superfluid velocity is vs = −Ω × r. This is valid far enough
from the body, since close to the body there are space-dependent perturbations
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of the vs-field caused by the surface roughness. For the moment we ignore these
perturbations.

Let us first discuss the superfluid 4He whose quasiparticles – phonons – obey
the effective acoustic metric. Substituting vs = −Ω × r into eqn (5.2) one
obtains that far from the cylinder the line element, which determines the propa-
gation of phonons in the rotating frame of the environment, corresponds to the
conventional metric (31.2) of flat space in the rotating frame:

ds2 = −
(

1 − Ω2ρ2

c2

)

dt2 + 2
Ω

c2
ρ2dφdt+

1

c2
dr2

= −dt2 +
1

c2

(

ρ2 (dφ+ Ωdt)
2

+ dz2 + dρ2
)

. (31.27)

But now it is the acoustic metric where the role of speed of light c is played by the
speed of sound. This metric contains the Lense–Thirring angular velocity ωLT =
−Ω, which is independent of whether the metric is fundamental or acoustic.

In cylindrically symmetric systems the quasiparticle spectrum is described
by two good quantum numbers: the angular momentum Lz and the linear mo-
mentum pz. If the radial motion is treated in the quasiclassical approximation,
the energy spectrum of phonons in the rotating frame becomes

Ẽ = E(p) + p · vs = c

√

L2
z

ρ2
+ p2

z + p2
ρ − ΩLz , (31.28)

which also follows from the acoustic metric (31.27).
The rotons in 4He (Fig. 6.1) and Bogoliubov fermionic quasiparticles in 3He-

B are not described by the effective relativistic theory. For them the energy
spectrum in the rotating frame is found directly from the Doppler shift, Ẽ =
E(p) + p · vs, which gives

Ẽ(p) = ∆ +
(p− p0)

2

2m0
− ΩLz , roton , (31.29)

Ẽ(p) =
√

∆2
0 + v2

F (p− pF )2 − ΩLz , Bogoliubov fermion . (31.30)

Here p0 marks the roton minimum in superfluid 4He; m0 is the roton mass; ∆ is
the roton gap (Fig. 6.1); and p2 = p2

z + p2
ρ + L2

z/ρ
2.

31.4.3 Ergoregion in rotating superfluids

In the acoustic metric (31.27), the metric element g00 becomes zero at the radius
ρe rel = c/Ω, and becomes positive when ρ > ρe rel. On the other hand, at
ρ > ρe rel the energy of phonons in eqn (31.28) becomes negative for those
momenta for which p2

z + p2
ρ < L2

z(ρ
−2
e rel − ρ−2). Thus ρe rel = c/Ω marks the

position of the ergosurface arising in the relativistic theory (Fig. 31.4).
In the non-relativistic case, the ergosurface is determined by the Landau

velocity (26.1) and occurs at ρe = vLandau/Ω. This coincides with the relativistic
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Fig. 31.4. Fermionic vacuum seen by an external observer in the frame corotat-
ing with the cylinder is different from that viewed by an inner observer in the
superfluid-comoving frame, which in our case coincides with the laboratory
frame. The states which are occupied in the vacuum viewed by an inner ob-
server in the superfluid-comoving frame are shaded. In the ergoregion, where
vs > c, some states which are occupied in the superfluid-comoving frame,
have positive energy in the corotating frame. The quasiparticles occupying
these levels must be radiated away. At T = 0 the radiation occurs via quan-
tum tunneling from the surface of the inner cylinder to the ergoregion. The
rate of tunneling reproduces the Zel’dovich–Starobinsky effect of radiation
from the rotating black hole.

ergosurface only in case of the fully relativistic spectrum, where vLandau = c. In
real superfluid 4He, the Landau velocity is determined by the roton spectrum
(31.29) in Fig. 6.1. If m∆ ≪ p2

0, the Landau velocity for the creation of rotons
vLandau ≈ ∆/p0, and it is less than the Landau velocity vLandau = c for creation
of phonons. However, we shall see that though the relativistic phonon ergosurface
is further away from the cylinder than the non-relativistic roton ergosurface, it
plays the main role in quantum friction.

The existence of the ergoregion, where quasiparticles have negative energy
in the rotating frame, means that the original vacuum as seen by an inner ob-
server in the superfluid-comoving frame no longer is the vacuum when viewed
by the external observer corotating with the inner cylinder. In Fig. 31.4 top the
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quasiparticle spectrum is shown in the superfluid-comoving inertial frame, and in
Fig. 31.4 bottom in the rotating frame. For simplicity we consider here fermionic
quasiparticles with momentum along the azimuthal direction, pφ = Lz/ρ. One

can see that beyond the ergosurface the states on the branch Ẽ = p ·vs +cp have
different signs of the energy in the two frames. The states, which are occupied
in the vacuum viewed by an inner observer in the superfluid-comoving frame,
have positive energy for the external observer in the rotating frame, while the
negative energy states in the rotating frame are empty.

Thus from the point of view of the corotating external observer the original
state is highly excited. For him (or her), it is necessary to fill all the negative
energy states and radiate away all the positive energy states. The process of
filling and emptying the energy levels is viewed by the inner superfluid-comoving
observer as the radiation of quasiparticles and quasiholes by the rotating body.

Let us recall that in this consideration we assume that the ergosurface is
close to the rotating cylinder and far from the outer cylinder, which is at rest
in the inertial frame. That is why the influence of the rotating cylinder on the
quasiparticle behavior is dominating, and thus the frame of the environment
which dictates the equilibrium conditions is the rotating frame.

31.4.4 Radiation to the ergoregion as a source of rotational quantum friction

Let us consider how the radiation of quasiparticles occurs if the angular velocity
of rotation Ω is small (Calogeracos and Volovik 1999a). If ΩR ≪ vLandau, one
has ρe ≫ R, i.e. the ergoregion is far from the surface of the cylinder. On the
other hand, in the vicinity of the surface of the cylinder the superfluid velocity
is much less than the Landau critical velocity, vs = ΩR ≪ vLandau, and thus
quasiparticles can never be nucleated there. From the energy consideration they
can be nucleated only in the ergoregion.

How do the quasiparticles in the ergoregion know that they can have negative
energy and thus must be nucleated? Only by the interaction of the system with
the environment which is the surface of the rotating cylinder: in the absence of
the interaction any connection to the rotating reference frame is lost and there
is no radiation.

One scenario of the radiation is demonstrated in Fig. 31.4 bottom. A quasi-
particle which belongs to the original vacuum in the inertial frame, but have
the positive energy in the ergoregion in the rotating frame moves to the empty
state with the same energy outside the ergoregion. As a result the quasiparticle–
quasihole pair is created in the original vacuum. In this process the azimuthal
projection pφ changes sign. This means that the angular momentum Lz = ρpφ

must change sign, which is prohibited if the angular momentum is conserved.
The non-conservation of the angular momentum occurs only due to interaction
of a quasiparticle with the rough surface of the inner cylinder. The quasiparticle
must first move to the classically forbidden region, reach the surface of the cylin-
der, interact with it, reversing the angular momentum, and then move to the
final state in the ergoregion, again through the classically forbidden region. In
this scenario a quasiparticle must tunnel twice through the classically forbidden
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region.
There is another process which is substantially more effective, since it is

enough to tunnel only once and thus the tunneling exponent is two times smaller.
Due to the surface roughness, there are regions near the surface of a rotating
cylinder where there is a finite density of quasiparticle states with zero energy.
These regions serve as a reservoir of quasiparticles with energy Ẽ = 0. These
quasiparticles can tunnel to the ergosurface, where their energy Ẽ = 0, and
E = h̄ω = h̄ΩLz. In the quasiclassical approximation the tunneling probability
is e−2S , where

S = Im

∫

dρ pρ(Ẽ = 0) . (31.31)

For phonons with pz = 0, according to eqn (31.28) one has

S = Lz

∫ ρe rel

R

dρ

√

1

ρ2
− 1

ρ2
e rel

≈ Lz ln
ρe rel

R
. (31.32)

Thus all the phonons with Lz > 0 are radiated, but the radiation probability
decreases at higher Lz. If the superfluid velocity at the surface of the inner
cylinder is much less than c, i.e. ΩR≪ c, the probability of radiation of phonons
with the frequency ω = ΩL becomes

w ∝ e−2S =

(

R

ρe rel

)2Lz

=

(

ΩR

c

)2Lz

=

(

ωR

cLz

)2Lz

, ΩR ≪ c . (31.33)

Since each emitted phonon carries the angular momentum Lz, the cylinder ro-
tating in the superfluid vacuum (at T = 0) is losing its angular momentum,
which means quantum rotational friction. The quantum friction due to phonon
emission becomes the dominating mechanism of dissipation at low enough tem-
perature where the conventional viscous friction between the rotating cylinder
and the normal component of the liquid is small.

For a cylinder rotating in the relativistic quantum vacuum the speed of sound
c must be substituted by the speed of light, and eqn (31.33) appears to be pro-
portional to the superradiant amplification of the electromagnetic waves by the
rotating dielectric cylinder derived by Zel’dovich (1971a,b) (see also Bekenstein
and Schiffer 1998).

31.4.5 Emission of rotons

Since the tunneling rate exponentially decreases with Lz, only the lowest Lz is
important. In the case of rotons, whose spectrum is given by eqn (31.29), Lz is
restricted by the Zel’dovich condition (31.26) which is satisfied only for Lz >
∆/Ω. Thus the momentum of the radiated roton is Lmin = ∆/Ω ≈ vLandaup0/Ω,
where vLandau ≈ ∆/p0 is the Landau critical velocity for the emission of rotons
(Fig. 6.1). The tunneling trajectory for the roton with Ẽ = 0 is determined by
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the equation p = p0. For pz = 0 it is pρ(ρ) = i
√

|p2
0 − L2

min/ρ
2|, and for the

tunneling exponent e−2S one obtains

S = Im

∫

dρ pρ = Lmin

∫ ρe

R

dr

√

1

ρ2
− 1

ρ2
e

≈ Lmin ln
ρe

R
. (31.34)

Here the position of the non-relativistic ergosurface is ρe = vLandau/Ω ≈ Lmin/p0.
The same is applicable to the emission of pairs of Bogoliubov fermions in 3He-B
in eqn (31.30).

Since the rotation velocity Ω is always much smaller than the gap ∆, the
momentum Lmin of the radiated roton is big. That is why the radiation of ro-
tons is exponentially suppressed, compared to the emission of phonons. Thus the
quantum rotational friction in superfluid 4He is governed by the phonon emis-
sion, which simulates the quantum rotational friction in the relativistic quantum
vacuum.

31.4.6 Discussion

Motion with constant angular velocity is another realization of the Unruh (1976)
effect. In the Unruh effect a body moving in the quantum vacuum with constant
rectilinear acceleration a radiates particles whose spectrum can be interpreted as
thermal with temperature TU = h̄a/2πc called the Unruh temperature. On the
other hand the observer comoving with the body interprets the Minkowski vac-
uum as a canonical ensemble of states (see references in Audretsch and Müller
1994). The observed thermal spectrum is characterized by the Planck or the
Fermi–Dirac distribution depending not only on the quantum statistics of the
emitted particles, but also on the space dimension (Ooguri 1986). In condensed
matter it is difficult to simulate the motion at constant proper acceleration (hy-
perbolic motion). On the other hand a body rotating in the superfluid vacuum
simulates the uniform circular motion of a body with constant centripetal ac-
celeration. Such motion in the quantum vacuum was also extensively discussed
in the literature, see the references in Davies et al. (1996), Leinaas (1998) and
Unruh (1998) and recent paper by Akhmedov and Singleton (2007).

In our case the role of the Minkowski vacuum is played by the initial vacuum
in the superfluid-comoving frame, while the detector corotating with the body is
played by the collection of quasiparticles attached to the surface of the cylinder
and rotating together with the cylinder. Their distribution is disturbed by the
tunneling to the ergoregion, which is seen by the superfluid-comoving observer
as radiation. Distinct from the linearly accelerated body, the radiation by a
rotating body does not look thermal. Also, the rotating observer does not see the
Minkowski vacuum as a thermal bath. This means that the matter of the body
excited by interaction with the quantum fluctuations of the Minkowski vacuum
cannot be described in terms of a canonical ensemble of states with intrinsic
temperature depending on the angular velocity of rotation. Nevertheless, if one
assumes that the detector matter is big enough and the interaction with the
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external world is weak, the thermalization processes inside the detector will lead
to the well-defined temperature of the detector matter.

Instead of a body rotating in superfluid one can consider a cluster of vortices
in Fig. 14.1. Even if the outer cylinder is not rotating, the cluster rotates as a solid
body with respect to the superfluid vacuum. This situation is non-equilibrium,
but, if the radiation is ignored, the detector matter within the cluster is in a
local equilibrium characterized by the local temperature. In some limit case the
temperature in the center of the cluster is expressed through the rotation velocity
T = (2/π)vclusterpF , where vcluster = ΩR is the velocity on the periphery of the
cluster and R is the radius of the cluster (Volovik 1995b, 1995a).

The radiation of bosonic (quasi)particles and pairs of fermions by a rotating
body produces quantum friction, which leads to deceleration of the cylinder or
vortex cluster rotating in the superfluid vacuum, or of an object rotating in the
quantum vacuum (a dielectric body discussed by Zel’dovich (1971a,b) or a black
hole discussed ny Starobinskii (1973).

The quantum rotational friction experienced by a body rotating in the quan-
tum vacuum occurs because in the presence of the ergoregion the vacuum in the
rotating frame is not well-defined. This provides an example of when the vacuum
state cannot be determined uniquely, since it is different for different observers.
Whose vacuum is more relevant depends on the real physical interactions with
the environment. If, for example, the inner cylinder is absolutely perfect so that
the interaction between the cylinder and the superfluid vacuum vanishes, there
will be no radiation, and the original ‘Minkowski’ vacuum, as viewed in the
superfluid-comoving frame by an inner observer, will persist for ever despite the
existence of the ergoregion in the rotating frame. The discussed radiation and
the quantum rotational friction are absent also if a superfluid is confined within
a rotating cylinder, whose radius R < vLandau/Ω: in this case there is simply no
ergoregion in the superfluid, and the quantum friction occurs by the quantum
tunneling of quasiparticles between the cylinders. The more violent process of
the decay of the ergoregion based on the non-relativistic counterpart in Chapter
27 will be discussed in Sec. 32.3.

In this chapter we discussed the case when the superfluid vacuum flows along
the ergosurface. That is why there is no event horizon. In the next chapter we
consider the two competing vacua in the presence of the event horizon.
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ANALOGS OF EVENT HORIZON

A black hole is the region from which the observer who is outside the hole cannot
obtain any information. The event horizon represents the boundary of the black-
hole region. In astrophysics, it is believed that black holes can be formed by
gravitational collapse. There are several candidate black holes. These are com-
pact stars in double-star systems whose estimated mass exceeds the maximum
possible mass of a neutron star above which the collapse is inevitable. In addition
there is growing observational evidence of existence of supermassive black holes
in galactic bulges. At the moment, however, there is no definite proof that any
of these candidates for black holes possesses an event horizon. That is why it is
not excluded that gravitational collapse never produces the black hole.

According to Hawking (1974), if an isolated black hole is formed, it slowly
radiates away its mass by emitting a thermal flux with the Hawking temperature
TH = (h̄c/2π)Eg{h}, where Eg{h} is the ‘surface gravity’ – the gravity at the place
of a horizon.

Analogs of the black-hole horizon can be realized in such condensed matter
where the effective metric arises for quasiparticles. The simplest way to do this is
to exploit the liquids moving with velocities exceeding the local maximum attain-
able speed of quasiparticles. Then an inner observer, who uses only quasiparticles
as a means of transfering the information, finds that some regions of space are
not accessible for observation. For this observer, who lives in the quantum liquid,
these regions are black holes. The first to propose such an artificial black hole
was Unruh (1981, 1995). Unruh considered the propagation of acoustic waves in
an effective metric produced by moving liquid: he called the region from which
the sound cannot escape the ‘dumb hole’.

There are several schemes of how the event horizon can be realized in quantum
liquids (Barcelo et al 2005). Let us start with the arrangement when the flow
velocity is constant but the ‘speed of light’, i.e. the maximum attainable speed
for quasiparticles, changes in space and in some region becomes less than the
flow velocity of the liquid.

32.1 Event horizons in vierbein wall and Hawking radiation

32.1.1 From infinite red shift to horizons

First we return to the surface of the infinite red shift which is simulated by
the vierbein wall discussed in Sec. 30.1, and consider how the effective metric is
modified if there is a superflow across the vierbein wall with constant superfluid
velocity vs = vsx̂ (Fig. 32.1). Such a situation occurs if we move the vierbein wall
with respect to the superfluid vacuum, or fix the wall and push the superfluid
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Fig. 32.1. When there is a superflow across the vierbein wall, it splits into a pair
of horizons: black hole and white hole. Between the horizons the superfluid
velocity exceeds the ‘speed of light’ of quasiparticles and g00 becomes positive.
Since their speed cx is smaller that the velocity of the superfluid vacuum,
the ‘relativistic’ quasiparticles within the horizon can move only along the
streamlines as shown by arrows. The horizon at x = −xh is the black-hole
horizon, since no information can be extracted from the region behind this
horizon, if the low-energy quasiparticles are used for communication.

vacuum through it. These two arrangements are equivalent since we ignore the
normal component of the liquid and/or the walls of container to avoid dissipation
due to conventional friction between the vierbein wall and the normal component.

Since the external environment is absent the proper environment frame is the
texture-comoving frame (the frame of the vierbein wall). In this frame the metric
is stationary, and the superflow across the wall leads to the Doppler shift of the
quasiparticle spectrum. As a result the line element of the effective spacetime in
eqn (30.10) becomes (Jacobson and Volovik 1998b, Jacobson and Koike 2002)

ds2 = −dt2 +
1

c2(x)
(dx − vsdt)

2 , c(x) = c⊥ tanh
x

d
. (32.1)

For simplicity we consider the 1+1 dimension of spacetime ignoring the coordi-
nates y and z along the vierbein wall.

Equation (32.1) can be rewritten in the form

ds2 = −
(

1 − v2
s

c2(x)

)(

dt+
vsdx

c2(x) − v2
s

)2

+
dx2

c2(x) − v2
s

, (32.2)

which leads to a natural temptation to perform the coordinate transformation

t̃ = t+

∫ x vsdx

c2(x) − v2
s

, (32.3)



426 ANALOGS OF EVENT HORIZON

to obtain the more familiar metric

ds2 = −
(

1 − v2
s

c2(x)

)

dt̃2 +
dx2

c2(x) − v2
s

. (32.4)

Equation (32.4) is similar to the radial part of the Schwarzschild metric for
the black hole. The roles of the Newton gravitational potential Φ(x) and the
gravitational field Eg = −∂xΦ(x) are played by

Φ(x) = −1

2

v2
s

c2(x)
, Eg = − v2

s

c3(x)
∂xc . (32.5)

The effective gravitational field attracts quasiparticles to singularity at x = 0.
The metric in eqn (32.4) shows that there are two horizons within the vierbein

wall where the superfluid velocity equals the local speed of ‘light’: at the plane
x = xh where c(xh) = vs and at the plane x = −xh where c(−xh) = −vs. The
gravitational field is regular at horizons: Eg(±xh) = −(∂xc)±xh

/c(±xh).
The original metric in eqn (32.1) is well determined everywhere except for

the physical singularity at x = 0, where cx(x) = 0 and the tetrad field is degener-
ate. On the contrary, the ‘Schwarzschild’ metric (32.4) obtained after coordinate
transformation has coordinate singularities at both horizons. Thus this metric
is not determined globally: it can describe the effective spacetime only in one of
three region: (i) at x < −xh; (ii) at −xh < x < xh; or (iii) at x > xh. Thus the
effective spacetime is reduced compared to the physical spacetime. The coordi-
nate transformation (32.3) is also ill defined in the presence of horizons since the
integral is not well determined.

This is another example demonstrating that general coordinate transforma-
tions are not so innocent, especially if they contain singularities, since they lead
to the spacetime which is physically non-equivalent to the original one. The
previous example of coordinate transformation which removed the half of the
physical spacetime was discussed in Sec. 30.1. As distinct from fundamental gen-
eral relativity, in the effective gravity the symmetry under general coordinate
transformations is the symmetry emerging in the low-energy corner. It does not
exist at the fundamental level. That is why the use of general coordinate trans-
formations becomes tricky especially if it leads to the extension or contraction
of the physical spacetime.

In our case we know the underlying physics which allows us to determine
whether or not the given metric is physically correct. In the effective gravity
in superfluids, the primary quantity is the energy spectrum of quasiparticles,
which in the low-energy corner becomes ‘relativistic’ and acquires the Lorentzian
form. This form determines the effective contravariant metric gµν as a function
of the ‘absolute spacetime’ of the laboratory. In turn, the contravariant metric
gives rise to the secondary object – the covariant metric gµν which describes
the effective spacetime. This physical gµν is determined everywhere except the
manifolds, where gµν is degenerate. All this means that the effective spacetimes
are physical if they came from the physically reasonable quasiparticle spectrum.
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From this point of view the metric (32.1) is physical, while the metric (32.4)
obtained after unphysical singular transformation is not.

The spectrum of the 3He-A fermionic quasiparticles is the Doppler-shifted
equation (30.8):

Ẽ(px) = E(px) + pxvs , E(px) = ±
√

M2 + c2(x)p2
x . (32.6)

It can be written in the relativistic form

gµνpµpν +M2 = 0 , (32.7)

which gives rise to the physical effective metric in eqn (32.1).
Inspection of the energy spectrum (32.6) or of the metric (32.1) shows that

the two horizons, at x = xh and at x = −xh, are essentially different. Let
us consider the motion of quasiparticles with M = 0 in the region between
the horizons, at −xh < x < xh. The group velocity of a quasiparticle in the
wall frame is vGx = dẼ/dpx = vs ± c. It is positive for both directions of the
quasiparticle momentum px (see Fig. 32.1, where the superfluid velocity vs is
chosen positive). All quasiparticles between the horizons move to the right, and
thus cannot cross the plane x = −xh from the inside. This indicates that this
plane is the black-hole horizon. The inner observer living in the region x < −xh

cannot obtain any information from the region x > −xh, if he (or she) uses
the ‘relativistic’ quasiparticles for communication. On the other hand, all the
quasiparticles will finally cross the plane x = xh, which means that this plane is
the white-hole horizon.

The appearance of pairs of white-hole/black-hole horizons is typical of su-
perfluid systems. The region between the horizons belongs to the ergoregion,
since for some quasiparticles the energy Ẽ(px) in the frame of the environment is
negative even for the positive square root in eqn (32.6). Note that this definition
of the ergoregion differs from the standard definition in general relativity, where
it is the region between the ergosurface and horizon. One must extend the ergore-
gion into the region behind the horizon too, if one wants to use this definition
in case the general covariance is violated at high energy. This is simply because
the true horizon disappears if the superluminal motion is allowed at high energy,
while the ergosurface remains. Now the whole region behind the ergosurface is
responsible for the phenomenon of superradiance and thus it is the ergoregion.

32.1.2 Vacuum in the presence of horizon

In the ergoregion between the horizons the notion of the vacuum state becomes
subtle, since it depends on the reference frame. As we know, there are two im-
portant reference frames in superfluids: the superfluid-comoving frame where the
quasiparticle energy E(p) is velocity independent; and the frame of the environ-
ment where the quasiparticle energy is Ẽ(p) = E(p) + p · vs. Depending on the
physical situation the frame of the environment can be the laboratory frame, the
frame of the container, or the texture-comoving frame such as the frame of the
moving vierbein wall discussed here. The vacua as viewed in the two frames do
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not coincide in the ergoregion. And also, as we know, there are two principally
different observers: an inner observer who is made of quasiparticles and lives in
the superfluid; and an external observer who lives in the Galilean world of the
laboratory and does not obey the very restrictive effective metric experienced by
the low-energy quasiparticles.

Let us consider the perfect but not very realistic case when the walls of the
container are very far away and the texture c(x) is very smooth. Let us start
to move the vierbein wall with respect to the superfluid vacuum, assuming that
nothing dramatic happens with the initial superfluid vacuum except that the
two horizons are formed. This is actually a rather non-trivial assumption, since
we shall see that in the presence of horizons the vacuum will inevitably start
to reconstruct. Our assumption means that such reconstruction occurs slowly,
so that there is some time after the motion started when we can ignore any
modification of the original Minkowski vacuum in the superfluid-comoving frame
in which the states with the E(p) < 0 are occupied, while the states with E(p) >
0 are empty.

How are the horizons and the initial vacuum viewed by different observers?
The inner observer can be chosen as a massive object with the energy spectrum
Ẽ(p) =

√

c2p2 +M2 + p · vs, who is made of low-energy ‘relativistic’ quasipar-
ticles. In his (or her) measurements he (or she) uses rods and clocks made of the
same quasiparticles. Further we assume that the rest energy M of the observer
does not depend on position in the superfluid. Since the inner observer is very
restrictive in his (or her) observations, we need two such observers: (i) the inner
observer who is at rest in the texture-comoving frame; and (ii) the inner observer
who is at rest in the superfluid-comoving frame.

The external observer lives in the Galilean world of the laboratory, and is
made of atoms which are not necessarily the 3He atoms comprising the vacuum
of the quantum liquid. The observer uses conventional rods and clocks made of
atoms. The external observer can make observations in any frame, but we prefer
that this observer is at rest in the frame of the environment. We leave the more
detailed discussion until Sec. 32.2.2.

(1) Inner observer comoving with the vierbein wall. The inner observer can
be at rest with the vierbein wall in the regions outside the horizons only: in the
region between the horizons all quasiparticles have positive velocity and thus the
inner observer will be dragged away from this region by the flow of the superfluid
vacuum. For the far-distant inner observer living at x = −∞ in the texture-
comoving frame, the spacetime is seen as given by the Schwarzschild metric in
eqn (32.4). In the texture-comoving frame, the states with negative energy are
modified by the velocity (gravity) field, E(p) → Ẽ(p) = E(p) + p · vs, but they
do not leave the negative energy continuum. That is why the vacuum which this
inner observer sees coincides with the original Minkowski vacuum.

For this observer, nothing happens with the vacuum if horizons appear, if we
neglect the tiny quantum effect of Hawking radiation. As for the vacuum behind
the black-hole horizon, the observer simply cannot obtain any information from
that region since he (or she) uses rods and clocks made of quasiparticles which
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cannot propagate through the black-hole horizon.
(2) Inner observer comoving with the superfluid vacuum. If the observer’s

momentum is p = 0, then from the Hamilton equations of motion

dp

dt
= −∂Ẽ

∂r
,
dr

dt
=
∂Ẽ

∂p
, (32.8)

it follows that the free observer will be comoving with the superfluid vacuum,
i.e. moving with velocity ṙ = vs. If the inner observer starts to move at x = −∞,
he (or she) will be freely falling to the black hole, and will cross the horizon.
However, the observer will not see any dramatic change when crossing. For the
freely falling observer the original vacuum is locally Minkowskian. The states
with E(p) < 0 in eqn (32.6) are occupied in this vacuum, while the states with
E(p) > 0 are empty (see Fig. 32.4 for a somewhat different arrangement). When
the observer crosses the horizon, this vacuum does not change for him (or her).
Finally, the observer will see the same Minkowski vacuum even when crossing
the physical singularity (of course, if he (or she) remains alive after that).

So, as distinct from the texture-comoving observer, the superfluid-comoving
(freely falling) observer sees the Minkowski vacuum in the whole physical space-
time. However, the vacuum viewed in the superfluid-comoving frame can be
determined only locally. During his (or her) motion, the inner observer detects
the smooth monotonous increase of the gravitational field with time all the way
from −∞ to the phyisical singularity. In such a time-dependent environment, the
quasiparticle energy E(p) is not a conserved quantity. That is why the inner ob-
server can expect that in the time-dependent field the vacuum will be disturbed,
i.e. quasiparticles will be created from the vacuum. As we shall see below, this
actually does occur if horizons are present.

(3) External observer in the frame of the environment. The external observer
is the most knowledgeable person. For him (or her), all the physical space −∞ <
x < +∞ is accessible even if he (or she) is stationary in the texture-comoving
frame of the vierbein wall. In this frame the energy Ẽ(p) is conserved, and
thus it is the proper environment frame in which one can try to construct the
vacuum state in the whole spacetime. However, the initial superfluid-comoving
Minkowski vacuum cannot serve for such purposes: in the ergoregion between
the quasiparticle horizons, this initial vacuum is seen by the external observer as
a highly excited system. Some energy states with the negative root in eqn (32.6),
E(p) < 0, which are occupied in the initial vacuum, have positive energy, Ẽ(p) >
0, in the frame of the environment. The quasiparticles filling such states must be
emitted to reach the equilibrium conditions in this frame. Thus, in the presence
of horizons, the initial Minkowski vacuum must dissipate. The dissipation process
at T = 0 means the quantum friction which decelerates the motion of the vierbein
wall with respect to the superfluid. The inner observer who is stationary in the
texture frame sees the decay of the Minkowski vacuum as Hawking radiation of
quasiparticles from the horizon which will be discussed in Sec. 32.2.5.

Thus the situation is very similar to that in the presence of the astronomical
black hole (if it exists), with one important exception. We know that in the case
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of quantum liquids there exist an external observer who is not restricted by the
quasiparticle ‘speed of light’ and thus is able to observe all the physical space and
all the energy scales including the trans-Planckian physics. What is the analog
of an external observer in our real world? This is the observer who has access
to the high-energy physics above the Planck energy scale. In principle, we can
become such observers in the future. But this can also be an observer who does
not belong to our vacuum. This is like a foreign body in liquid 3He, which is
not constructed from 3He atoms, and thus does not belong to the vacuum of the
quantum liquid.

32.1.3 Dissipation due to horizon

If the walls of the container are far away and the interaction with them can be
neglected, the radiation of quasiparticles and quasiholes at T = 0 occurs only due
to the presence of the spatial inhomogeneity of the metric (the texture). In the
limit of zero gradients, the inner observer, who moves with the superfluid velocity,
does not know at T = 0 whether the liquid is moving or not. The preferred
reference frame of the environment – the texture-comoving frame – is lost, and
there is no reason for emission and dissipation. The uniformly moving vacuum
cannot dissipate. Thus the smooth dissipation process must be determined by
the spatial derivatives of the hydrodynamic fields, or (in the relativistic domain)
by the space-dependent effective metric (the gravitational field) which establish
the preferred reference frame.

An example of the dissipation, caused by the gradients of the metric, is the
Hawking (1974) radiation of (quasi)particles from the black-hole horizon, which
will be discussed in Sec. 32.2.5. The Hawking radiation is characterized by the
Hawking temperature proportional to the surface gravity Egh (Sec. 32.2.5). In
case of a moving vierbein wall where the ‘gravitational field’ is given by eqn
(32.5), the role of Egh is played by the gradient of the ‘speed of light’ at the
horizon:

TH =
h̄c

2π
Egh =

h̄

2π

(

dc

dx

)

h

. (32.9)

If the profile of the ‘speed of light’ is given by eqn (32.2), the Hawking tem-
perature depends on the velocity vs of superflow across the vierbein wall in the
following way:

TH(vs) = TH(vs = 0)

(

1 − v2
s

c2⊥

)

, TH(vs = 0) =
h̄c⊥
2πd

. (32.10)

The Hawking radiation leads to energy dissipation and thus to quantum fric-
tion, which decreases the velocity vs of the domain wall with respect to the
superfluid. Due to the deceleration of the wall motion, the Hawking tempera-
ture increases with time. The distance between horizons, 2xh, decreases until
the complete stop of the domain wall when the two horizons merge. In a given
example the Hawking temperature approaches its asymptotic value TH(vs = 0)
in eqn (32.10); but when the horizons merge, the Hawking radiation disappears:
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there is no more ergoregion and the stationary, topologically stable domain wall
becomes non-dissipative. Nevertheless the asymptotic Hawking temperature is
still important for the stationary domain wall, where it determines communica-
tion between sister Universes across the singularity – the surface of the infinite
red shift – as was discussed in Sec. 30.1.4.

For the real domain walls in thin films, the above consideration is valid when
the quasiparticle spectrum in the background of the vierbein wall can be con-
sidered as continuous. This takes place only if the horizons are far apart, i.e.
the distance between them is much larger than the ‘Planck length’, whose role
is played by the superfluid coherence length, xh ≫ d ∼ ξ. This condition is
satisfied when the relative velocity between the domain wall and the superfluid
vacuum is close to c⊥, so that xh ∼ (d/2) ln[1/(1 − v2

s /c
2
⊥)] ≫ d. When veloc-

ity decreases, the dissipation must stop when the distance between the horizons
becomes comparable to the ‘Planck length’.

The Hawking flux of radiation could in principle be detected by quasiparticle
detectors. However, even the most optimistic estimate for the possible domain
walls in thin 3He-A films place Hawking temperature below 1 µK. This is still too
low for current experiments. That is why, at the moment, we can use the above
example only in a gedanken experiment. Possibly Bose–Einstein condensates in
laser-manipulated traps will be more favorable for observation of the Hawking
effect. Also the Hawking radiation is only one of the possible mechanisms of
the dissipation: the real scenario of relaxation of the horizons can depend on
the details of the Planckian physics, i.e. on the back reaction of the superfluid
vacuum to the filling of the negative energy states. The Hawking radiation can
dominate only at the early stage of the decay of the local Minkowski vacuum.
One of the possible mechanisms of relaxation is the amplification of the bosonic
modes reflected from the horizons. According to Corley and Jacobson (1999) the
mode bouncing between the black-hole and white-hole horizons is amplified after
each reflection and is growing exponentially leading to the lasing effect. This can
produce the fast instability of the original Minkowski vacuum in the presence of
the two horizons. Another mechanism of dissipation is related to the ergoregion
instability discussed in Chapter 27 for non-relativistic systems. The application
to relativistic systems will be considered in Sec. 32.3.

32.1.4 Horizons in a tube and extremal black hole

Similar scenario of formation of the pair of black-hole and white-hole horizons can
be realized using the superflow through the so-called Laval nozzle with converging
and then diverging flow (Fig. 32.2 left). In the middle the velocity can exceed
the ‘speed of light’, and the white and black horizons are formed.

Such geometry has been considered also for the Bose condensate in the laser
traps of special form (Garay et al. 2000, 2001) and in 3He-A (Volovik 1999a).
However, in case of the Bose gases and Bose liquids, there is a severe restriction
on the formation of the horizons imposed by the hydrodynamics of compress-
ible liquid. It happens, for instance, that the spherically symmetric ‘dumb hole’
suggested by Unruh (1981, 1995) is inconsistent with hydrodynamic equations
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Fig. 32.2. Evolution of the effective spacetime when the superfluid velocity vs
through the orifice increases continuously. When vs exceeds the ‘speed of
light’ c the black-hole/white-hole pair appears (right bottom). Arrows show
possible directions of the quasiparticle motion in the low-energy ‘relativistic’
limit. Between the horizons these quasiparticles can move only to the right
and thus cannot escape from the region through the black horizon. Right
middle: The intermediate state between subcritical and supercritical regimes
when the velocity profile first touches the ‘speed of light’. The effective metric
for quasiparticles is equivalent to the metric in the vicinity of the horizon of
an extremal black hole.

(see the review paper by Volovik 2001b). Probably the Laval nozzle is the only
possible geometry for the physical realization of the dumb-hole horizon in Bose
systems. However, even in this geometry there is a restriction: the hydrodynamic
equations require that the acoustic horizon – the plane at which the velocity of
the liquid crosses the speed of sound – must be just at the narrowest cross-section
of the nozzle (Sakagami and Ohashi 2002). It is the same requirement as for the
position of the shock wave in a pipe (note that the shock wave represents the
real physical singularity at which the hydrodynamic variables – the metric field
– exhibit discontinuity; here we consider only smooth configurations, and thus
do not discuss the shock waves and their gravitational analogs).

In superfluid 3He-A, the relevant speed of ‘light’ c is much smaller than the
speed of sound in the underlying liquid, that is why the quasiparticle horizon
does not coincide with the acoustic horizon and is not prohibited by the hydro-
dynamics. In the geometry of Laval the nozzle the ‘speed of light’ is constant,
c = c⊥, while the gravitational field is simulated by the space-dependent su-



EVENT HORIZONS IN VIERBEIN WALL AND HAWKING RADIATION 433

perfluid velocity vs(r). If the cross-section of the chanel changes smoothly, the
problem is reduced to the 1+1 spacetime dimension with the following interval
in the reference frame of the tube which serves as the frame of the environment,
where the metric is time independent:

ds2 = −
(

1 − v2
s (x)

c2

)

dt2 − 2
vs(x)

c2
dxdt+

1

c2
dx2 . (32.11)

When the maximal velocity vmax of the superflow exceeds the ‘speed of light’ c
the pair of horizons, black and white, are formed (Fig. 32.2 right bottom). This
is similar to the case discussed in Sec. 32.1.

When vmax = c (Fig. 32.2 right middle) one obtains another remarkable
metric. Close to the middle of the nozzle (at x = 0) the superfluid velocity
can be expanded near the maximum, v2

s ≈ c2(1 − x2/x2
0), and one obtains the

following effective interval:

ds2 = −x
2

x2
0

dt̃2 +
x2

0

x2
dx2 , t̃ = t− x2

0

cx
. (32.12)

The plane x = 0, where the black and white horizons merge, marks the bridge
between the two spaces, at x < 0 and at x > 0. It is the surface of the infinite red
shift. In general relativity the metric in eqn (32.12) corresponds to the radial part
of the metric of an extremal black hole in the vicinity of a horizon (bridge). The
extremal black hole is the particular case of the electrically charged Reissner–
Nordström black hole:

ds2 = − (r − r+)(r − r−)

r2
dt2 +

r2

(r − r+)(r − r−)
dr2 + r2dΩ , (32.13)

r+r− =
Q2

G2
, r+ + r− =

2M
G

. (32.14)

Here h̄ = c = 1; G is the Newton constant; M is the black-hole mass; Q is its
electric charge in normalized units; and r− and r+ are inner and outer horizons.
In the extreme limit when Q approaches M , the two horizons merge and the

extremal black hole is obtained:

ds2 = −
(

1 − rh
r

)2

dt2 +
(

1 − rh
r

)−2

dr2 + r2dΩ . (32.15)

Here rh = r+ = r− = G/M. Expanding r = rh + x in the vicinity of the horizon
(bridge), one obtains the metric (32.12) with x0 = rh.

Since horizons merge and the ergoregion disappears, the vacuum in the
presence of the extremal black hole becomes well-defined together with the
global thermal equilibrium states. Though, according to Tolman’s law in eqn
(5.29), the effective temperature, Teff = Tx0/|x|, is strongly diverging at the
bridge, this divergence is cured by the superluminal dispersion in eqn (26.4).
The charactersitic momenta p of quasiparticles in a global thermal equilibrium,
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whose energy in the frame of the environment Ẽ(p) ∼ T , are still by a factor
(T/EPlanck)

1/3 smaller than the Planck momentum. That is why in the expan-
sion E2(p) = c2p2(1 + γp2c2 + . . .) in eqn (26.4) only the first non-relativistic
correction with coefficient γ ∼ 1/E2

Planck is needed to determine the thermody-
namics of the extremal black hole. This is an example where the non-relativistic
high-energy physics is involved, but it is not necessary to know the exact ‘atomic’
structure of the Planck medium. For the 3D bridge corresponding to the extremal
black hole, this first non-relativistic correction to the particle energy spectrum
leads to the following thermal entropy related to the bridge (see the review paper
by Volovik 2001b):

Sbridge ∼ T 2r3h
EPlanck

h̄3c3
. (32.16)

Thus the superluminal dispersion smooths the jump at T = 0 from the Hawking–
Bekenstein entropy πE2

Planckr
2
+/(h̄c)

2 of the horizon of the Reissner–Nordström
black hole at Q < M to the zero entropy when Q > M and horizons no longer
exist. The coefficient γ can be considered as the phenomenological parameter of
the effective theory, but it can be different for different (quasi)particles.

32.2 Painlevé–Gullstrand metric in superfluids

The (3+1)-dimensional equivalent of the spherically symmetric black hole in flow-
ing liquids – a ‘dumb hole’ suggested by Unruh (1981, 1995) – can be, at least in
principle, realized in Fermi superfluids, where the maximum attainable velocity
of quasiparticles is less than the speed of sound, and thus the hydrodynamics
does not prevent the formation of a horizon.

32.2.1 Radial flow with event horizon

Let us consider the spherically symmetric radial flow of the superfluid vacuum,
which is time independent in the frame of the environment (Fig. 32.3). For sim-
plicity let us assume the isotropic ‘speed of light’ for quasiparticles. Then in
the laboratory frame the dynamics of quasiparticles, propagating in this velocity
field, is given by the line element provided by the effective metric in eqn (5.2):

ds2 = −
(

1 − v2
s (r)

c2

)

dt2 − 2
vs(r)

c2
drdt +

1

c2
(dr2 + r2dΩ2) . (32.17)

If the ‘superflow’ is inward, and the velocity profile is vs(r) = −c(rh/r)1/2,
this equation corresponds to the line element for the black hole obtained by
Painlevé (1921) and Gullstrand (1922). Among the other metrics used for the
description of the black hole (including the Schwarzschild metric in eqn (32.13)
with Q = 0), the Painlevé–Gullstrand metric has many advantages (Kraus and
Wilczek 1994; Parikh and Wilczek 2000; Martel and Poisson 2001; Schützhold
2001). It is inspiring that such a metric naturally arises in the condensed matter
analogs of gravity. This metric is stationary: it is invariant under translation of
time t → t + t0. But it is not static: under the time reversal operation t → −t
the non-diagonal element of the metric changes sign, Tvs = −vs. As distinct
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Fig. 32.3. Unruh analog of a black hole in superfluids. At the horizon, the
superfluid velocity vs reaches the maximum attainable speed of ‘relativis-
tic’ quasiparticles. Such a relativistic horizon does not necessarily coincide
with the non-relativistic ergosurface – the surface where vs reaches the Lan-
dau velocity vLandau. For example, in superfluid 4He the Landau velocity for
emission of rotons is smaller than the maximum attainable speed of quasipar-
ticles in the low-energy corner. However, in a smooth field the roton emission
is exponentially suppressed (see Sec. 31.4.5), and thus can be made negligibly
small compared to the Hawking radiation of phonons from a horizon.

from the Schwarzschild metric this metric has no coordinate singularity at the
horizon and thus it allows us to consider the motion of (quasi)particles through
the horizon to the physical singularity at r = 0.

The velocity field vs(r) = −c(rh/r)1/2 has a simple interpretation: it is the
velocity of the observer who freely falls along the radius toward the center of the
black hole with zero initial velocity at infinity. As can be found from the Hamil-
tonian dynamics in eqn (32.8), the motion of the observer obeys the Newton’s
laws all the way from infinity through the horizon to the singularity:

d2r

dt2
= −GM

r2
, (32.18)

where M is the mass of the black hole. This gives the velocity of the observer
for his (or her) radial motion inward
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dr

dt
= −

√

2GM
r

= −c
√

rh
r

≡ vs(r) . (32.19)

The time coordinate t is the local proper time for the freely falling observer who
drags the local coordinate frame with him (or her).

Thus in this simple case of a non-rotating electrically neutral gravitating
object, the only result of gravity is the dragging effect according to Newtonian
gravity. The same dragging effect is provided by the moving superfluid vacuum
if it obeys Newtonian dynamics. This is one of several examples discussed by
Trautman (1966) when general relativity is closely related to Newtonian dynam-
ics (see also Czerniawski 2002).

In the analogy between gravity and moving superfluid one has the following
correspondence. The freely falling observer corresponds to an inner observer
comoving with the superfluid vacuum. The far-distant observer corresponds to
an inner observer who is at rest in the frame of the environment; we shall see in
Sec. 32.2.7 that for this inner observer the effective metric is the Schwarzschild
metric. The Painlevé–Gullstrand metric corresponds to the effective metric for
quasiparticles measured by the external observer who belongs to the world of the
laboratory with its absolute space and absolute time; the Painlevé–Gullstrand
metric in liquids is the function of the absolute coordinates.

Beyond the horizon, at r < rh, the velocity of the frame-dragging exceeds
the speed of light. In relativistic language the radial coordinate r becomes time-
like, because a quasiparticle beyond the horizon can move along the r coordinate
only in one direction, toward the singularity, and the connection with the outside
world is lost. This occurs in superfluids too, if the connection with the environ-
ment is realized by low-energy ‘relativistic’ quasiparticles only.

The outward superflow with the velocity field vs(r) = +c(rh/r)
1/2 repro-

duces the white hole. This velocity field equals the velocity of the observer freely
escaping from the white hole with zero final velocity at infinity.

For the general spherically symmetric flow of superfluids with radial super-
fluid velocity vs(r), the Schwarzschild radius rh is determined as vs(rh) = ±c.
The ‘surface gravity’ at the Schwarzschild radius and the Hawking temperature
of the black hole are, respectively,

Egh =
1

2c2

(

dv2
s

dr

)

rh

, TH =
h̄c

2π
Egh =

h̄

2π

(

dvs
dr

)

rh

. (32.20)

32.2.2 Ingoing particles and initial vacuum

The energy of a quasiparticle in the laboratory frame (the frame of the environ-
ment) is expressed in terms of the invariant (velocity-independent) energy E(p)
in the superfluid-comoving frame as Ẽ(p) = E(p)+p ·vs. Let us first consider a
massless quasiparticle moving in the radial direction from infinity to the black-
hole horizon and further to the singularity. This is called the ingoing particle.
Its classical motion is characterized by the radial momentum pr < 0. Since the
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Fig. 32.4. The initial vacuum: the quasiparticle states with E(p) < 0 are empty,
while those with E(p) > 0 are occupied. The energy spectrum of quasipar-
ticles is shown as a function of the radial momentum pr for zero transverse
momentum p⊥ = 0. The same vacuum is seen by the inner observer moving
with the superfluid velocity vs through the black-hole horizon toward the sin-
gularity. It corresponds to the local Minkowski vacuum in the freely falling
frame, and it is the same outside and inside the horizon.

Painlevé–Gullstrand metric is stationary, the energy of a moving quasiparti-
cle is conserved in the laboratory frame: E(pr) + prvs(r) = Ẽ = constant. For
the ingoing particle, its radial momentum pr < 0 and thus its energy in the
superfluid-comoving frame has the following coordinate dependence:

E(r) = −cpr(r) =
Ẽ

1 − vs(r)/c
=

Ẽ

1 +
√

rh

r

. (32.21)

It has no pathology when the quasiparticle crosses the black-hole horizon where
vs(rh) = −c.

The same occurs for massive particles or for the massive inner observer. If
the observer moves toward the black hole starting from rest at infinity, he (or
she) moves with the superfluid velocity and smoothly crosses the horizon, as we
discussed in Sec. 32.1.2. For this superfluid-comoving inner observer, the vacuum
state is determined by the sign of the energy E(p) in the superfluid-comoving
frame. The vacuum seen by the observer corresponds to the state where the levels
with E(p) < 0 are occupied. This is the initial state of the liquid outside and
inside the horizon, and it corresponds to the vacuum in the freely falling frame
(Fig. 32.4).

The evolution and reconstruction of the initial vacuum due to the presence
of a horizon is one of the most important problems in the black-hole physics.
We have already realized that in the presence of a horizon the initial state of
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Fig. 32.5. The initial vacuum – the vacuum in the superfluid-comoving (freely
falling) frame – as seen in the laboratory frame of the environment by an
external observer who belongs to the trans-Planckian world. In the frame of
the environment the quasiparticle energy is Ẽ(p) = E(p) + p · vs(r). Right:
Outside the horizon the initial vacuum coincides with the vacuum in the labo-
ratory frame. Left: Beyond the horizon the initial vacuum represents a highly
excited system: many states with Ẽ(p) < 0 are empty, while many states
with Ẽ(p) > 0 are occupied. Here also the energy spectrum of quasiparticles
is considered at zero transverse momentum p⊥ = 0.

the liquid – the vacuum in the superfluid-comoving (freely falling) frame – rep-
resents a highly excited state in the frame of the environment (Fig. 32.5). For an
external (trans-Planckian) observer of the laboratory world, the vacuum state is
determined by the sign of the energy Ẽ(pr) in the environment frame, and he
(or she) sees that in the initial state of the liquid the huge amount of levels with
Ẽ(pr) < 0 are not occupied in the region beyond the horizon. This is absolutely
unbearable for him (or her), since any interaction with the environment must
lead to the decay of this highly excited state. The problem is what is the most
important process of the collapse of the superfluid-comoving vacuum.

32.2.3 Outgoing particle and gravitational red shift

Let us now consider the outgoing quasiparticle, a quasiparticle moving in the
radial direction from the black-hole horizon to infinity. Its classical motion is
again characterized by the radial momentum, but now with pr > 0. From energy
conservation in the laboratory frame, E(pr) + prvs(r) = Ẽ = constant, one
obtains that the momentum pr and the energy E(p) = cp = cpr of a massless
particle in the superfluid-comoving (freely falling) frame obey

E(r) = cpr(r) =
Ẽ

1 + vs(r)/c
=

Ẽ

1 −
√

rh

r

. (32.22)
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Fig. 32.6. Radial trajectories of massless ‘relativistic’ quasiparticles in artificial
black hole (vs(r) < 0). Only those trajectories are shown on which quasipar-
ticles have positive energy in the laboratory frame, Ẽ > 0. Arrows show the
direction of motion. Ingoing quasiparticles smoothly cross the horizon. On
the other two trajectories quasiparticles have diverging energy in the vicin-
ity of the horizon (infinite blue shift) which must be cut off by Planckian
physics. Quasiparticles moving from the horizon to the singularity along the
trajectory marked by the dotted line have different sign of energy in superflu-
id-comoving and laboratory frames. In the initial vacuum, the states on this
branch are occupied, since in the superfluid-comoving (freely falling) frame
the energy of these quasiparticles is negative, E(p) < 0. However, in the lab-
oratory frame the energy of quasiparticles is positive, Ẽ > 0, and thus they
must be emitted. The process of emission is the tunneling to the outgoing
branch, which represents the Hawking radiation.

The energy E(r) of a quasiparticle in the superfluid-comoving frame is very large
close to the horizon, but becomes less and less when the quasiparticle moves away
from the horizon (Fig. 32.6). This is the same phenomenon as the gravitational
red shift in general relativity superimposed on the Doppler shift (see the book
by Landau and Lifshitz 1975), since the emitter is freely falling with velocity
v = vs(r). The frequency of the spectral line measured by the observer at infinity
is

ω̃ = ω
√−g00

√

1 − v2

c2

1 − v
c

= ω

(

1 −
√

rh
r

)

, (32.23)
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where ω is the nominal frequency of this line.

32.2.4 Horizon as the window to Planckian physics

The horizon at r = rh represents a surface of the infinite red shift: at this surface
the energy of an outgoing quasiparticle in eqn (32.22) diverges. This means that
if we observe particles coming to us from the very vicinity of the horizon, these
outgoing particles originally had a huge energy approaching the Planck energy
scale. Thus the event horizon can serve as a magnifying glass which allows us
to see what happens at the Planck length scale. At some point the low-energy
relativistic approximation inevitably becomes invalid and the deviations from
the linear (relativistic) spectrum can be observed.

There is another class of trajectories – the dotted line in Fig. 32.6 – which
probe the Planckian physics. These are the trajectories of quasiparticles prop-
agating from the horizon to the singularity. The most important properties
of quasiparticles on these trajectories is that their energies in the superfluid-
comoving and laboratory frames, E(p) and Ẽ(p), have different sign. The neg-
ative energy states, E < 0, which are originally occupied in the vacuum of the
superfluid-comoving frame, have the positive energy Ẽ > 0 in the laboratory
frame of the environment, and thus quasiparticles occupying these states must
be emitted. In the process of emission, the initial local Minkowski vacuum is
decaying. In principle there can be more violent processes of the decay of the
vacuum behind horizon, one of which is discussed in Sec. 32.3.

In any case the final destiny of the system in the presence of a horizon, i.e.
the formation of a new vacuum state as viewed in the laboratory frame, depends
on Planck-scale physics. Such a vacuum state does not exist in the relativistic
domain: the number of negative energy levels to be filled in the new vacuum is
infinite, and we need the Planck energy cut-off to restrict the number of negative
levels. In the process of filling these states the horizon will or will not be destroyed
depending on the Planckian physics. The situation is very similar to the fate of
the supercritical superflow: when the flow velocity exceeds the Landau critical
value vLandau the superfluidity will (Fig. 26.1 middle) or will not (Fig. 26.1 left)
be destroyed depending on the microscopic physics.

32.2.5 Hawking radiation

Irrespective of the final destiny of a horizon, the first stage of the dissipation
of the initial vacuum can start with the Hawking-like radiation, provided some
other, more violent, process of vacuum instability does not intervene. Let us
consider the Hawking radiation using the semiclassical description, which is valid
when the quasiparticle energy is much larger than the crossover temperature of
order of the Hawking temperature TH. In this case the Hawking radiation can be
described as the quantum tunneling between classical trajectories in Fig. 32.6.

We consider the positive energy states, Ẽ > 0, as viewed in the laboratory
frame, where the velocity field is time independent. The tunneling exponent is
determined by the usual quasiclassical action S = Im

∫

pr(r)dr. At low energy,
when the non-relativistic corrections are neglected, the momentum as a function
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of r on the classical trajectory has a pole at the horizon p(r) ≈ Ẽ/v′s(r−rh). Here
v′s is the derivative of the superfluid velocity at the horizon, which is equivalent to
the surface gravity according to eqn (32.20). Shifting the contour of integration
into the upper half-plane of the complex variable r, one obtains for the tunneling
action

S = Im

∫

pr(r)dr =
Ẽ

v′s
Im

∫

dr

r − rh
=
πẼ

v′s
. (32.24)

The probability of tunneling,

exp

(

−2S

h̄

)

= exp

(

−2πẼ

h̄v′s

)

= exp

(

− Ẽ

TH

)

, (32.25)

reproduces the thermal radiation with the Hawking temperature in eqn (32.20).
In the process of quantum tunneling from the occupied to empty levels pairs

of fermions are created: (quasi)particles outside the horizon and (quasi)holes
beyond the horizon.

32.2.6 Preferred reference frames: frame for Planckian physics and absolute
spacetime

The energy E(p) of the outgoing quasiparticle in the superfluid-comoving (freely
falling) frame in eqn (32.22) diverges at the horizon, where the Planckian physics
intervenes. The first manifestation of the Planckian physics is the deviation from
the linear relativistic law E(p) = cp. The quantum liquids give us examples where
the dispersion of the quasiparticle spectrum E(p) becomes ‘superluminal’ at high
energy, i.e. the velocity dE/dp exceeds the maximum attainable speed c of the
low-energy quasiparticles (see Sec. 26.1.5). If the same happens in the quantum
vacuum of RQFT there are many important physical consequences.

This can be illustrated by the following example. At the level of the effective
relativistic theory, the space-like coordinate r becomes time-like beyond the hori-
zon, since in this region all (quasi)particles can move only in one direction of r –
toward the singularity. At the fundamental level, because of the superluminal dis-
persion, (quasi)particles can go back and forth even beyond the horizon. Thus
the superluminal dispersion restores the space-like nature of the r coordinate
even beyond the horizon.

With our present knowledge there is an essential gap between the quantum
vacuum in quantum liquids and the quantum vacuum of our Universe. In su-
perfluids, as we know, there are two preferred reference frames. One of them is
an ‘absolute’ spacetime of the laboratory frame (the frame of the environment).
In the effective gravity in quantum liquids, the effective metric appears as a
function of the coordinates (r, t) of this absolute spacetime. Another one is the
frame locally comoving with the superfluid vacuum. In this frame the local met-
ric is a Minkowski one. It is in this frame that the velocity-independent energy
E(p) of quasiparticles is introduced. When E(p) is large enough the low-energy
‘relativistic’ spectrum acquires the non-linear ‘non-relativistic’ correction which
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contains the Planck energy scale (see eqn (26.4)). This means that it is the local
superfluid-comoving frame where the Planck energy cut-off is introduced.

As for the quantum vacuum of our Universe, we are still at such a low energy
that we cannot say whether any of the two preferred reference frames exist. For
us it is an open question in whose reference frame the Planck energy scale must
be introduced, i.e. what the analog is of the superfluid-comoving frame. Also we
cannot say whether there is an absolute spacetime which is the analog of the
laboratory frame. The magnifying glass of the event horizon could serve as a
possible source for spotting these two reference frames, if they exist.

The existence of the absolute spacetime in quantum liquids allows us to re-
solve between different metrics that are equivalent for inner observers. Let us
suppose that we managed to construct the ‘perfect’ quantum liquid – the liquid
with a favorable hierarchy of Planck scales. In such a liquid the integrals over
fermions are restricted within the region where fermions are still relativistic, and
thus the obtained effective action for the effective gravity obeys general covari-
ance, i.e. it is the Einstein action. Being covariant the Einstein action does not
depend on the choice of the reference frame, and thus the Einstein equations can
be solved in any coordinate system. However, in the presence of the horizon or
ergoregion some of the solutions are not determined in the whole spacetime of
the liquid. In these cases discrimination between different solutions arises and
one must choose between them. In the quantum liquid the choice is natural: we
know that at high energy the general covariance disappears and for a correct
description we must use absolute coordinates in the preferred frame of the labo-
ratory. In general relativity, the ambiguity in the presence of a horizon requires
proper choice of the solution, which is not known within the effective theory
and is not known in general since we do not know the fundamental ‘microscopic’
background. One can thus only guess what is the proper solution of the Einstein
equations.

It is rather clear that Schwarzschild solution cannot be the proper choice,
since the whole spacetime is not covered by Schwarzschild coordinates: the re-
gion beyond the horizon is missing (see Sec. 32.2.7). Let us accept the quantum
liquid scenario as a working hypothesis, which we shall use for description of the
black-hole interior in Sec. 32.4. We assume that it is the Painlevé–Gullstrand
metric with the frame dragging inward which is the proper stationary solution,
with (r, t) considered as absolute coordinates, while the local frame of the freely
falling observer serves as an analog of the superfluid-comoving frame in which the
Planck energy physics is introduced. We also assume that the Planckian physics
is superluminal. Particles arriving to us from the black hole could come not only
from the very vicinity of the horizon, but also from beyond the horizon, since
this is allowed by the superluminal dispersion, and even from the vicinity of the
singularity at r = 0. In this case the magnifying glass will allow us to probe
the trans-Planckian physics in the vicinity of the singularity. Let us stress, how-
ever, that this is only a guess: being well within the effective theory we cannot
discriminate between different choices of the preferred frames.



PAINLEVÉ–GULLSTRAND METRIC IN SUPERFLUIDS 443

32.2.7 Schwarzschild metric in effective gravity

The Schwarzschild line element

ds2 = −
(

1 − v2
s (r)

c2

)

dt̃2 +
1

c2 − v2
s (r)

dr2 +
1

c2
r2dΩ2 (32.26)

can be obtained from the Painlevé–Gullstrand line element in eqn (32.17) by
the coordinate transformation

t̃ = t+

∫ r

dr
vs

c2 − v2
s

. (32.27)

This coordinate transformation is forbidden at the fundamental level, but is valid
for the low-energy quasiparticles obeying general covariance, which live outside
the horizon. Thus in quantum liquids the Schwarzschild metric has some, though
very limited, physical sense: it is the metric viewed by the far-distant inner
observer.

Let us consider such an inner observer who is at rest at some point R ≫ rh
far from the artificial black hole where the superfluid velocity is almost zero. It
appears that the observer’s time is given just by t̃ in eqn (32.27), and thus the
metric which he (or she) observes is the Schwarzschild line element in eqn (32.26).
How does the observer find this? He (or she) sends the pulse of quasiparticles,
which plays the role of light, and looks for the reflection signal from the body
which is at point r. If the observer sends the signal at the moment t1, it arrives

at point r at t = t1 +
∫ R

r dr/|v−| of the absolute (laboratory) time, where v+
and v− are absolute (laboratory) velocities of radially propagating quasiparticles,
moving outward and inward respectively:

v± =
dr

dt
=
dẼ

dpr
= ±c+ vs . (32.28)

From the point of view of the inner observer the speed of light c is an invariant
quantity and does not depend on direction of propagation. Thus for the inner
observer the moment of arrival of pulse to r is not t but t̃ = (t1 + t2)/2, where t2
is the time when the pulse reflected from r returns to the observer at R. Since

t2 − t1 =
∫ R

r
dr/|v−| +

∫ R

r
dr/|v+|, one obtains that the time measured by the

inner observer is

t̃(r, t) =
t1 + t2

2
= t+

1

2

(

∫ R

r

dr

v+
+

∫ R

r

dr

v−

)

= t+

(

2rh
vs(r)

+
rh
c

ln
c− vs(r)

c+ vs(r)

)

−
(

2rh
vs(R)

+
rh
c

ln
c− vs(R)

c+ vs(R)

)

. (32.29)

This is just eqn (32.27).
The Schwarzschild metric is not applicable if one tries to extend the con-

sideration to the space beyond the horizon and to physics at higher energy,
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Fig. 32.7. Trajectories of massless ‘relativistic’ quasiparticles in the presence of
pair of white and black horizons in Laval-nozzle-type geometry in Fig. 32.2
right bottom according to Fischer and Volovik (2001). Only those trajecto-
ries are shown on which quasiparticles have positive energy in the laboratory
frame, Ẽ > 0. As distinct from Fig. 32.6 the non-linear superluminal disper-
sion of the quasiparticle spectrum is included. The trajectories in Fig. 32.6
which terminated at nonsingular points in space are now closed or smoothly
cross the horizons. As a result the spacetime is ‘geodesically complete’. The
Hawking process of emission by tunneling is also shown.

while the Painlevé–Gullstrand metric is suitable for that. One may argue that
the Painlevé–Gullstrand metric is also restricted since it is not geodesically
complete. However, this is not necessary for the effective theory. The effective
spacetime is not geodesically complete in the presence of the horizon, simply be-
cause it exists only in the low-energy ‘relativistic’ corner. The trajectories in Fig.
32.6 do not terminate at the horizon: they escape to a non-relativistic domain
when their energy increases beyond the relativistic, linear approximation regime
and the trajectory continues (Jacobson and Volovik 1998a,b; Jacobson and Koike
2002). Such example, when the superluminal dispersion makes the trajectories
‘geodesically complete’, is shown in Fig. 32.7 for the black-hole/white-hole pair
arising in the Laval nozzle geometry in Fig. 32.2. The trajectories are either
closed or continue across the horizons.

Another example of the incomplete spacetime in effective gravity is provided
by the vierbein domain walls – the walls with the degenerate metric – discussed
in Sec. 30.1. For the inner observer who lives in one of the domains, the effective
spacetime is flat and complete. But this is only half of the real (absolute) space-
time: the other domains, which do really exist in the absolute spacetime, remain
unknown to the inner observer.
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Fig. 32.8. Whirlpool simulating the rotating black hole. The radial velocity of
the flow is directed toward the center of the black hole.

These examples also show the importance of the superluminal dispersion at
high energy. The high energy dispersion of the relativistic particles was exploited
in the black-hole physics by Jacobson (1996, 1999), Corley and Jacobson (1996,
1999) and Corley (1998).

32.2.8 Discrete symmetries of black hole

Superfluids can also simulate the rotating black hole. An example is shown in
Fig. 32.8. The types of the condensed matter black holes, ergoregions and sur-
faces of the infinite red shift can now be classified in terms of the symmetry of
the superfluid velocity field vs. There are three important elements of discrete
symmetries which form the group Z2 ×Z2. One of them is time reversal symme-
try T; another one is the π rotation U2 around the axis perpendicular to the axis
of rotational symmetry; and the third one is the combined symmetry operation
TU2. Let us enumerate possible types of spacetime configurations in terms of
these symmetries.

(1) T-, U2- and TU2-symmetric. This is the most symmetric configuration:
all the elements of the Z2 × Z2 group are preserved. This occurs if there is no
superfluid velocity field. The surfaces of the infinite red shift with zero value of
the non-diagonal metric elements gi0 = 0, corresponding to vs = 0, has been
discussed in condensed matter by Chapline et al. (2001, 2002).

(2) U2-symmetric. Analogs of the non-rotating black holes obtained by the
dragging effect of the radial flow of the liquid violate the time reversal symmetry
T, since Tvs = −vs. The U2 symmetry is preserved, simply because of the full
spherical symmetry of these black holes. The symmetry operations T and TU2

transform the non-rotating black hole into the non-rotating white hole.
(3) TU2-symmetric. This describes the dragging effect, produced by a vortex,

by a rotating cylinder, or by a rotating vortex cluster discussed in the previous
chapter, giving rise to the ergosurface without horizon. The azimuthal flow of the
liquid violates both T and U2 symmetries: these symmetry operations reverse
the sense of rotation. But the combined symmetry TU2 is preserved.
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(4) Finally the whirlpool in Fig. 32.8 simulating the rotating black hole vi-
olates both T and TU2. For example, the symmetry operation T transforms a
rotating black hole into a white hole rotating with the same angular velocity but
in the opposite direction. The operation TU2 transforms a rotating black hole
into a white hole rotating in the same direction.

In all these cases the space parity P of the velocity field is preserved: Pvs(r) =
−vs(−r) = vs(r).

Can this classification be applied to astronomical black holes? If so, then
which sign of the non-diagonal element g0i in the Painlevé–Gullstrand metric
corresponds to the physical situation: black hole or white hole? One can argue
(Czerniawski 2002) that, if physical gravitation corresponds to the dragging in-
ward, then only one of the two metrics must be chosen, namely that with the
minus sign for the dragging velocity. However, how can one exclude the possi-
bility that the hole which one observes in the vacuum is the white one, if one
does not know the prehistory of the formation of the hole and cannot detect the
accretion of the interstellar medium, since the vacuum state is assumed to be
outside the horizon.

Why can we resolve the direction of the radial flow in the liquid, yet are
not able do this for the gravitational black and white holes? The difference
occurs only because of the different nature of the observers. For the quantum
liquid gravity we are the external observers who do not belong to the vacuum of
the quantum liquid, but belong to the ‘trans-Planckian’ world. Our maximum
attainable speed is much larger than the internal ‘speed of light’ in the vacuum
of the quantum liquid, and we do not obey the relativistic laws of the low-energy
physics of this vacuum. This is the reason why we can resolve the direction of the
flow. An inner observer, who lives in the quantum liquid and uses the low-energy
quasiparticles for exchange of information, is not able to determine the direction
of the flow of the liquid. Moreover, this observer cannot resolve between the
black hole with broken T symmetry discussed here and the T-symmetric hole
discussed by Chapline et al. (2001, 2002) and Mazur and Mottola (2001), since
for the inner observer both are described by the Schwarzschild metric.

This can be resolved only when the trans-Planckian physics is introduced. The
physics beyond the horizon as observed by the external trans-Planckian observer
essentially depends on T symmetry. The most prominent physical consequence
of broken time reversal symmetry is, as we shall see in Sec. 32.4, that if the
horizon survives after the vacuum reconstruction the vacuum inside the horizon
acquires a Fermi surface and thus undergoes the quantum phase transition to a
different universality class of fermionic vacua (Huhtala and Volovik 2001).

32.3 Horizon and singularity on AB-brane

The experimental realization of two superfluid liquids sliding along each other
by Blaauwgeers et al. (2002) discussed in Sec. 17.3 and Chapter 27 opened
another route for construction of an analog of the black-hole event horizon and
also of the singularity in the effective Lorentzian metric. Now it is the effective
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metric experienced by the collective modes living on the AB-interface – the AB-
brane – separating two different superfluid vacua, 3He-A and 3He-B. Schützhold
and Unruh (2002) suggested use of the capillary–gravity waves (ripplons) on
the surface of a liquid flowing in a shallow basin. In the long-wavelength limit
the energy spectrum of the surface modes becomes ‘relativistic’, which allows us
to describe the propagating modes in terms of the effective Lorentzian metric.
This idea can be modified to the case of ripplons propagating along the interface
between two superfluids – the AB-brane.

There are many advantages when one uses the superfluid liquids instead of
conventional ones: (i) The superfluids can slide along each other without any
friction until the critical velocity is reached, and thus all the problems related
to viscosity disappear. (ii) The superfluids, as we know, represent the quantum
vacua similar to that in RQFT. That is why the quantum effects related to the
vacuum in the presence of an exotic metric can be simulated. (iii) The interface
between two different superfluid vacua is analogous to the brane in modern
RQFT (see Part V), and one can study the brane physics, in particular the
interaction between brane matter and matter living in the higher-dimensional
space outside the brane. Here, in an example of the AB-brane, we show that the
interaction of the brane with the bulk environment can lead to vacuum instability
of the brane vacuum in the presence of the ergoregion beyond the horizon. (iv) By
reducing the temperature one can make the time of development of the instability
long enough to experimentally probe the singularity within the black hole (the
so-called physical singularity).

32.3.1 Effective metric for modes living on the AB-brane

Let us consider surface waves – ripplons – propagating along the AB-brane in the
slab geometry shown in Fig. 32.9. Two superfluids, 3He-A and 3He-B, separated
by the AB-brane are moving along the brane with velocities v1 ≡ vsB and
v2 ≡ vsA in the container frame (the frame of the environment). The normal
components of the liquids – the systems of quasiparticles on both sides of the
interface, which play the role of the bulk matter outside the brane – are at
rest with respect to the container walls in a global thermodynamic equilibrium,
vn = 0. The dispersion relation for ripplons which represent the matter living
in the 2D brane world can be obtained by modification of eqn (27.8) to the slab
geometry:

M1(k)(ω − k · v1)
2 +M2(k)(ω − k · v2)

2 = F + k2σ − iΓω . (32.30)

Here, as before, σ and F are the surface tension of the AB-brane and the force sta-
bilizing the position of the brane respectively. The quantities M1(k) and M2(k)
are those k-dependent masses of the liquids which are forced into motion by the
oscillating brane:

M1(k) =
ρ1

k tanh kh1
, M2(k) =

ρ2

k tanh kh2
, (32.31)

where h1 and h2 are the thicknesses of the layers of two superfluids; ρ1 and ρ2

are mass densities of the liquids (we assume that the temperature is low enough
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Fig. 32.9. The brane – the interface between two moving superfluids, 3He-A
and 3He-B. vsA and vsB are the superfluid velocities of two liquids sliding
along the brane, while the normal components of the liquids – the analogs of
matter living outside the brane – are at rest in the frame of the container,
vnA = vnB = 0. The dashed line demonstrates the propagating surface wave
(ripplon) which represents matter living on the brane.

so that the normal fraction of each of the two superfluid liquids is small, ρs1 ≈ ρ1

and ρs2 ≈ ρ2).
Finally Γ is the frame-fixing parameter – the coefficient in front of the friction

force in eqns (27.6) and (29.18) experienced by the AB-brane when it moves
with respect to the 3D environment along the normal ẑ to the brane, Ffriction =
−Γ(vAB − vn) (in the frame of the container vn = 0). The friction term in eqn
(32.30) containing the parameter Γ is the only term which couples the 2D brane
with the 3D environment consisting of liquids in the bulk and the container
walls. If Γ = 0, the connection with the 3D environment is lost, and the brane
subsystem becomes Galilean invariant. The Γ term violates Galilean invariance of
the 2D world of the AB-brane due to the interaction with the higher-dimensional
environment.

In experiments conducted by Blaauwgeers et al. (2002) one has kh1 ≫ 1 and
kh2 ≫ 1, and eqn (27.8) is restored. In the opposite limit of a thin slab, where
kh1 ≪ 1 and kh2 ≪ 1, one obtains

α1(ω − k · v1)
2 + α2(ω − k · v2)

2 = c2k2

(

1 +
k2

k2
0

)

− 2iΓ̃(k)ω , (32.32)

where

α1 =
h2ρ1

h2ρ1 + h1ρ2
, α2 =

h1ρ2

h2ρ1 + h1ρ2
, α1 + α2 = 1 , (32.33)

k2
0 =

F

σ
, c2 =

Fh1h2

h2ρ1 + h1ρ2
, Γ̃(k) =

Γ

2
k2 h1h2

h2ρ1 + h1ρ2
. (32.34)

For k ≪ k0 and ω ≪ ck0 the dominating, quadratic in k and ω, terms in eqn
(32.32) can be rewritten in the Lorentzian form

gµνkµkν = 2iωΓ̃(k) − c2k4/k2
0 , (32.35)
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kµ = (−ω, kx, ky) , k =
√

k2
x + k2

y . (32.36)

The right-hand side of eqn (32.35) contains the remaining small terms violating
the effective Lorentz invariance – the attenuation of ripplons due to the inter-
action with the higher-dimensional environment and their non-linear dispersion.
The quantities k0 and ck0 play the roles of the Planck momentum and Planck
energy for ripplons: they determine the scales where the Lorentz symmetry of
ripplons is violated. Both terms on the rhs of eqn (32.35) come from the physics
which is ‘trans-Planckian’ for the ripplons. The Planck energy scale of the 2D
physics in the brane is typically much smaller than the Planck energy scales in
eqn (7.31) for the bulk 3D superfluids outside the brane. The frame-fixing pa-
rameter Γ is determined by the physics of 3D quasiparticles scattering on the
brane as discussed in Sec. 29.3.1. We shall consider velocities v1 and v2, which
are comparable to the ‘speed of light’ c on the brane. But they are small com-
pared to the maximum attainable speeds c‖ and c⊥ in the 3D world outside the
brane, i.e. cD=2 ≪ cD=3.

At sufficiently small k both non-Lorentzian terms – attenuation and non-
linear dispersion on the rhs of eqn (32.35) – can be ignored, and the dynamics
of ripplons living on the AB-brane is described by the following effective con-
travariant metric in the frame of the environment gµν :

g00 = −1 , g0i = −α1v
i
1 − α2v

i
2 , g

ij = c2δij − α1v
i
1v

j
1 − α2v

i
2v

j
2 . (32.37)

Introducing two vectors, U and W, which describe the relative motion of two
superfluids and the mean velocity of the two superfluids with respect to the
container, respectively,

U =
√
α1α2(v1 − v2) , W = α1v1 + α2v2 , (32.38)

one obtains the following expression for the time independent effective contravari-
ant metric for ripplons:

g00 = −1 , g0i = −W i , gij = c2δij −W iW j − U iU j . (32.39)

The corresponding effective covariant metric of the (2+1)-dimensional spacetime
is

gij =
1

c2

(

δij +
U iU j

c2 − U2

)

, g00 = −1 + gijW
iW j , g0i = −gijW

j . (32.40)

32.3.2 Horizon and singularity

The criterion of the original Kelvin–Helmholtz instability, which takes place in
the absence of the environment, i.e. at Γ = 0, is modified in the slab geometry.
If kh1 ≪ 1 and kh2 ≪ 1, then instead of eqn (27.1) or the third of eqns (27.13)



450 ANALOGS OF EVENT HORIZON

one obtains that the classical KH instability takes place when U = c, i.e. when
the relative velocity of motion of the two liquids reaches the critical value

|v1 − v2| = vKH =
c√
α1α2

. (32.41)

From eqn (32.40) it follows that at this velocity the determinant of the metric
tensor

g = − 1

c2 (c2 − U2)
(32.42)

has a physical singularity: it crosses the infinite value and changes sign.
However, before U reaches c, the other important thresholds can be crossed

where analogs of the ergosurface and horizon in general relativity appear. Let
us consider the simplest situation when velocities U and W are parallel to each
other (i.e. v1 ‖ v2); these velocities are radial and depend only on the radial
coordinate r along the flow (Fig. 32.10 left). Then the interval of the effective
2+1 spacetime in which ripplons move along the geodesic curves is

ds2 =
−(c2 −W 2(r) − U2(r))dt2 − 2W (r)dtdr + dr2

c2 − U2(r)
+ r2dφ2 , (32.43)

or

ds2 = −dt̃2 c
2 −W 2(r) − U2(r)

c2 − U2(r)
+

dr2

c2 −W 2(r) − U2(r)
+ r2dφ2 , (32.44)

dt̃ = dt+
W (r)dr

c2 −W 2(r) − U2(r)
. (32.45)

The circle r = rh, where g00 = 0, i.e. where W 2(rh)+U2(rh) = c2, marks the ‘co-
ordinate singularity’ which is the black-hole horizon if the velocity W is inward
(see Fig. 32.10 left). In such radial-flow geometry the horizon also represents the
ergosurface (ergoline in 2D space) which is determined as the surface bounding
the region where the ripplon states can have negative energy. As before, we call
the whole region behind the ergosurface the ergoregion. This definition differs
from that accepted in general relativity, but we must extend the notion of the
ergoregion to the case when the Lorentz invariance and general covariance are
violated, and the absolute reference frame appears (see Sec. 26.1.5). At the er-
gosurface, the Landau critical velocity for generation of ripplons is reached. And
also, as follows from eqn (32.35) (see also Sec. 27.1.2), the ergoregion coincides
with the region where the brane fluctuations become unstable, since not only
the real but also the imaginary part of the ripplon spectrum crosses zero at the
ergosurface. It becomes positive in the ergoregion (Fig. 32.10 right).

32.3.3 Brane instability beyond the horizon

The positive value of the imaginary part of the ripplon spectrum beyond the
horizon means that the brane vacuum becomes unstable in the presence of the
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Fig. 32.10. Artificial black hole in AB-brane. Left: Horizon and singularity in
the effective metric for ripplons on the brane (AB-interface). We assume that
the A-phase is at rest, while the B-phase is radially moving to the center as
shown by the arrows. Right: Real and imaginary parts of the ripplon spec-
trum cross zero values at the horizon. In the ergoregion (the region beyond
the horizon) the attenuation of ripplons transforms to the amplification lead-
ing to the instability of the brane world. The time of development of this
instability is long at low T , where Γ is small. On the contrary, in the region
beyond the singularity, the Kelvin–Helmholtz instability develops rapidly and
rsingularity → 0.

ergoregion. The slope of Im ω(r) in Fig. 32.10 right is proportional to Γ, which
means that instability develops only at non-zero frame-fixing parameter Γ, i.e.
due to the interaction of the 2D ripplons with the 3D quasiparticles living in bulk
superfluids on both sides of the brane. Outside the horizon, the interaction of
the brane with the bulk environment leads to the attenuation of the propagating
ripplons: the imaginary part of the ripplon spectrum is negative there. In the
ergoregion, the imaginary part of the spectrum of ripplons becomes positive, i.e.
the attenuation transforms to amplification of surface waves with negative Im ω.
The similar mechanism of the instability of the rotating black hole has been
discussed by Press (1998).

Since the instability of the interface with respect to exponentially growing
surface fluctuations develops in the presence of the shear flow, this instability
results in the formation of vortices observed by Blaauwgeers et al. (2002) (see
Chapter 27). In these experiments, however, the conditions kh1 ≪ 1 and kh2 ≪ 1
were not satisfied, i.e. the relativistic description was not applicable. Also, in
the rotating cryostat the superfluids flow in the azimuthal direction instead of
the radial one. That is why there was no horizon in the experiment. However,
the notion of the non-relativistic ergosurface and of the ergoregion beyond this
ergosurface, where the ripplon energy becomes negative in the container frame,
is applicable. According to Fig. 27.3 the observed threshold velocity for the
instability which leads to vortex formation exactly corresponds to the appearance
of the ergosurface (ergoline) in the reference frame of the bulk environment. The
same physics of the brane vacuum instability in the ergoregion will hold for
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shallow superfluids in the presence of a ‘relativistic’ horizon.
There are two ingredients which cause vacuum instability within the ergore-

gion: (i) the existence of the absolute reference frame of the environment outside
the brane; and (ii) the interaction of the brane with this environment (Γ 6= 0)
which violates Galilean invariance (and Lorentz invariance in the ‘relativistic’
case) within the brane. They lead to attenuation of the ripplon in the region
outside the ergosurface (horizon). Beyond the ergosurface (horizon) this atten-
uation transforms to amplification which destabilizes the vacuum there. This
mechanism may have an important implication for the astronomical black hole.
If there is any intrinsic attenuation of, say, photons (either due to superluminal
dispersion, or due to the interaction with the higher-dimensional environment),
this may lead to catastrophical decay of the black hole due to instability beyond
the horizon, which we discuss in Sec. 32.4.1.

Let us estimate the time of development of such instability, first in the arti-
ficial black hole within the AB-brane and then in the astronomical black hole.
According to Sec. 29.3.3 the frame-fixing parameter in the friction force experi-
enced by the AB-brane due to Andreev scattering of quasiparticles living in the
bulk superfluid on the A-phase side of the brane is Γ ∼ T 3m∗/h̄3c⊥c‖ at T ≪ Tc.
Let us recall that c⊥ and c‖ are the ‘speeds of light’ for 3D quasiparticles living
in anisotropic 3He-A, and these speeds are much larger than the typical ‘speed
of light’ c of quasiparticles (ripplons) living on the 2D brane; the superfluid tran-
sition temperature Tc ∼ ∆0 also marks the 3D Planck energy scale. Assuming
the most pessimistic scenario in which the instability is caused mainly by the
exponential growth of ripplons with the 2D ‘Planck’ wave number k0, one ob-
tains the following estimate for the time of development of the instability in the
ergoregion far enough from the horizon: τ ∼ 1/Γ̃(k0) ∼ 10(Tc/T )3 s. Thus at
low T the state with the horizon can live for a long time (minutes or even hours),
and this lifetime of the horizon can be made even longer if the threshold is only
slightly exceeded.

This gives a unique possibility to study the horizon and the region beyond
the horizon. The physical singularity, where the determinant of the metric is
singular, can also be easily constructed and investigated.

At lower temperature T < m∗c2⊥ the temperature dependence of Γ changes
(see Sec. 29.3.2), Γ ∼ T 4/h̄3c3⊥c‖, and at very low T it becomes temperature
independent, Γ ∼ h̄k4, which corresponds to the dynamical Casimir force acting
on the 2D brane (mirror) moving in the 3D vacuum (Davis and Fulling 1976).
Such intrinsic attenuation of ripplons, transforming to the amplification in the
ergoregion, can lead to instability of the brane vacuum beyond the horizon even
at T = 0.

32.4 From ‘acoustic’ black hole to ‘real’ black hole

32.4.1 Black-hole instability beyond the horizon

Now let us suppose that the same situation takes place in our world, i.e. our world
is the 3D brane in, say, 4D space. The modes of our 3D brane world (photons, or
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gravitons, or fermionic particles) may have finite lifetimes due to the interaction
with the 4D environment in the bulk. In this case this will lead to the instability of
the vacuum beyond the horizon of the astronomical black holes. This instability
can be considered using eqn (32.35) which incorporates both terms violating the
Lorentz invariance of our world at high energy. Following the analogy, we can
write the intrinsic width of the particle spectrum due to the interaction with
the bulk environment as a power law Γ̃(k) ∼ µ(ck/µ)n, where the parameter µ
contains the Planck energy scale in 4D space, and thus is well above the Planck
energy scale EPlanck of our 3D brane world, µ≫ EPlanck. The exponent n = 6 if
the analogy is exact. In principle, the role of the 4D environment can be played
by the trans-Planckian physics, which prvides the absolute reference frame. In
this case the broadening of the particle spectrum characterized by Γ̃(k) can be
caused by the superluminal upturn of the spectrum which leads to the decay
of particles. The non-linear dispersion of the particle spectrum was exploited
both in the black-hole physics and cosmology (Jacobson 1996, 2000; Corley and
Jacobson 1996, 1999; Corley 1998; Starobinsky 2001; Niemeyer and Parentani
2001).

We shall use the Painlevé–Gullstrand metric in eqn (32.17), which, together
with the superluminal dispersion of the particle spectrum, allows us to consider
the region beyond the horizon:

g00 = −1 , g0i = −vi
s , g

ij = c2δij − vi
sv

j
s , vs = −r̂

√

2GM
r

. (32.46)

Here G is the Newton constant and M is the mass of the black hole. This metric
coincides with the 3D generalization of the metric of ripplons on the AB-brane
in eqn (32.43) in the case when v1 = v2. Equation (32.43) gives the following
energy spectrum for particles living in the brane:

(Ẽ − p · vs)
2 = E2(p) − 2iΓ̃(p)Ẽ , (32.47)

E2(p) = M2 + c2p2 + c2
p4

p2
0

, (32.48)

or

Ẽ(p) = p · vs − iΓ̃(p) ±
√

E2(p) − Γ̃2(p) − 2iΓ̃(p)p · vs . (32.49)

For massless particles and small Γ̃(p) ≪ cp, the imaginary part of the energy
spectrum is

Im Ẽ(p) = −iΓ̃(p)

(

1 ± p · vs

E(p,M = 0)

)

. (32.50)

Beyond the horizon, where W > c, the imaginary part becomes positive for
|p · vs| > E(p,M = 0) (or p2 < p2

0/(v
2
s /c

2 − 1)), i.e. attenuation transforms to
amplification of waves with these p. This demonstrates the instability of the vac-
uum with respect to exponentially growing electromagnetic or other fluctuations
in the ergoregion. Such an instability is absent when the frame-fixing parameter
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Γ̃ = 0, i.e. if there is no interaction with the trans-Planckian or extra-dimensional
environment.

The time of the development of instability within the conventional black hole
is determined by the region far from the horizon, where the relevant p ∼ p0 ∼
pPlanck. Thus τ ∼ 1/Γ̃(p0) ∼ µn−1/En

Planck. If µ is of the same order as the brane
Planck scale, the time of development of instability is the Planck time. That is
why the astronomical black hole can exist only if µ≫ EPlanck, which takes place
when the 3D and 2D Planck scales are essentially different, as happens in the
case of the AB-brane. Let us compare this ergoregion instability with the decay
of the black hole due to Hawking radiation. The latter corresponds to n = 4 and
µ = M, where M is the black-hole mass. This always leads to the astronomical
time for the decay of the astronomical black hole.

32.4.2 Modified Dirac equation for fermions

In the presence of the horizon the Minkowski vacuum decays via Hawking radi-
ation or by more violent processes such as the ergoregion instability discussed
in Sec. 32.4.1. Due to the vacuum decay inside the horizon, the horizon can be
destroyed. However, in principle it is possible that the reconstruction of the vac-
uum will preserve the horizon. This is possible for fermionic vacua, when the new
vacuum can be formed after fermions finally fill all the negative energy levels in
the ergoregionas. This happens in superfluids where the new stable vacuum can
be reached when the Landau criterion is exceeded and the ergoregion is formed
(Fig. 26.1 left).

What kind of vacuum is formed beyond the horizon in this hypothetical
case of a stable black hole? In Sec. 26.1.3 we have seen that in the region where
vLandau < vs < vc (i.e. where the superfluid velocity exceeds the Landau criterion
but the superfluidity is not destroyed) the new superfluid vacuum acquires a
Fermi surface (see Fig. 26.1 left for 3He-B and Fig. 26.1 right for 3He-A). This
suggests that beyond the horizon the vacuum state (if it exists) has fermion zero
modes which form a Fermi surface. This would occur only for horizons with
broken time reversal symmetry, as in the Painlevé–Gullstrand metric which can
be described in terms of the flow velocity.

Let us consider how the fermion zero modes of co-dimension dc = 1 can
appear in the interior of a black hole. We need to invoke Planck-scale physics
which is not known. But probably the final result – the existence of the Fermi
surface beyond the horizon – is universal because of the universality of zeros of
co-dimension dc = 1. So let us use such an extension of the Standard Model and
gravity to high energy as suggested by the quantum Fermi liquids, and exploit
as a guide the analog of the horizon and ergoregion in these liquids. This means
that we make the following crucial assumptions.

(1) We assume that the Painlevé–Gullstrand metric with the frame dragging
inward is the proper stationary solution of the Einstein equations, whose space-
time coordinates are absolute even on the Planck scale. It is in this absolute
frame of the trans-Planckian environment that the true vacuum must be found.
In quantum liquids this corresponds to the abslolute spacetime of the laboratory
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environment, in which the velocity field (the gravitational field) and the horizon
are stationary.

(2) The local frame of the observer who is freely falling toward the singularity
will be considered as the counterpart of the superfluid-comoving frame. In this
preferred frame the non-relativistic corrections due to Planck energy physics are
introduced which violate the Lorentz invariance. In the freely falling frame these
corrections do not depend on the gravitational field. The freely falling frame for
the Planckian physics was also suggested by Corley and Jacobson (1996).

(3) The energy spectrum of particles in this freely falling frame is given by
eqn (32.48).

(4) In the absolute frame of the trans-Planckian environment their energy
spectrum is

Ẽ = p · vs ± c

√

M2 + c2p2 + c2
p4

p2
0

, (32.51)

where vs = −r̂c
√

rh/r is the frame-dragging field. In the limit of the effective
theory p≪ p0 this corresponds to the spectrum of relativistic particles, gµνpµpν+
M2 = 0, in the black-hole background described by the Painlevé–Gullstrand
metric in eqn (32.46).

The Painlevé–Gullstrand metric describes the spacetime in both exterior and
interior regions. This spacetime, though not static, is stationary in the absolute
frame, ∂tgµν = 0. That is why the energy in the interior region is well determined
for any value of the momentum p. This allows us to determine the ground state
(vacuum) of the Standard Model in the interior region of the black hole. This
is the analog of the Boulware vacuum in general relativity (Boulware 1975), the
divergence of the energy density of the Boulware vacuum at the horizon (and
beyond) is cured by the superluminal dispersion.

(5) Since we do not know the Planckian physics, the back reaction of the
gravitational field to the establishment of a new vacuum is not known. That is
why we simply fix the gravitational background, assuming that vs = −r̂c

√

rh/r
always holds. Since the Fermi surface is a topologically stable object, modification
of the vs(r)-field due to the back reaction should not destroy the Fermi surface.

(6) We consider here only the fermionic vacuum of the Standard Model. We
assume that, as in fermionic quantum liquids, the bosonic fields in the Standard
Model are the collective modes of the fermionic vacuum. The Dirac equation for
fermions in the gravitational background of the Painlevé–Gullstrand metric can
be written using the tetrad formalism (see Doran 2000). The violation of the
Lorentz invariance at high energy can be introduced by adding the non-linear
γ5 term, which gives the superluminal dispersion. As a result one obtains the
following modified Dirac equation (Huhtala and Volovik 2001):

i∂tΨ = −icαi∂iΨ +Mγ0Ψ +HP Ψ +HGΨ . (32.52)

Here HP and HG are Hamiltonians coming from the Planckian physics and from
the gravitational field correspondingly:
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HP = − h̄
2c

p0
γ5∂

2
i , HG = ih̄c

√

rh
r

(

3

4r
+ ∂r

)

. (32.53)

The Dirac matrices used are

αi =

(

0 σi

σi 0

)

γ0 =

(

1 0
0 −1

)

γ5 =

(

0 −i
i 0

)

. (32.54)

The equation (32.52) is the starting point for calculation of the fermion zero
modes and new vacuum within the black hole. Here we shall use the fact that the
main contribution to the new vacuum comes from the negative energy fermions,
whose wavelength is on the order of Planck length (Huhtala and Volovik 2001).
For such fermions the semiclassical approximation works well and we can use the
classical energy spectrum in eqn (32.51). Also the masses M of fermions can be
neglected at such scales, and we return to the chiral fermions of the Standard
Model, but with non-linear dispersion.

32.4.3 Fermi surface for Standard Model fermions inside horizon

Because of the possibility of superluminal propagation the surface r = rh is not
the true horizon: particles can penetrate this surface from both sides. However,
this surface has a physical meaning: it marks the boundary of the ergoregion.
At r < rh, some particles with positive square root in eqn (32.51) have negative
energy. As a result, at r < rh the Fermi surface appears – the surface in the
3D momentum space, where the energy of particles is zero, Ẽ(p) = 0. After the
vacuum reconstruction, when all the negative energy states are occupied, the
horizon becomes the physical surface separating quantum vacuua with different
topology of the fermionic spectrum. The coordinate singularity of the metric
becomes the real physical singularity.

For the spectrum in eqn (32.51) with M = 0 the Fermi surface is given by
an equation which expresses the radial momentum pr in terms of the transverse
momentum p⊥:

p2
r(p⊥) =

1

2
p2
0

(

v2
s

c2
− 1

)

− p2
⊥ ±

√

1

4
p4
0

(

v2
s

c2
− 1

)2

− p2
0p

2
⊥

v2
s

c2
. (32.55)

This surface of co-dimension dc = 1 exists at each point r within the ergoregion,
where v2

s > c2. It exists only in a restricted range of the transverse momenta,
with the restriction provided by the cut-off parameter p0:

p⊥ <
1

2
p0

∣

∣

∣

∣

vs
c
− c

vs

∣

∣

∣

∣

. (32.56)

This means that the Fermi surface formed by the fermion zero modes beyond the
horizon is a closed surface in the 3D momentum p-space (see Fig. 32.11 right).

The Fermi surface of fermion zero modes provides the finite density of
fermionic states (DOS) at Ẽ = 0:

N(Ẽ = 0) = NF

∑

p,r

δ(Ẽ(p)) (32.57)
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Fig. 32.11. Formation of the event horizon can be accompanied by the topo-
logical phase transition in momentum space: the Fermi surface for the Stan-
dard Model fermions can be formed beyond the horizon. The Fermi surface
Ẽ(p, r0) = 0 is shown for a given point r0 inside the black hole: 0 < |r0| < rh
(right). The Fermi surface is absent for r > rh, where all the fermions of the
Standard Model are massive. Thus the event horizon serves as the interface
between the two vacua (left). In condensed matter, the quantum phase tran-
sition at T = 0 with formation or topological reconstruction of the Fermi
surface is called the Lifshitz transition.

=
4πNF

(2πh̄)3

∫ rh

0

r2dr

∫

d3p δ

(

prvs + c

√

p2 +
p4

p2
0

)

(32.58)

=
NF

πh̄3

∫ rh

0

r2dr

∫ p2
⊥(r)

0

d(p2
⊥)

|vG|
. (32.59)

Here NF = 16Ng is the number of massless chiral fermionic species in the Stan-
dard Model withNg generations; vG is the radial component of the group velocity
of particles at the Fermi surface:

vG(Ẽ = 0) =
dE

dpr
= ∓c

√

(

vs
c
− c

vs

)2

− 4
p2
⊥

p2
0

. (32.60)

Integration over p2
⊥ in eqn (32.59) gives the following density of states of fermion

zero modes

N(Ẽ = 0) =
NF p

2
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∣
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=
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35πh̄3c
p2
0r

3
h. (32.61)
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The main contribution to the DOS and thus to the thermodynamics comes from
the energies comparable to the cut-off energy E0 = cp0, which is much larger
than fermion masses. That is why all the masses of fermions were neglected.

32.4.4 Thermodynamics of ‘black-hole matter’

Fermion zero modes with their finite DOS N(Ẽ = 0) determine the thermo-
dynamics of the black-hole matter at T 6= 0. The thermal energy E(T ) carried
by the Standard Model fermions in the interior of the black hole at non-zero
temperature is

E(T ) = N(0)

∫

dẼ Ẽf(Ẽ/T ) =
π2

6
N(0)T 2 =

16π

105h̄3NFG
3E2

0M3T 2 , (32.62)

where f(x) = 1/(ex + 1) is the Fermi distribution function. The entropy of the
black-hole matter S(T ) = −dF/dT (where F(T ) = E(T ) − TS(T ) is the free
energy) is

S(T ) =
π2

3
N(0)T =

32π

105h̄3NFG
3E2

0M3T , (32.63)

where M = rh/2Gc is the black-hole mass; and G is the gravitational constant.
Let us compare the entropy of fermion zero modes to the phenomenological

Bekenstein–Hawking (BH) entropy of the black hole. In the phenomenological
approach the black hole is in the thermodynamic equilibrium with the environ-
ment if the Hawking temperature TH coincides with the temperature T of the
environment. This equilibrium is, however, unstable since it corresponds to the
saddle-point thermodynamic state – the sphaleron – with a negative specific
heat. The BH entropy of such a black-hole sphaleron is

SBH =
4πG

h̄
M2 , TH =

h̄

8πGM . (32.64)

The black-hole sphaleron is similar to the vortex-ring sphaleron in Fig. 26.5 with
R → rh, mw/ ln(R/Rcore) → 2πT/c and Ẽ(R) = E(R) − w · p(R) → M(rh) −
TSBH(rh) (here p is the linear momentum of a vortex ring and w is the coun-
terflow velocity). The energy and entropy of the sphaleron determine the rate

of black hole creation by thermal activation: e−Ẽsph/T → eSBHe−M/T = e−SBH

(see Hawking et al. 1995). An analogy between the vortex-loop and black-hole
thermodynamics was discussed by Copeland and Lahiri (1995), Volovik (1995b)
and Kopnin and Volovik (1998a); in both cases the entropy is proportional to
the area.

Equations for the microscopic and phenomenological entropy, (32.63) and
(32.64) respectively, are consistent with each other if

1

105π
NFE

2
0 =

h̄

G
≡ E2

Planck . (32.65)

In eqn (32.65) the cut-off energy E0 and the number of chiral fermionic species
NF are combined to form the gravitational constant G. The same occurs in
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Sakharov’s (1967a) effective gravity, where all the fermionic species must add to
produce the inverse effective gravitational constant: G−1 ∼ NFE

2
0/h̄ (see also

eqn (10.52) for the Newton constant in the effective gravity of 3He-A, where the
role of the cut-off parameter E0 is played by ∆0).

Equation (32.65) reflects the deep phenomenon of the insensitivity of the
effective phenomenological theory to the details of the microscopic physics. In
a given microscopic theory, the black-hole entropy comes from the fermionic
microstates, and thus it must be proportional to the number of fermionic species
NF in the Standard Model. On the phenomenological level, eqns (32.64) are com-
pletely determined within the effective theory, and thus cannot explicitly contain
such microscopic parameters as E0 and NF . This apparent contradiction was re-
solved by Jacobson (1994) who noticed that the number of fermions NF and the
cut-off parameter E0 enter the microscopic entropy in the same combination as
in the effective gravitational constant G. As a result the black-hole entropy is
completely determined by the parameter G of the effective theory.

32.4.5 Gravitational bag

Let us show that in a given microscopic model the micro- and macro- entropies
coincide, i.e. that the relation (32.65) between the Planck scale parameter E0 and
the Newton gravitational constant does hold. We apply the condensed matter
conjecture that the equilibrium vacuum is not gravitating. If so, then the whole
gravitational mass M of the black hole is provided by the ‘matter’ above the
vacuum, i.e. by thermal fermionic microstates in the black-hole interior. Thus
M is determined by the thermal energy E of fermion zero modes and by their
pressure p:

M = E + 3pV , (32.66)

where V = (4π/3)r3h is the volume within the horizon. Since the equation of
state of thermal fermions forming the Fermi surface is

E =
1

2
ST = pV , (32.67)

one obtains
M = 4E . (32.68)

The black-hole matter can be in equilibrium with the external environment if its
temperature coincides with the temperature of the Hawking radiation: in this
case absorption and emission compensate each other. Substituting the Hawking
temperature T = h̄

8πGM into eqn (32.68) and using eqn (32.62) for the thermal
energy, one obtains the relation (32.65) between NF , E0 and G. This automat-
ically leads to the Bekenstein–Hawking entropy (32.64) of the black hole if it is
in equilibrium with the environment.

In this consideration the black hole represents some kind of self-consistent
gravitational bag in Fig. 32.11 left. In the exterior region, one has either the
Standard Model vacuum of the Fermi point universality class, or the fully gapped
Dirac vacuum if the temperature is below the electroweak transition. The interior
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of the bag consists of the new vacuum belonging to the universality class of Fermi
surface formed by fermion zero modes. The bag is self-sustaining in the sense
that the vacuum in the interior is adjusted to the gravitational field determined
by the Painlevé–Gullstrand metric, while thermal excitations inside the bag
serve as a source of this gravitational field. The bag boundary – the black-hole
horizon – represents the interface between two vacua of different universality
classes.

Of course, there are many weak points in this description of the gravitational
bag. First of all, the reconstruction of the vacuum within the black hole involves
the Planck energy in the whole volume of the black hole. That is why it is very
unlikely that such a bag can arise as a result of the gravitational collapse of
ordinary matter. However, the rearrangement of the vacuum can be triggered by
instabilities near the physical singularity, and then it will propagate to the whole
interior of the black hole if the latter survives after such a violent process. Second,
it is not clear whether the traditional description of the black hole is applicable
in the presence of the new vacuum. One may expect that it is applicable for the
gravitational field outside the horizon, while the principle of the non-gravitating
vacuum can provide the connection between the low-energy degrees of freedom
of the new vacuum inside the hole and the gravitational field outside. Also we
did not consider the change of the Painlevé–Gullstrand metric due to the spatial
distribution of thermal fermions inside the horizon. However, if the gravitational
bag is stable this will not change the universality class of the vacuum: it will
contain the Fermi surface, and thus the T 2 dependence of the thermal energy
of fermion zero modes will persist, and fermionic microstates will be responsible
for the black-hole entropy.

The main reason for the formation of the Fermi surface beyond the horizon
is the violated time reversal symmetry of the Painlevé–Gullstrand metric. In a
similar way the violated time reversal symmetry leads to the formation of the
Fermi surface in the flowing superfluids when the Landau velocity is exceeded
(see Sec. 26.1.3). In principle, the large density of states on the Fermi surface
may generate further symmetry breaking in the black-hole interior, as it occurs
in condensed matter. In this case the universality class of the vacuum can change
spontaneously.
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CONCLUSION

According to the modern view the elementary particles (electrons, neutrinos,
quarks, etc.) are excitations of some more fundamental medium called the quan-
tum vacuum. This is the new ether of the 21st century. The electromagnetic and
gravitational fields, as well as the fields transferring the weak and the strong
interactions, all represent different types of collective motion of the quantum
vacuum.

Among the existing condensed matter systems, the particular quantum liquid
– superfluid 3He-A – most closely resembles the quantum vacuum of the Standard
Model. This is the collection of 3He atoms condensed into the liquid state like
water. But as distinct from water, the behavior of this liquid is determined by
the quantum mechanical zero-point motion of atoms. Due to the large amplitude
of this motion, the liquid does not solidify even at zero temperature. At zero
temperature this liquid represents a coherent vacuum system similar to a Bose
condensate. This is the analog of our quantum vacuum. When the temperature
is non-zero this ‘vacuum’ is excited. Excitations of the quantum liquid consist of
fermionic quasiparticles and bosonic collective modes. Although quasiparticles
are not the real atoms of the liquid, they behave as real particles and serve
as the ‘elementary particles’ of this liquid. Interacting fermionic and bosonic
quantum fields constitute the quantum field theory in the quantum liquid. As
distinct from the fundamental quantum field theories with their fundamental
elementary particles, there are no ‘bare’ quasiparticles in quantum liquids. One
cannot say that the bare quasiparticle interacting with the quantum vacuum
becomes dressed: quasiparticles are excitations of the quantum vacuum of a
quantum liquid and thus do not exist without the vacuum.

The most important property of this particular quantum liquid – superfluid
3He-A – is that its quasiparticles are very similar to the chiral elementary par-
ticles of the Standard Model (electrons and neutrino), while its collective modes
are very similar to gravitational, electromagnetic and SU(2) gauge fields, and
the quanta of these collective modes are analogs of gravitons, photons and weak
bosons. In the low-energy corner the Lorentz invariance emerges and the quan-
tum field theory becomes a relativistic quantum field theory. The reason for this
similarity between the two systems is a common momentum space topology.

This momentum space topology (Chapter 8) is instrumental for classifying
of universality classes of fermionic vacua in terms of their fermionic and bosonic
zero modes. It provides the topological protection for the low-energy properties
of systems of a given class: the character of the fermionic spectrum, collective
modes and leading symmetries. What unites superfluid 3He-A and the Standard
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Model into one universality class of fermionic vacua is the existence of topo-
logically stable fermion zero modes in the vicinity of Fermi points – zeros of
co-dimension 3. As a result the quantum liquids belonging to this universality
class reproduce many fragments of the Standard Model and gravity. Chirality,
relativistic spin, Weyl fermions, gauge fields and gravity emerge in the vicinity
of a Fermi point together with the physical laws and corresponding symmetries
which include Lorentz symmetry and local SU(N) symmetry. Such emergent
behavior supports the ‘anti-grand-unification’ idea that the Standard Model and
even GUT are effective theories gradually emerging in the infrared limit together
with the corresponding symmetries.

This similarity based on common momentum space topology allows us to pro-
vide analogies between many phenomena in quantum liquids and in the quantum
vacuum of the Standard Model. These phenomena have the same physics but in
many cases are expressed in different languages and can be visualized in terms
of different observables. However, in the low-energy corner they are described by
the same equations if written in a covariant and gauge invariant form.

The main advantage of quantum liquids is that these systems are complete be-
ing described by, say, the BCS theory. This theory incorporates not only the ‘rel-
ativistic’ infrared regime, but also several successive scales of the short-distance
physics, which correspond to different ultraviolet ‘trans-Planckian’ ranges of high
energy. Since in the microscopic theory there is no need for a cut-off imposed
by hand, there is no need for the ultraviolet renormalization and all subtle is-
sues related to the ultraviolet cut-off in quantum field theory can be resolved on
physical grounds (as was demonstrated in the example of effects related to axial
anomaly on 3He-A, quantum liquids can also help to resolve some subtle issues
of infrared problems).

Comparison to quantum liquids can show the proper physical way from the
low-energy effective theory toward a more fundamental one. This can help us
to distinguish between different schemes which cannot be resolved within the
effective theory. For example, using only the arguments based on the common
momentum space topology one finds that some of the unification schemes of the
strong and electroweak interactions are more preferable than others: in partic-
ular, the Pati–Salam group G(224) = SU(4)C × SU(2)L × SU(2)R has many
advantages from the condensed matter point of view compared to the more tra-
ditional SO(10) unification (Sec. 12.2). This means that the condensed matter
analogy of emergent RQFT provides us with some kind of selection rule. By
comparing a given theory in particle physics to the picture of how the discussed
phenomenon could occur in condensed matter, one is able to judge whether this
theory is consistent with the condensed matter point of view or not.

Our ultimate goal is to reveal the still unknown structure of the ether (the
quantum vacuum) using our experience with quantum liquids. Unfortunately,
liquid 3He-A cannot serve as a perfect model for the quantum vacuum: though
it belongs to the right universality class of co-dimension 3 and thus reproduces
many fragments of the Standard Model vacuum, the full pattern is missing. The
main disadvantage of 3He-A is that the effective gravity there is far from being
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fully covariant: the effect of the non-covariant ‘trans-Planckian’ physics shows
up even in the low-energy corner, and as a result the gravitational field does not
obey the Einstein equations.

The realization of a quantum liquid with the completely covariant effective
theory at low energy requires some effort. We need such a ‘perfect’ quantum
liquid, where in the low-energy corner the symmetries become ‘exact’ to a very
high precision, as we observe today in our Universe. The natural question is: are
there any guiding principles to obtain the perfect quantum vacuum? The expe-
rience with 3He-A, especially with its hierarchy of ‘Planck’ energy scales there,
shows possible routes. In 3He-A, the Lorentz invariance experienced by fermionic
quasiparticles is violated at the lowest ‘Planck’ scale, ELorentz = EPlanck 1. The
largest Planck scale Ecutoff = EPlanck 3, which is separated from the lowest one by
six orders of magnitude, provides the natural cut-off for the divergent integrals
over the fermionic field in the effective action for the gauge and gravitational
fields. Since in 3He-A ELorentz ≪ Ecutoff , for most terms in the effective action
for bosonic fields the main contribution comes from the energy region where the
fermions are ‘non-relativistic’; that is why these terms are non-relativistic and
non-symmetric. This is very crucial for the effective gravity in 3He-A, which is
mostly non-Einsteinean.

The situation is somewhat better for the gauge fields because of the log-
arithmic divergence of the effective action, and one finds that in the leading
logarithmic approximation the action for the effective U(1) gauge field is gauge
invariant and obeys general covariance. However, logarithmic accuracy is not
enough to explain the really huge accuracy of the symmetries in the low-energy
corner of our vacuum.

In principle, it is clear how to properly ‘correct’ the 3He-A to make it perfect:
one must somehow interchange the Planck scales so that ELorentz ≫ Ecutoff . In
this case the main terms in the bosonic action will have all the symmetries of
our world. According to Bjorken, ‘the emergence can only work if there is an
extremely small expansion parameter in the game’. This small parameter can be
the ratio of Planck scales: Ecutoff/ELorentz. The precision of symmetries will be
determined by some power of Ecutoff/ELorentz. Since the theory is effective, the
non-covariant terms will always remain there. But these remaining terms become
vanishingly small in the low-energy limit, either due to the small parameter
Ecutoff/ELorentz, or since they contain the Planck energy cut-off in denominator.
An example of such a ‘non-renormalizable’ term in 3He-A, which is the remnant
of the ‘trans-Planckian’ physics, is presented in Sec. 19.3.2. It corresponds to the
mass term for the U(1)Y gauge field of the hyperphoton which violates gauge
invariance, but contains the Planck energy cut-off in the denominator.

The quantum liquids with Fermi points show one of possibly many routes
from the low-energy ‘relativistic’ to the high-energy ‘trans-Planckian’ physics. Of
course, one might expect many different routes to high energy, since the systems
of the same universality class are similar only in the vicinity of the fixed point:
they can and will diverge far from each other at higher energies. Nevertheless, the
first non-renormalizable corrections could also be universal, and in many cases
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only this first non-renormalizable or the non-relativistic correction completely
describes the physics of the system if it cannot be determined within the purely
relativistic domain. An example is provided by the entropy of the extremal black
hole discussed in Sec. 32.1.4.

In many condensed matter systems (even of different universality classes and
even in bosonic quantum liquids), the propagating bosonic or fermionic modes
obey an effective Lorentzian metric. That is why, if one ignores the dynamics
of the gravity and considers only its effect on the ‘matter’, one finds that the
analog of the gravitational field acting on the matter can be easily constructed.
The gravitational field (i) can be simulated by flowing liquids: normal fluids,
superfluids, and Bose–Einstein condensates; (ii) it can also be reproduced by
elastic strains, dislocations and disclinations in solids (see the review paper by
Dzyaloshinskii and Volovick (1980), the recent paper by Schmidt and Kohler
(2001) and references therein); (iii) in Fermi systems with Fermi points the same
effective gravitational field interacts with both fermions and bosons; (iv) an effec-
tive 2+1 metric field arises on surfaces, interfaces and membranes, for example,
on a curved surface of a superfluid liquid (Andreev and Kompaneetz, 1972), this
metric field plays the role of gravity for quasiparticles living within the surface;
(v) an effective 2+1 metric field for ripplons arises at the interface between two
sliding superfluids (Sec. 32.3), etc. Though the full dynamical realization of grav-
ity can take place only in fermionic condensed matter of Fermi point universality
class and with a proper hierarchy of Planck scales, gravity with non-Einsteinean
dynamics can serve to simulate many different phenomena related to the mar-
riage of gravity and quantum theory.

The analog of gravity in superfluids shows a possible way of how to solve
the cosmological constant problem without having to invoke supersymmetry or
any fine tuning (Sec. 29.4). The naive calculations of the energy density of the
superfluid ground state in the framework of the effective theory suggests that it
is on the order of the zero-point energy of the bosonic field in Bose superfluids
and on the order of the energy of the Dirac vacuum of fermionic quasiparticles
in Fermi superfluids. If one translates this into the language of RQFT, one ob-
tains the energy density on the order of E4

Planck, with the sign being determined
by the fermionic and bosonic content. The standard field theoretical estimate
gives the same huge value for the energy of the RQFT vacuum and thus for the
cosmological constant, which is in severe contradiction with real life.

However, an exact treatment of the trans-Planckian physics in quantum liq-
uids gives an exact vanishing of the appropriate vacuum energy density of the
liquid. This follows solely from a stability analysis of the ground state of the iso-
lated liquid combined with a thermodynamic Gibbs-Duhem identity. This anal-
ysis is beyond the effective theory: the low-energy inner observer who lives in
the quantum liquid is not able to obtain this result.

At the same time the vacuum of the liquid, which looks empty for an inner
observer, is not ‘empty’ at all: it is densely populated with the underlying atoms,
which, however, do not contribute to the cosmological constant. The underlying
liquid starts to contribute when it is excited. This is manifested, for example, in
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Casimir forces that arise from the distortion of the superfluid vacuum. Applying
this to RQFT one may conclude that the equilibrium quantum vacuum does
not gravitate. Such principle of the non-gravitating vacuum cannot be derived
or justified within the effective theory. On the other hand, in the underlying
microscopic physics this result of the complete nullification does not depend
on the microscopic details. It occurs for any relation between the Planck scales,
ELorentz and Ecutoff , and thus is applicable to the case when the gravity is obeying
the Einstein equations. The universality of this result suggests that it can be
applicable to the fermionic vacuum of the Standard Model too.

But what happens if a phase transition occurs in which the symmetry of the
vacuum is broken, as is supposed to happen in the early Universe when, say, the
electroweak symmetry was broken? In the effective theory, such a transition must
be accompanied by a change of the vacuum energy, which means that the vacuum
has a huge energy either above or below the transition. However, in the exact
microscopic theory of the liquid, the phase transition does not disturb the zero
value of the vacuum energy. After the liquid relaxes to a new equilibrium vacuum
state, its vacuum energy will be zero again. The energy change is completely
compensated by the change of the chemical potential of the underlying atoms
of the liquid; such quantities as ‘atoms of the vacuum’ and the related chemical
potential are not known by an inner observer who uses the effective theory.

The analogy with quantum liquids also shows that in the perturbed vacuum
the energy density must be on the order of the energy of the perturbations. In
particular, if the perturbations are caused by quasiparticles created at non-zero
temperature T , which form thermal matter, the vacuum energy density is of
the order of the energy density of matter. This is in agreement with modern
astrophysical observations. Thus the cosmological constant is not a constant at
all but is the dynamical quantity which is either continuously or in a stepwise
manner adjusted to perturbations.

Another phenomenon where the marriage of gravity and quantum theory
is important is the black hole. Having many systems for simulating of gravity,
we can expect in the near future that the analogs of an event horizon could
be constructed in the laboratory. In 3He-A the ‘maximum attainable velocity’
of quasiparticles, which plays the role of the speed of light, is rather small:
about 3 cm s−1. Quasiparticles cannot escape from the region of liquid which
moves faster than they can propagate. Such regions serve as black holes. Thus,
in principle, the analog of an event horizon can be reproduced, and the Hawking
radiation of quasiparticles from the horizon can be measured. The AB-brane
in superfluid 3He (the interface between the two sliding superfluids in Sec. 32.3)
and the Bose condensates in laser-manipulated traps will probably be the first
condensed matter systems where the event horizon will be realized.

The condensed matter analogs of horizons may exhibit Hawking radiation,
but in addition other, unexpected, effects related to the quantum vacuum could
arise, such as instabilities experienced by the vacuum in the presence of horizons
and ergoregions. The non-relativistic version of the ergoregion instability was
experimentally investigated using the AB-interface (Chapter 27). With the AB-
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brane one can also simulate the interaction of particles living on the brane with
those living in the bulk, i.e. in the higher-dimensional space outside the brane.
This interaction leads to the decay of the brane vacuum in the region beyond
the horizon. This mechanism can be crucial for astronomical black holes, if this
analogy is applicable and we live in the brane world. If the matter fields in the
brane are properly coupled to, say, gravitons in the bulk, this may lead to fast
collapse of the black hole.

Due to instabilities the vacuum is reconstructed. This leads either to de-
struction of the horizon, or to the horizon as an interface between vacua of
different universality classes (Sec. 32.4). Since the short-distance physics is ex-
plicitly known in condensed matter this helps to clarify all the problems related
to the vacuum in the presence of a horizon, or in the background of other exotic
effective metrics, such as surfaces of infinite red shift, surfaces or lines where the
metric is degenerate, etc.

In the presence of such exotic metrics the definition of the vacuum state
becomes subtle from the point of view of the effective theory. It depends on the
reference frame thus disturbing the equivalence between the frames obtained by
a coordinate transformation. It is impossible to resolve which reference frame is
more physical from within the effective theory. But looking at the theory from
the outside, from the Planck energy scale, where the symmetries of the effective
theory are violated, one can resolve between the frames. The inner low-energy
observer living in a quantum liquid has the same restrictions imposed on him
(or her) by the relativistic physics as we have in our vacuum. For an external
observer outside the liquid, these restrictions disappear together with Lorentz
invariance and general covariance, and he (or she) can judge what is the true
vacuum. The vacuum in a non-trivial background is the proper area where the
Planckian physics emerges, and we need the experience from the quantum liquids
where this Planckian physics is known in order to understand what the meaning
of different ‘equivalence’ schemes is. The frames which are equivalent from the
point of view of an inner observer are not equivalent in the Planckian physics.

At the moment only one of the exotic metrics has been experimentally simu-
lated in superfluid 3He. This is the metric induced by a spinning cosmic string,
which is reproduced in the background of a quantized vortex. The spinning string
represents the Aharonov–Bohm geometry in which the flux of the gravimagnetic
field is concentrated in the core of the string (vortex). In the presence of the
gravimagnetic flux, particles experience the analog of the Aharonov–Bohm ef-
fect, called the gravitational Aharonov–Bohm effect. The analog of this effect has
been experimentally confirmed in superfluids by measurement of the Iordanskii
force acting on quantized vortices (Sec. 31.3).

As for the other (non-gravitational) analogies, the most interesting ones are
also related to the interplay between the vacuum and matter. They can be fully
investigated in quantum liquids, because of the absence of the cut-off problem.
These are the anomalies which are at the origin of the exchange of the fermionic
charges between the vacuum and matter. Such anomalies are the attributes of
Fermi systems in the universality class of Fermi points: the Standard Model
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and 3He-A. The spectral flow of the fermionic levels, which carries the fermionic
charge from the vacuum to matter, occurs just through the Fermi point. That is
why the anomaly can be calculated in the vicinity of the Fermi point, where the
equation for the anomaly in quantum liquids become fully gauge invariant and
fully obeys general covariance with absolute precision. It is the same relativis-
tic equation found by Adler (1969) and Bell and Jackiw (1969) in RQFT (see
Chapter 18). 3He-A provided the first experimental confirmation of the Adler–
Bell–Jackiw equation to a precision of a few percent. The anomalous nucleation
of the baryonic or leptonic charge from the vacuum described by Adler–Bell–
Jackiw equation is at the basis of modern theories of baryogenesis in the early
Universe.

The modified equation is obtained for the nucleation of fermionic charge by
the moving string – the quantized vortex. The transfer of the fermionic charge
from the ‘vacuum’ to ‘matter’ is mediated by the spectral flow of fermion zero
modes of co-dimension 1 living on vortices – analogs of matter living in the brane
world. This condensed matter illustration of the cancellation of anomalies in 1+1
and 3+1 systems (the Callan–Harvey effect) has also been experimentally verified
in quantum liquids – now in 3He-B (Chapter 25). The relativistic counterpart of
this phenomenon is baryogenesis by cosmic strings, which thus has been experi-
mentally probed. In general, physics of fermion zero modes of the homogeneous
or inhomogeneous quantum vacuum governs practically all phenomena in the
low-temperature limit, and the most important of them are fermion zero modes
with co-dimension 1 and co-dimension 3 which are topologically protected.

The other effect related to the axial anomaly – the helical instability of the
superfluid/normal counterflow in 3He-A – is described by the same physics and
by the same equations as the formation of the (hyper)magnetic field due to the
helical instability experienced by the vacuum in the presence of the heat bath
of the right-handed electrons (Sec. 19.3). That is why its observation in 3He-
A provided experimental support to the Joyce–Shaposhnikov scenario on the
genesis of the primordial magnetic field in the early Universe. In the future the
macroscopic parity-violating effects suggested by Vilenkin (Sec. 20.1) must be
simulated in 3He-A. In both systems, 3He-A and the Standard Model, they are
described by the same mixed axial–gravitational Chern–Simons action.

We have found that practically all the physics of the Standard Model and
gravity emerge in the vicinity of the Fermi point, including even the quantum
field theory. We started with a system of many atoms which obeys the conven-
tional quantum mechanics and is described by the many-body Schrödinger wave
function. The creation and annihilation of atoms is strongly forbidden at low
energy scale, and thus there is no quantum field theory for the original atoms.
The quantum field theory emerges for excitations – fermionic and bosonic quasi-
particles – which can be nucleated from the vacuum. In the systems with Fermi
points, this emergent quantum field theory becomes relativistic.

The scheme of the emergent phenomena discussed in this book is not com-
plete: quantum mechanics is still fundamental. It is the only ingredient which
does not emerge in condensed matter. Quantum mechanics is already there from
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the very beginning governing the dynamics of the original bare atoms. Planck’s
constant h̄ is the only constant which is fundamental: it is the same for the high-
energy atomic physics and for the low-energy RQFT. However, in exploring the
quantum liquids with Fermi points, we are probably on the right track toward
understanding the properties of the quantum vacuum and the origin of quantum
mechanics.
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fundamental constants
for inner observer, 40
hierarchy of, 20
in BCS model, 73, 75, 119, 129, 130
in Bose gas, 25
in effective theory, 6, 11, 19, 20, 23, 37,

75, 91, 334, 370, 371
in Theory of Everything, 20, 73
of nature, 40, 132, 133

fundamental frequency, 410, 411

gauge field
from discrete symmetry, 116
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Gershtein–Zel’dovich mechanism, 326, 327
grand unification, 1, 3, 111, 115, 145, 147,

148, 184, 212, 214, 228, 241, 462
graphene, 102, 142, 156, 281
gravimagnetic field, 226, 261, 406, 408, 412,

416, 466
gravineutrality, 387
gravitational bag, 459
gravitational red shift, 438, 439

Hamiltonian
Bogoliubov–Nambu, 77, 78, 82, 84, 94,

137, 138, 143, 144, 153, 154, 283,
291, 295, 298, 398

Dirac, 79, 137, 143, 151
effective

for fermion zero modes, 297, 298
Weyl, 94, 108, 141

harmonic oscillators, 22
Hawking radiation, 441

as quantum friction, 398, 430
as quantum tunneling, 440, 441

hedgehog, 3, 165, 168, 172–176, 184, 185,
190, 205, 213–218, 220, 222, 229

deformation to Alice string, 174, 184
hard core, 174
in momentum space, 95, 97, 137, 140,

142, 292, 293
soft core, 174, 176

hierarchy of Planck scales, 7, 25, 73, 130,
134, 287, 442, 463, 464

homotopy group, 89
fundamental, 89

in momentum space, 65, 89
in real space, 89, 159, 185, 186, 198,

224
linear defects, 165
relative, 90, 135, 160, 170, 195–198, 200,

211, 214, 218–220, 223
second, 90

in momentum space, 137
in real space, 135, 160, 173, 174, 176,

184, 185, 213, 214
third, 90

in combined space, 301
in momentum space, 65, 98
in real space, 135, 160

zeroth, 197
horizon, 16, 47, 65, 87, 197, 213, 324, 355,

375, 401, 423, 424, 426–428, 431,
434–437, 440–446, 450, 453, 454,
456, 459, 460, 465

acoustic, 432
as interface, 466
at brane, 447, 450–453, 465

black-hole, 1, 6, 324, 340, 378, 403, 424,
427, 428, 430, 431, 433, 436–438,
440, 446, 450, 460

coordinate singularity at, 401, 426, 435,
450

cosmological, 384, 385
dumb-hole, 431
entropy of, 434, 458, 459
for quasiparticles, 5, 47, 49, 50, 324, 325,

424, 427–432, 434, 439, 441
inner, 433
outer, 433
vacuum beyond horizon, 454, 458, 460,

466
white-hole, 427, 431, 433, 436, 446

hydrodynamics
quantum, 56, 370, 395
two-fluid, 17, 32, 42, 59–61

impact parameter, 292, 295
index theorem, 276, 277, 279–281, 283, 289,

313, 315
Atiyah-Singer, 277

inflation, 30, 365, 388, 397
inflaton, 30, 397
instanton, 160

collective coordinates description, 333,
336

in RQFT, 333
in superfluids, 333, 335
quantum field description, 333

interface
AB-interface, 220–224, 226, 228, 229, 348,

372, 375–377, 379, 447–449, 452,
454, 465, 466

between sliding liquids, 339
between sliding superfluids, 340, 342, 345–

348, 446, 464, 465
between two vacua, 221, 223, 224, 231,

275–277, 280–282, 284, 286, 339,
341, 372–374, 376, 397, 447, 460,
466

solid–liquid, 350
superfluid–normal, 349, 358, 359, 362
superfluid–superfluid, 362, 447
symmetry classification, 222
topological defects at, 221–224, 228, 229
vacuum manifold of, 222–224

invariance
Galilean

broken, 35, 161
modified, 33, 34

gauge, 2, 3, 5, 8
violated, 2

Lorentz, 2, 5, 11, 39, 67, 80, 99, 106, 109,
116, 130, 144, 156
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violation, 2, 6, 117, 153, 154, 156, 261,
287, 391, 449, 450, 452, 453, 455,
461, 463, 466

translational, 35
for particles, 35
for quasiparticles, 35

Killing vector
definition, 48
time-like, 48

Landau criterion, 60, 62, 128, 322–326, 328,
329, 331, 344, 350, 351, 364, 417,
418, 420, 421, 440, 450, 454, 460

for single superfluid, 321, 344
general, 321, 345

Laval nozzle, 431, 444
law

conservation law, 32
covariant, 12, 15, 41, 42, 45, 51
energy, 51, 52
mass, 230, 231
momentum, 51, 52
particle number, 18, 21, 37, 44, 390
quasiparticle number, 23, 123
spin, 230, 231

Newton, 236, 238, 275, 435
physical laws, 1, 2, 389, 462

emergence of, 5
symmetry of, 160, 198

Tolman, 48, 49, 433
Leggett angle, 169
length

coherence length (definition), 119
dipole, 145, 169, 176, 195, 203, 214, 385
London penetration length, 187
Planck, 7, 370, 381, 431, 440, 456
screening length

of hypermagnetic field, 187
of magnetic field, 187

Lense–Thirring angular velocity, 410, 418
line of infinite redshift, 410
Lorentz–Fitzgerald contraction, 40

marginal vacuum
Dirac vacuum in 2+1, 142
planar state, 84, 85, 99, 149, 175
polar state, 85
Standard Model, 85, 149

Maslov index, 298
mass

associated, 309–311
bare mass, 17, 33, 36, 129–131, 261, 305,

310, 370, 410
black hole, 433, 435, 453, 454, 458

Dirac mass, 84, 111, 143–146, 149, 175,
258

effective, 91, 119, 129, 142, 306
formation of, 85, 116, 117, 149, 152, 169
hydrodynamic, 306, 309
inertial, 305, 310, 311
Kopnin mass, 307–311
mass density, 53, 248, 334, 387, 404, 413
mass protection, 85, 149, 151, 152
mass tensor, 305
mass–energy relation, 305, 306, 311
of gauge boson, 116, 187
of hyperphoton, 145, 256–259, 463
quark mass, 163, 164
roton mass, 418
vortex mass, 306, 307, 309–311

relativistic, 306, 307
Mermin–Ho relation, 107, 121, 185, 199,

200, 205, 216, 217, 254, 304
generalized, 304

meron, 204, 205, 208, 211
metric

acoustic, 4, 15, 19, 38, 39, 42, 305, 306,
381, 418

determinant, 25, 73, 112, 381, 397, 450,
452

effective, 5, 12, 15, 16, 19, 32, 33, 36, 38,
39, 42, 46, 73, 75, 106, 107, 112,
124, 159, 261, 305, 381, 389, 397,
404, 409, 410, 412, 418, 424, 427,
428, 430, 434, 436, 441, 447, 466

for ripplons, 447, 449, 450, 453, 464
Painleve–Gullstrand, 434, 436, 437, 442–

444, 446, 453–455, 460
Reissner–Nordstrom, 433
Robertson–Walker, 385, 386, 388
Schwarzschild, 426, 428, 434–436, 442,

443, 446
metric singularity

coordinate singularity, 400, 401, 426, 435,
450, 456

physical singularity, 426, 429, 432, 435,
447, 450, 452, 456, 460

minigap, 288, 295, 296, 299, 300, 315, 317
mixed state, 128
monopole

’t Hooft–Polyakov, 172, 173, 184, 214
deformation to Alice string, 174, 184
Dirac monopole, 187, 214, 215, 217, 226

in momentum space, 140, 141
electroweak, 187, 217
gravimagnetic, 226
hypermagnetic, 217
in superconductor, 217, 218
magnetic, 109, 141, 173, 174, 205, 214,

215, 217, 228, 328
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monopole erasure, 228, 229
monopole terminating string, 185, 187,

212, 215, 217
monopoles in GUT, 214, 217, 218, 228
overabundance of monopoles, 212, 228

neutrino oscillations, 156
Newton constant, 11–13, 404, 411, 433, 453,

458
in Dirac cosmology, 133
in induced gravity, 15, 110, 133, 459

dependence on number of fermion zero
modes, 15, 111, 133, 458, 459

in A-phase, 111, 132, 133, 459
temperature dependence, 133
time dependence, 133

in units of energy, 12, 110
nexus, 215, 217, 218, 226
nodal line

in polar phase, 85
instability, 70, 85, 86, 104
protected by symmetry, 85
zero of co-dimension 2, 104, 138

normal component, 42
at T=0, 126
density (definition), 45
tensor, 45

observer
external, 429, 430, 446

definition, 39, 428
freely falling, 429, 436, 455
inner, 325, 424, 428, 436, 446, 464, 466

definition, 39
order parameter

2-component Bose condensate, 201, 202
A-phase vacuum, 68
Alice string, 189, 299
B-phase vacuum, 78, 162
chiral quark condensate, 163
d-wave superconductor, 194
p-wave spinless superfluid, 67
p-wave superconductor, 191
p-wave superfluid, 161
planar phase, 68
polar phase, 68
scalar, 21, 67, 177
spinor, 183, 201, 202
Standard Model, 183, 201, 202
vector, 67, 202

pair breaking, 326
pair creation, 18

by Hawking radiation, 441
by rotating cylinder, 416, 420, 422, 423
in alternating electric field, 326, 327

in B-phase, 326, 327
in strong electric field, 325, 326
of black holes, 458
Schwinger, 326

partial pressure, 29
of curvature, 386
of matter, 383
of quintessence, 384
of texture, 384, 385
of vacuum, 13, 383–385

Pati–Salam model, 1, 147, 462
phase ordering, 351, 362
phase transition

A–B, 30
electroweak, 459
in early Universe, 2–4
Lifshitz, 324, 458
quantum, 36, 90, 137, 138, 140–142, 269,

322, 324, 354, 365, 446, 456, 457
superfluid, 3, 53

Poisson brackets
for ferromagnets, 54
for hydrodynamics of normal liquid, 54
scheme, 53

principle
equivalence principle, 11, 15, 16, 156, 389
of homogeneity of Universe, 388
of non-gravitating vacuum, 30, 56, 460,

465
of vacuum stability, 30, 31

pseudomomentum, 35
pseudorotations, 22

quantization
of gravity, 6, 56

quantum phase transition, 36, 90, 102, 104,
137, 138, 140–142, 269, 322, 324,
354, 365, 446, 456, 457

quantum statistics, 49, 61, 67, 74, 380, 422
fractional, 300
non-Abelian, 300
spin–statistics connection, 67, 108

quasiparticle
antibaryon, 191, 240
antilepton, 240
antiquark, 163, 240
as flat membrane, 102
baryon, 14, 52, 80, 135, 146, 148, 164,

191, 239–241, 250, 253, 259, 382,
467

Bogoliubov fermion, 418
C-boson, 149
chiral, 282
Dirac fermion, 86, 327
electron, 4, 20, 36, 58, 65, 66, 76, 77

left, 80, 81
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right, 80, 81
electronic neutrino, 156
eta meson, 164
exotic fermion, 154
gauge boson, 116, 187, 461
Goldstone boson, 113, 116
graviton, 7, 8, 38, 42, 56, 80, 382, 453,

461, 466
holon, 93, 94, 149, 150, 189
hyperphoton, 145, 256–259, 463
in domain wall, 276, 281, 282
lepton, 90, 94, 145, 146, 148, 188, 239–

241, 250, 252, 253, 259, 260, 467
Majorana fermion, 71, 77, 299, 300
muon, 139
muonic neutrino, 156
neutrino, 146, 156, 184, 239, 461
neutron, 65, 163, 252, 351, 356–358, 362,

424
phonon, 4, 7, 15, 19, 23, 24, 27, 31, 32,

37–39, 42, 46, 56, 57, 60, 61,
370, 371, 380, 381, 395, 410–416,
418, 419, 421, 422

photon, 110, 113, 240, 407, 411, 452, 461
pion, 163, 164
proton, 148, 163, 252, 356
pseudo-Goldstone bosons, 163, 164
quark, 80, 90, 94, 125, 146, 148, 163, 164,

188, 239, 240, 253, 389, 461
down, 148, 163, 164, 241
strange, 164
top, 152
up, 148, 163, 164, 241

ripplon, 341–343, 447, 449–453, 464
critical, 343, 345, 347

roton, 32, 38, 60, 61, 325, 413, 414, 416,
418, 419, 421, 422

slave boson, 149
spinon, 93, 94, 149, 150, 189
tau lepton, 139
w-fermion, 149
Weyl fermion, 8, 86, 87, 108, 109, 133,

140, 312, 462

radiation
Hawking, 398, 424, 428–431, 440, 454,

459, 465
neutron, 351, 356, 357
phonon, 421
quasiparticle, 327, 335, 379, 420, 423,

430
roton, 422
to ergoregion, 420

reference frame
absolute, 426, 436, 441, 442, 453–455
competing, 335, 427

container, 249, 261, 326, 329, 330, 345,
346

environment, 33, 48, 49, 106, 121, 126,
127, 321, 322, 324, 329, 336, 341,
343–346, 350, 356, 417, 425, 427,
429, 430, 433, 434, 436, 441, 447,
451, 454

frame-fixing parameter, 342, 344, 346,
349, 448, 451, 454

freely falling, 436, 437, 442, 455
heat bath, 246, 261, 313, 330, 331, 377
inertial, 228, 356, 408, 420
laboratory, 48, 438

quasiparticle spectrum in, 33, 34, 321
lost, 324, 343, 420, 448
preferred, 57, 128, 161, 261, 321, 324,

336, 341, 430, 442, 455
rotating, 261, 263, 362, 406, 407, 417,

418, 420
superfluid-comoving, 34, 45, 306, 324, 344,

345, 410, 427, 436, 441, 442, 455
definition, 33
quasiparticle spectrum in, 33
vacuum in, 428, 429, 437

texture-comoving, 48, 246, 307, 310, 315,
324, 377, 410, 412, 425, 427, 428

vacuum in, 422, 428, 429, 440
Ricci scalar curvature, 11
running coupling

in A-phase, 58, 111, 112, 131, 256
in QED, 111
in Standard Model, 147, 205

self-sustained, 8, 27, 29, 30, 381, 382
shock wave, 432
skyrmion, 135, 201, 203, 204, 214, 245, 246,

267, 269
fermionic charge of, 266, 272
in liquid crystal, 160
in momentum space, 135, 137
point-like, 160, 202, 204, 252, 266, 267
proton as, 252
quantum statistics of, 267–269
spin of, 268
vortex-skyrmion, 159, 199–202, 204, 206,

207, 213, 214, 219, 221, 228, 229,
245–248, 304, 308, 309, 312, 314,
317, 331, 332

soliton, 3, 90, 135, 139, 160, 163, 169–171,
176, 195, 196, 204, 208, 210, 211,
306, 384, 385

kink on, 207, 208, 211
non-topological, 180
terminated by string, 163, 169, 189, 194,

195, 197, 207, 212
topological stability, 170, 196–199
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twist soliton, 384
spacetime

absolute, 39, 426, 441, 442, 444, 454
continuum, 4
empty, 34
foam, 1
Galilean, 4, 39
geodesically complete, 444
geodesically incomplete, 444
Minkowski, 14, 406

effective, 12
physical, 400, 426, 429

spectral asymmetry, 282
index, 278, 279, 281

spectral flow, 80, 92, 93, 238, 240, 244–246,
248, 250, 263, 285, 312–317, 338,
415, 467

speed of light
anisotropy, 12, 40, 305
as fundamental constant, 11, 19, 25, 40
as material parameter, 11, 20, 24
coordinate, 40
for external observer, 40, 305
for inner observer, 40, 305
invariance, 40

sphaleron
black hole, 458
definition, 330
in RQFT, 241, 248
in toroidal channel, 331
vortex ring, 330, 331, 335, 458

spin
emergence of, 5, 67, 108
interchange of spin and isospin, 109
relativistic, 67
spin–orbit coupling, 19, 144, 145, 153,

154, 161–164, 169, 174, 176, 189,
195, 196, 198, 204, 205, 212, 214,
220, 224, 258, 299, 384

spin–statistics connection, 67, 108, 266,
267, 269, 276, 300

spinless fermions, 67, 68
string

Alice string, 82, 94, 174, 184, 185, 189–
191, 195, 197, 198, 229, 231, 299,
409

Dirac string, 184, 185, 214, 216, 217
in momentum space, 141

electroweak string, 186, 187, 217
fundamental string, 8, 15, 334
Nielsen–Olesen string, 186, 187, 275
pion string, 163, 167, 169
semilocal string, 205
spinning string, 16, 411–413, 415, 466
string crossing wall, 224–226, 228
stringy texture, 312

superconducting, 180, 181
terminated by monopole, 185, 187, 212,

215, 217
wall bounded by, 163, 169, 170, 189, 194,

195, 197, 207, 212
with supercurrent, 181
Witten, 179–181

superflow
irrotational, 60
supercritical, 321, 322, 440

superfluid
velocity

as electromagnetic field, 106
as metric field, 38, 42
as torsion field, 108
Galilean transformation, 33, 107
in A-phase, 107
in helium-4, 32, 36
irrotational, 36

superfluid density
definition, 46
tensor, 46

superfluidity/superconductivity
anisotropic, 61
chiral, 72, 163, 164, 189, 191–194, 205,

211, 216–218, 265, 291, 300
color, 80, 164, 189
in quantum crystal, 59
in quark matter, 80
of baryon charge, 164, 189
of electric charge, 180, 187, 189
of mass, 165, 189
of spin, 189
spin-triplet, 76–78, 101

superradiance, 416, 421, 427
supersolid, 59
surface of infinite redshift, 6, 277, 397, 399–

401, 424, 431, 433, 440, 445, 466
symmetry

approximate, 144, 163, 164, 212
breaking, 3
combined, 81, 82, 85, 108, 154, 177, 445

parity as combined symmetry, 81, 82,
85, 115, 153, 183

electroweak, 2, 163
general covariance, 3, 8, 11, 57, 116

definition, 11
emerging, 52
for matter fields, 12, 39, 109, 110
protected, 134
violation, 114

GUT, 2, 3, 147, 148
hidden, 116, 117, 162
isotopic spin symmetry, 163
Lorentz

as combined symmetry, 108
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effective, 11, 106, 108
reentrant violation, 134, 145, 153, 154,

156
violation, 80, 106, 153, 287, 391, 449,

450, 453, 455
of black hole, 445
of defects, 171

AB-interface, 222
broken, 171, 174, 178–180, 298
Goldstone boson from symmetry break-

ing, 171
hedgehog, 173
monopole, 173
vortex, 171, 176, 177, 179, 180

of disordered state, 160
of normal liquid, 1, 2, 161
of nuclear forces, 163
of physical laws, 78, 160
of Standard Model, 1, 145–148
residual, 160

A-phase, 81
A1-phase, 84
B-phase, 161
definition, 78, 160
planar phase, 85
polar phase, 85

role of discrete symmetry, 5, 82, 85, 115,
116, 143–145, 149, 151, 153–156,
177, 301

scale invariance, 57
supersymmetry, 13, 14, 30, 116, 117, 281,

296, 464
time reversal, 135, 136, 138, 177, 192–

194, 196, 270, 282, 291, 434, 445,
446, 454, 460

temperature
covariant relativistic, 48, 49
Debye, 26, 370, 381, 384
effective, 46–49, 124, 433
Hawking, 402, 424, 430, 431, 436, 440,

441, 458, 459
local, 45
measured by external observer, 49
measured by inner observer, 48, 379
Tolman, 48, 379
Unruh, 379, 422

tetrad gravity, 99, 101, 108, 109, 115, 117,
286, 398, 426, 455

theory
Bardeen–Cooper–Schrieffer (BCS), 7, 20,

66, 67, 314, 462
Bogoliubov, 20, 21
effective, 2, 4–8, 23, 56, 295, 462

insensitivity to microphysics, 4–7, 37,
314, 387, 459

paradoxes of, 52, 53, 235, 260, 262
Einstein, 16, 32
elasticity, 17
Kaluza–Klein, 6, 275
Landau of Fermi liquid, 17, 19, 61, 315
Leggett, 17
London, 17
non-renormalizable, 56
Sakharov baryonic asymmetry, 240
Sakharov induced gravity, 15, 57, 110,

132, 459
Theory of Everything, 53

in Bose gas, 21
in Fermi gas, 391
in quantum liquids, 17, 18, 20, 36, 53,

161, 270, 369, 381
thermal equilibrium, 49, 240, 260, 346

global, 48, 49, 316, 379, 433, 434
conditions, 48, 315, 330
definition, 48
in relativistic system, 48
violation in ergoregion, 49

local, 45–47, 378
unstable, 330

time dilation, 40
transformation

Bogoliubov, 22, 68, 69
Galilean

for particles, 33, 34
for quasiparticles, 33–35

Lorentz, 22

universality
classes, 5, 7

of fermionic vacua, 5, 65, 81, 86, 87,
103, 372, 460, 461, 464, 466

of gravity, 11
Universe

accelerated expansion, 14
closed, 386, 387
flat, 1, 386, 387
open, 386
static, 386

vacuum
axial, 72, 82, 84, 102, 107
Boulware, 455
chiral, 6
decay, 429, 431, 438, 440, 466
degenerate, 72, 78, 120, 159, 160, 162,

182
Dirac, 71, 73, 79, 80, 140, 142, 381, 389,

459, 464
marginal, 142

energy, 1, 8, 12–14, 18, 23–26, 28–31, 36,
37, 49, 56, 67, 69–76, 111, 116,
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120, 195, 369, 371–376, 380–394,
464, 465

equilibrium, 8, 29, 56, 57, 70, 76, 122,
372, 459, 465

foreign object, 305, 396, 430
in condensed matter, 3
inert, 130–132
initial, 236, 331, 422, 428, 429, 436, 437,

440
manifold, 159, 160

A-phase, 184
B-phase, 162
definition, 160

of quantum liquid, 396, 428, 430, 446,
464

as empty space, 3
of Standard Model, 5, 6, 19, 30, 65, 145,

149, 251, 455, 461, 462, 465
polarization, 111, 115
reconstruction, 67, 428, 437, 440, 454,

460
self-sustained, 8, 27, 29, 30
superfluid, 4, 305

vacuum instability
beyond horizon, 431, 440, 447, 452–454,

460, 466
helical, 6, 202, 251, 255, 257–259
hydrodynamic instability, 331
in ergoregion, 343–348, 431, 450–454, 465
Kelvin–Helmholtz, 228, 339–342, 449

vierbein, 99, 101, 109, 115, 117
degenerate, 397, 398, 410, 444
linear defect, 397, 404, 408, 410
point defect, 397
wall, 397, 398, 400, 401, 403, 404, 424,

426–431, 444
vortex

Abrikosov vortex, 187, 192, 217, 218, 275,
374

Alice string, 194
Anderson–Toulouse–Chechetkin vortex,

199, 201
continuous vortex, 36, 199–202, 205–208,

213, 214, 216, 219, 221, 226, 228,
246, 304, 308, 312, 314, 317, 331,
332

dipole-locked, 203, 206
dipole-unlocked, 206
double-skyrmion vortex, 206, 213
doubly quantized, 171, 202, 204, 217, 228,

245
fractional, 185, 189, 191, 194, 211, 217
half-quantum vortex, 82, 94, 174, 184,

185, 189–191, 194, 195, 198, 207,
212, 220, 229, 299, 409

mass vortex, 165, 167, 168, 170, 171, 178,
185, 186, 189, 225, 230, 357

Mermin–Ho vortex, 204, 208, 226, 228
multiply quantized, 348
point vortex, 221, 291

in momentum space, 93
ring, 60, 329–331, 336

black hole analogy, 458
collective coordinates, 333, 336, 338
critical, 330
energy, 328, 329
energy spectrum, 328
Landau criterion, 329
macroscopic quantum tunneling, 330,

331, 333, 336, 338
momentum, 328, 336
nucleation, 330, 338
sphaleron, 330, 331, 458
thermal activation, 330, 331

spin vortex, 166–170, 189, 195, 197, 199,
207, 224, 230, 357

spin–mass vortex, 80, 166, 168, 170, 171,
189, 197, 207, 212, 226, 357

vortex cluster, 165, 167, 171, 179, 352,
354, 355, 423, 445

vortex front, 339
vortex loop, 199, 306, 330, 337, 356

bosonic zero mode, 336
destroying soliton, 199
in momentum space, 89, 93

vortex pair, 165, 170, 351
vortex tangle, 243, 352, 362
vortex-skyrmion, 159, 199–202, 204, 206,

207, 213, 214, 219, 221, 228, 229,
245–248, 304, 308, 309, 312, 314,
317, 331, 332

vortex sheet
at AB-interface, 228, 340, 349
in 3+1 spacetime, 89
in A-phase, 194, 207, 208, 210
in momentum space, 104
in superconductors, 194, 211
unstable, 209, 210, 339, 340, 363

vorton, 180, 181

W-parity, 292, 296, 297, 299, 300
definition, 292

zero-point
energy, 12, 13, 24–27, 29–31, 71, 73, 371,

380, 464
fluctuations, 30, 392
motion, 24, 27, 29, 58, 461
oscillations, 20, 27, 57


