
Although topology was recognized by Gauss and Maxwell to play a pivotal role
in the formulation of electromagnetic boundary value problems, it is a largely
unexploited tool for field computation. The development of algebraic topology
since Maxwell provides a framework for linking data structures, algorithms,
and computation to topological aspects of three-dimensional electromagnetic
boundary value problems. This book attempts to expose the link between
Maxwell and a modern approach to algorithms.

The first chapters lay out the relevant facts about homology and coho-
mology, stressing their interpretations in electromagnetism. These topological
structures are subsequently tied to variational formulations in electromagnet-
ics, the finite element method, algorithms, and certain aspects of numerical
linear algebra. A recurring theme is the formulation of and algorithms for the
problem of making branch cuts for computing magnetic scalar potentials and
eddy currents. An appendix bridges the gap between the material presented
and standard expositions of differential forms, Hodge decompositions, and
tools for realizing representatives of homology classes as embedded manifolds.
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We are here led to considerations belonging to the Geometry of Position, a
subject which, though its importance was pointed out by Leibnitz and
illustrated by Gauss, has been little studied.

James Clerk Maxwell, A Treatise on Electricity and Magnetism, 1891

Introduction

The title of this book makes clear that we are after connections between elec-
tromagnetics, computation and topology. However, connections between these
three fields can mean different things to different people. For a modern engineer,
computational electromagnetics is a well-defined term and topology seems to be
a novel aspect. To this modern engineer, discretization methods for Maxwell’s
equations, finite element methods, numerical linear algebra and data structures
are all part of the modern toolkit for effective design and topology seems to have
taken a back seat. On the other hand, to an engineer from a half-century ago,
the connection between electromagnetic theory and topology would be consid-
ered “obvious” by considering Kirchhoff’s laws and circuit theory in the light
of Maxwell’s electromagnetic theory. To this older electrical engineer, topology
would be considered part of the engineer’s art with little connection to computa-
tion beyond what Maxwell and Kirchhoff would have regarded as computation.
A mathematician could snicker at the two engineers and proclaim that all is triv-
ial once one gets to the bottom of algebraic topology. Indeed the present book
can be regarded as a logical consequence for computational electromagnetism
of Eilenberg and Steenrod’s Foundations of Algebraic Topology [ES52], Whit-
ney’s Geometric Integration Theory [Whi57] and some differential topology. Of
course, this would not daunt the older engineer who accomplished his task before
mathematicians and philosophers came in to lay the foundations.

The three points of view described above expose connections between pairs
of each of the three fields, so it is natural to ask why it is important to put all
three together in one book. The answer is stated quite simply in the context of
the three characters mentioned above. In a modern “design automation” envi-
ronment, it is necessary to take the art of the old engineer, reduce it to a science
as much as possible, and then turn that into a numerical computation. For the
purposes of computation, we need to feed a geometric model of a device such
as a motor or circuit board, along with material properties, to a program which
exploits algebraic topology in order to extract a simple circuit model from a
horrifically complicated description in terms of partial differential equations and
boundary value problems. Cohomology and Hodge theory on manifolds with
boundary are the bridge between Maxwell’s equations and the lumped param-
eters of circuit theory, but engineers need software that can reliably make this

1



2 INTRODUCTION

connection in an accurate manner. This book exploits developments in alge-
braic topology since the time of Maxwell to provide a framework for linking data
structures, algorithms, and computation to topological aspects of 3-dimensional
electromagnetic boundary value problems. More simply, we develop the link be-
tween Maxwell and a modern topological approach to algorithms for the analysis
of electromagnetic devices.

To see why this is a natural evolution, we should review some facts from
recent history. First, there is Moore’s law, which is not a physical law but the
observation that computer processing power has been doubling every eighteen
months. In practical terms this means that in the year 2003 the video game
played by five-year-old playing had the same floating-point capability as the
largest supercomputer 15 years earlier. Although the current use of the term
“computer” did not exist in the English language before 1950, Moore’s law can
be extrapolated back in time to vacuum tube computers, relay computers, and
mechanical computing machines of the 1920’s. Moving forward in time, the
economics of building computers will bring this exponential increase to a halt
before physics predicts the demise of Moore’s law, but we are confident this trend
will continue for at least another decade. Hence we should consider scientific
computing and computational electromagnetics in this light.

The second set of facts we need to review concern the evolution of the tools
used to solve elliptic boundary value problems. This story starts with Dirichlet’s
principle, asserting the existence of a minimizer for a quadratic functional whose
Euler–Lagrange equation is Laplace’s equation. Riemann used it effectively in
his theory of analytic functions, but Weierstrass later put it into disrepute with
his counterexamples. Hilbert rescued it with the concept of a minimizing se-
quence, and in the process modern functional analysis took a great step for-
ward. From the point of view of finite element analysis, the story really starts
with Courant, who in the 1920’s suggested triangulating the underlying domain,
using piecewise-polynomial trial functions for Ritz’s method and producing a
minimizing sequence by subdividing the triangulation. Courant had a construc-
tive proof in mind, but three decades later his idea was the basis of the finite
element method. Issues of adaptive mesh refinement can be interpreted as an
attempt to produce a best approximation for a fixed number of degrees of free-
dom, as the number of degrees of freedom increase. In the electrical engineering
of the 1960’s, the finite element method started making an impact in the area
of two-dimensional static problems that could be formulated in terms of a scalar
potential or stream function. With the development of computer graphics in the
1970’s, electrical engineers were beginning to turn their attention to the represen-
tation of vector fields, three-dimensional problems, and the adaptive generation
of finite element meshes. At the same time, it is somewhat unfortunate that
the essence of electromagnetic theory seen in Faraday and Maxwell’s admirable
qualitative spatial reasoning was lost under the vast amounts of numerical data
generated by computer. In the 1980’s came the realization that differential form
methods could be translated to the discrete setting and that the hard work had
already been done by André Weil and Hassler Whitney in the 1950’s, but this
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point of view was a little slow to catch on. Technology transfer from mathemat-
ics to engineering eventually happened, since all of this mathematics from the
1950’s was set in terms of simplicial complexes which fit hand in glove with the
data structures of finite element analysis.

Before outlining the book in detail, there is one more observation to make
about the process of automating the topological aspects that were once consid-
ered to be the engineer’s art. Not only has the exponential increase in computing
power given us the means to tackle larger and higher dimensional problems, but
it has fundamentally changed the way we interact with computers. It took less
than twenty years from “submitting a job” with a stack of punched cards at the
university computing center to simulating an electromagnetic field in a personal
virtual reality environment. With the continuing evolution of three-dimensional,
real-time video games, we are assured of improved environments for having com-
puters deal with the topological aspects of electromagnetic design. The task
at hand is to identify the interactions between electromagnetics and algebraic
topology that can have the greatest impact on formalizing the design engineer’s
intuition so that computers can be integrated more effectively into the design
process.

Outline of Book. Chapter 1 develops homology and cohomology in the context
of vector calculus, while suppressing the formalism of exterior algebra and dif-
ferential forms. This enables practicing engineers to appreciate the relevance
of the material with minimal effort. Although Gauss, Helmholtz, Kirchhoff
and Maxwell recognized that topology plays a pivotal role in the formulation
of electromagnetic boundary value problems, it is still a largely unexploited tool
in problem formulation and computational methods for electromagnetic fields.
Most historians agree that Poincaré and Betti wrote the seminal papers on what
is now known as algebraic topology. However, it is also clear that they stood
on the shoulders of Riemann and Listing. A glimpse into the first chapter of
[Max91] shows that these same giants were under the feet of Maxwell. Corre-
spondence between Maxwell and Tait reveals that Maxwell consciously avoided
both Grassmann’s exterior algebra and Hamilton’s quaternions as a formalism for
electromagnetism in order to avoid ideological debates. Credit is usually given to
Oliver Heaviside for fitting Maxwell’s equations into a notation accessible to en-
gineers. Hence it is fair to say that the wonderful insights into three-dimensional
topology found in Maxwell’s treatise have never been exploited effectively by en-
gineers. Thus our first chapter is a tunnel from some of the heuristic topological
instincts of engineers to the commutative algebraic structures that can be ex-
tracted from the data structures found in electromagnetic field analysis software.
A mathematician would make this all rigorous by appealing to the formalism of
differentiable manifolds and differential forms. We leave the reader the luxury
of seeing how this happens in a Mathematical Appendix.

Chapter 2 underlines the notion of a quasistatic electromagnetic field in the
context Maxwell’s equations. Quasistatics is an engineer’s ticket to elliptic
boundary value problems, variational principles leading to numerical algorithms,
and the finite element method. We make certain physical assumptions in order
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to formulate the quasistatic problem, and the reader gets to see how circuit the-
ory in the sense of Kirchhoff arises in the context of quasistatic boundary value
problems. Besides promoting the boundary value problem point of view, the
variational principles discussed in chapter 2 tie duality theorems for manifolds
with boundary to the lumped parameters of circuit theory.

Having had a intuitive glimpse into the uses of duality theorems for manifolds
with boundary in the first two chapters, Chapter 3 goes on to formalize some of
the underlying ideas. After presenting the traditional Poincaré and Lefschetz du-
ality theorems in the context of electromagnetics and circuit theory, we move to
Alexander duality and present it in the context of linking numbers and magnetic
scalar potentials. This approach is closest to Gauss’ understanding of the mat-
ter and is completely natural in the context of magnetoquasistatics. Finally, for
subsets of three-dimensional Euclidean space that have a continuous retraction
into their interiors, we show that the absolute and relative (modulo boundary)
homology and cohomology groups, as commutative groups, are torsion-free. This
is significant for two reasons. First, it tells us why coming up with simple ex-
amples of torsion phenomena in three dimensions is a bit tricky, and second, it
paves the way to using integer arithmetic in algorithms which would otherwise
be susceptible to rounding error if implemented with floating point operations.
With this result we are ready to return to the primary concerns of the engineer.

In Chapter 4 we finally arrive at the finite element method. It is introduced
in the context of Laplace’s equation and a simplicial mesh. The simplicial tech-
niques used in topology are shown to translate into effective numerical algorithms
that are naturally phrased in terms of the data structures encountered in finite
element analysis. Although this opens the door to many relatively recent devel-
opments in computational electromagnetics, we focus on how the structures of
homology and cohomology arise in the context of finite element algorithms for
computing 3-dimensional electric and magnetic fields. In this way, the effective-
ness of algebraic topology can be appreciated in a well-studied computational
setting. Along the way we also get to see how the Euler characteristic is an
effective tool in the analysis of algorithms.

One of the main strengths of the book comes to center stage in Chapter 5.
This chapter addresses the problem of coupling magnetic scalar potentials in
multiply-connected regions to stream functions which describe currents confined
to conducting surfaces. This problem is considered in detail and the topolog-
ical aspects are followed from the problem formulation stage through to the
matrix equations arising from the finite element discretization. In practice this
problem arises in non-destructive evaluation of aircraft wings, pipes, and other
places. This problem is unique in that it is a three-dimensional magnetoqua-
sistatic problem which admits a formulation solely in terms of scalar potentials,
yet the topological aspects can be formulated in full generality while the over-
all formulation is sufficiently simple that it can be presented concisely. This
chapter builds on all of the concepts developed in previous chapters, and is an
ideal playground for illustrating how the tools of homological algebra (long ex-
act sequences, duality theorems, etc.) are essential from problem formulation to
interpretation of the resulting matrix equations.
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Chapter 5 is self-contained except that one fundamental issue is acknowledged
but sidestepped up to this point in the book. That issue is computation of cuts
for magnetic scalar potentials. This is a deep issue since the simplest general
definition of a cut is a realization, as an embedded orientable manifold with
boundary, of an element of the second homology group of a region modulo its
boundary. Poincaré and Maxwell took the existence of cuts for granted, and it
was Pontryagin and Thom who, in different levels of generality, pointed out the
need for an existence proof and gave a general framework for realizing homology
classes as manifolds in the case that there is such a realization. It is ironic
that historically, this question was avoided until the tools for its resolution were
developed. For our purposes, an existence proof is given in the Mathematical
Appendix, and the actual algorithm for computing a set of cuts realizing a basis
for the second homology group is given in chapter six.

Chapter 6 bridges the gap between the existence of cuts and their realiza-
tion as piecewise-linear manifolds which are sub-complexes of a finite element
mesh (considered as a simplicial complex). Any algorithm to perform this task
is useful only if some stringent complexity requirements are met. Typically, on
a given mesh, a magnetic scalar potential requires about an order of magnitude
less work to compute than computing the magnetic field directly. Hence if the
computation of cuts is not comparable to the computation of a static solution of
a scalar potential subject to linear constitutive laws, the use of scalar potentials
in multiply-connected regions is not feasible for time-varying and/or nonlinear
problems. We present an algorithm that involves the formulation and finite
element solution of a Poisson-like equation, and additional algorithms that in-
volve only integer arithmetic. We then have a favorable expression of the overall
complexity in terms of a familiar finite element solution and the reordering and
solution of a large sparse integer matrix equation arising for homology compu-
tation. This fills in the difficult gap left over from Chapter 5.

Chapter 7, the final chapter, steps back and considers the techniques of ho-
mological algebra in the context of the variational principles used in the finite
element analysis of quasistatic electromagnetic fields. The message of this chap-
ter is that the formalism of homology, and cohomology theory via differential
form methods, are essential for revealing the conceptual elegance of variational
methods in electromagnetism as well as providing a framework for software devel-
opment. In order to get this across, a paradigm variational problem is formulated
which includes as special cases all of the variational principles considered in ear-
lier chapters. All the topological aspects considered in earlier chapters are then
seen in the light of the homology and cohomology groups arising in the analysis
of this paradigm problem. Because the paradigm problem is n-dimensional, this
chapter no longer emphasizes the more visual and intuitive aspects, but exploits
the formalism of differential forms in order to make connections to Hodge the-
ory on manifolds with boundary, and variational methods for quasilinear elliptic
partial differential equations. The engineer’s topological intuition has now been
obscured, but we gain a paradigm variational problem for which topological as-
pects which lead to circuit models are reduced by Whitney form discretization
to computations involving well-understood algorithms.
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The Mathematical Appendix serves several purposes. First, it contains results
that make the book more mathematically self-contained. These results make the
algebraic aspects accessible to the uninitiated, tie differential forms to cohomol-
ogy, make clear what aspects of cohomology theory depend on the metric or
constitutive law, and which do not. Second, certain results, such as the proof of
the existence of cuts, are presented. This existence proof points to an algorithm
for finding cuts, but involves tools from algebraic topology not found in intro-
ductory treatments. Having this material in an appendix makes the chapters of
the book more independent.

Having stated the purpose of the book and outlined its contents, it is useful
to list several problems not treated in this book. They represent future work
which may be fruitful:

(1) Whitney forms and Whitney form discretizations of helicity functionals, their
functional determinants, and applications to impedance tomography. There
is already a nice exposition on Whitney forms accessible to engineers [Bos98].

(2) Lower central series of the fundamental group and, in three dimensions, the
equivalent data given by Massey products in the cohomology ring. This
algebraic structure contains more information than homology groups but,
unlike the fundamental group, the computation of the lower central series can
be done in polynomial time and gives insight into computational complexity
of certain sparse matrix techniques associated with homology calculations.

(3) Additional constraints on cuts. Although we present a robust algorithm for
computing cuts for magnetic scalar potentials, one may consider whether,
topologically speaking, these cuts are the simplest possible. Engineers should
not have to care about this, but the problem is very interesting as it relates
to the computation of the Thurston norm on homology. Furthermore, if one
introduces force constraints into the magnetoquasistatic problems considered
in this book, the problem is related to the physics of “force-free magnetic
fields” and has applications from practical magnet design to understanding
the solar corona.

(4) Common historical roots between electromagnetism, computation and topol-
ogy. Electromagnetic theory developed alongside topology in the works of
Gauss, Weber, Möbius and Riemann. These pioneers also had a great in-
fluence on each other which is not well documented. In addition, Courant’s
paper, which lead to the finite element method, was written when triangula-
tions of manifolds were the order of the day, and about the time when simpli-
cial techniques in topology were undergoing rapid development in Göttingen.

We hope that the connections made in this book will inspire the reader to take
this material beyond the stated purpose of developing the connection between
algebraic structures in topology and methods for 3-dimensional electric and mag-
netic field computation.



Any problem which is nonlinear in character. . . or whose structure is initially
defined in the large, is likely to require considerations of topology and group
theory in order to arrive at its meaning and its solution.

Marston Morse, The Calculus of Variations in the Large, 1934

1
From Vector Calculus to Algebraic Topology

1A. Chains, Cochains and Integration

Homology theory reduces topological problems that arise in the use of the
classical integral theorems of vector analysis to more easily resolved algebraic
problems. Stokes’ theorem on manifolds, which may be considered the funda-
mental theorem of multivariable calculus, is the generalization of these classical
integral theorems. To appreciate how these topological problems arise, the pro-
cess of integration must be reinterpreted algebraically.

Given an n-dimensional region Ω, we will consider the set Cp(Ω) of all possible
p-dimensional objects over which a p-fold integration can be performed. Here it
is understood that 0 ≤ p ≤ n and that a 0-fold integration is the sum of values
of a function evaluated on a finite set of points. The elements of Cp(Ω), called
p-chains, start out conceptually as p-dimensional surfaces, but in order to serve
their intended function they must be more than that, for in evaluating integrals
it is essential to associate an orientation to a chain. Likewise the idea of an
orientation is essential for defining the oriented boundary of a chain (Figure 1.1).




n

S

∂c = b − a

c

b

a
c1

c2

c3

c4

∂S = c1 + c2 + c3 + c4

Figure 1.1. Left: a 1-chain. Right: a 2-chain.
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8 1. FROM VECTOR CALCULUS TO ALGEBRAIC TOPOLOGY

At the very least, then, we wish to ensure that our set of chains Cp(ω) is closed
under orientation reversal: for each c ∈ Cp(Ω) there is also −c ∈ Cp(Ω).

The set of integrands of p-fold integrals is called the set of p-cochains (or p-
forms) and is denoted by Cp(Ω). For a chain c ∈ Cp(Ω) and a cochain ω ∈ Cp(Ω),
the integral of ω over c is denoted by

∫
c
ω, and integration can be regarded as a

mapping ∫
: Cp(Ω)× Cp(Ω)→ R, for 0 ≤ p ≤ n,

where R is the set of real numbers. Integration with respect to p-forms is a linear
operation: given a1, a2 ∈ R, ω1, ω2 ∈ Cp(Ω) and c ∈ Cp(Ω), we have

∫

c

a1ω1 + a2ω2 = a1

∫

c

ω1 + a2

∫

c

ω2.

Thus Cp(Ω) may be regarded as a vector space, which we denote by Cp(Ω,R).
Reversing the orientation of a chain means that integrals over that chain acquire
the opposite sign: ∫

−c

ω = −
∫

c

ω.

More generally, it is convenient to regard Cp(Ω) as having some algebraic
structure— for example, an abelian group structure, as follows:

Example 1.1 Chains on a transformer. This example is inspired by electri-
cal transformers, though understanding of a transformer is not essential for un-
derstanding the example. A current-carrying coil with n turns is wound around
a toroidal piece of magnetic core material. The coil can be considered as a 1-
chain, and it behaves in some ways as a multiple of another 1-chain c′, a single
loop going around the core once (see Figure 1.2). For instance, the voltage Vc

c

c′

φ̇

n turns

Figure 1.2. Windings on a solid toroidal transformer core. A 1-chain c in
C1(R

3 − core) can be considered as a multiple of the 1-chain c′.

induced in loop c can be calculated in terms of the voltage of loop c′ from the
electric field E as

Vc =

∫

c

E · t dl =

∫

nc′
E · t dl = n

∫

c′
E · t dl = nVc′ ,

where t is the unit vector tangential to c (or c′). ˜
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For this reason it is convenient to regard as a 1-chain any integer multiple of
a 1-chain, or even any linear combination of 1-chains. That is, we insist that our
set of 1-chains be closed under chain addition (we had already made it closed
under inversion or reversal). Moreover we insist that the properties of an abelian
group (written additively) should be satisfied: for 1-chains c, c′, c′′, we have

c+ (−c) = 0, c+ 0 = c, c+ c′ = c′ + c, c+ (c′ + c′′) = (c+ c′) + c′′.

Given any n-dimensional region Ω, the set of “naive” p-chains Cp(Ω) can be
extended to an abelian group by this process, the result being the set of all linear
combinations of elements of Cp(Ω) with coefficients in Z (the integers). This
group is denoted by Cp(Ω,Z) and called the group of p-chains with coefficients
in Z .

If linear combinations of p-chains with coefficients in the field R are used in
the construction above, the set of p-chains can be regarded as a vector space.
This vector space, denoted by Cp(Ω,R) and called the p-chains with coefficients
in R, will be used extensively. In this case, for a1, a2 ∈ R, c1, c2 ∈ Cp(Ω,R),
ω ∈ Cp(Ω,R), ∫

a1c1+a2c2

ω = a1

∫

c1

ω + a2

∫

c2

ω.

In a similar fashion, taking a ring R and forming linear combinations of p-
chains with coefficients in R, we have an R-module Cp(Ω, R), called the p-chains
with coefficients in R. This construction has the previous two as special cases.
It is possible to construct analogous groups for p-cochains, but we need not do
so at the moment. Knowledge of rings and modules is not crucial at this point;
rather the construction of Cp(Ω, R) is intended to illustrate how the notation is
developed.

For coefficients in R, the operation of integration can be regarded as a bilinear
pairing between p-chains and p-forms. Furthermore, for reasonable p-chains and
p-forms this bilinear pairing for integration is nondegenerate. That is,

if

∫

c

ω = 0 for all c ∈ Cp(Ω), then ω = 0

and

if

∫

c

ω = 0 for all ω ∈ Cp(Ω), then c = 0.

Although this statement requires a sophisticated discretization procedure and
limiting argument for its justification [Whi57, dR73], it is plausible and simple
to understand.

In conclusion, it is important to regard Cp(Ω) and Cp(Ω) as vector spaces and
to consider integration as a bilinear pairing between them. In order to reinforce
this point of view, the process of integration will be written using the linear
space notation ∫

c

ω = [c, ω];

that is, Cp(Ω) is to be considered the dual space of Cp(Ω).
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1B. Integral Laws and Homology

Consider the fundamental theorem of calculus,
∫

c

∂f

∂x
dx = f(b)− f(a), where c = [a, b] ∈ C1(R

1).

Its analogs for two-dimensional surfaces Ω are:∫

c

gradφ · t dl = φ(p2)− φ(p1) and

∫

S

curlF · n dS =

∫

∂S

F · t dl,

where c ∈ C1(Ω), ∂c = p2 − p1, and S ∈ C2(Ω). In three-dimensional vector
analysis (Ω ⊂ R3) we have

∫

c

gradφ · t dl = φ(p2)− φ(p1),

∫

S

curlF · n dS =

∫

∂S

F · t dl,
∫

V

div F dV =

∫

∂V

F · n dS,

where c ∈ C1(Ω), ∂c = p2 − p1, S ∈ C2(Ω), and V ∈ C3(Ω). Note that here
we are regarding p-chains as point sets but retaining information about their
orientation.

These integral theorems, along with four-dimensional versions that arise in
covariant formulations of electromagnetics, are special instances of the general
result called Stokes’ theorem on manifolds. This result, discussed at length in
Section MA-H (page 232), takes the form

∫

c

dω =

∫

∂c

ω,

where the linear operators for boundary (∂) and exterior derivative (d) are de-
fined in terms of direct sums:

∂ :
⊕

pCp(Ω)→⊕
pCp−1(Ω), d :

⊕
pC

p−1(Ω)→⊕
pC

p(Ω).

When p-forms are called p-cochains, d is called the coboundary operator. For an
n-dimensional region Ω the following definition is made:

Cp(Ω) = 0 for p < 0, Cp(Ω) = 0 for p > n.

In this way, the boundary operator on p-chains has an intuitive meaning which
carries over from vector analysis. On the other hand, the exterior derivative
must be regarded as the operator which makes Stokes’ theorem true. When a
formal definition of the exterior derivative is given in a later chapter, it will be
a simple computation to verify the special cases listed above.

For the time being, let the restriction of the boundary operator to p-chains be
denoted by ∂p and the restriction of the exterior derivative to p-forms be denoted
by dp. Thus

∂p : Cp(Ω)→ Cp−1(Ω) and dp : Cp(Ω)→ Cp+1(Ω).

Considering various n-dimensional regions Ω and p-chains for various values
of p, it is apparent that the boundary of a boundary is zero

(∂p∂p+1)c = 0 for all c ∈ Cp+1(Ω).
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An interesting question which arises regards the converse. If the boundary of
a p-chain is zero, then is this chain the boundary of some chain in Cp+1(Ω)?
In general this is false, however more formalism is required in order to give a
detailed answer to this question and to see its implications for vector analysis.

Rewriting the equation above as

(1–1) im ∂p+1 ⊂ ker ∂p

the question above reduces to asking if the inclusion is an equality. In order to
regain the geometric flavor of the question, define

Bp(Ω) = im ∂p+1 and Zp(Ω) = ker ∂p

where elements of Bp(Ω) are called p-boundaries and elements of Zp(Ω) are
called p-cycles. The inclusion (1–1) can be rewritten as Bp(Ω) ⊂ Zp(Ω), and the
question at hand is an inquiry into the size of the quotient group

Hp(Ω) = Zp(Ω)/Bp(Ω),

is called the pth (absolute) homology group of Ω. This construction can be made
with any coefficient group, and in the present case Zp(Ω) and Bp(Ω) are vector
spaces and Hp(Ω) is a quotient space.

The following equivalence relation can be used to refer to the cosets of Hp(Ω).
Given z1, z2 ∈ Zp(Ω), we write z1 ∼ z2 and say that z1 is homologous to z2 if
z1 − z2 = b for some b ∈ Bp(Ω). Hence z1 is homologous to z2 if z1 and z2 lie
in the same coset of Hp(Ω). In the present case Hp(Ω) is a vector space and the
dimension of the pth homology “group” is called the pth Betti number,

βp(Ω) = dim (Hp(Ω)) .

The following examples are intended to give a geometric sense for the meaning
of the cosets of Hp(Ω).

Example 1.2 Concentric spheres: Ω ⊂ R3, β2 6= 0. Consider three concen-
tric spheres and let Ω be the three-dimensional spherical shell whose boundary
is formed by the innermost and outermost spheres. Next, let z ∈ Z2(Ω) be the
sphere between the innermost and outermost spheres, oriented by the unit out-
ward normal. Since z is a closed surface, ∂2z = 0 however z is not the boundary
of any three-dimensional chain in Ω, that is z 6= ∂3c for any c ∈ C3(Ω). Hence
z represents a nonzero coset in H2(Ω). In this case β1(Ω) = 1 and H2(Ω) is
generated by cosets of the form az +B2(Ω), where a ∈ R. ˜

Example 1.3 Curves on a knotted tube: Ω ⊂ R3, β1 6= 0. Suppose Ω ∈ R3

is the region occupied by the knotted solid tube in Figure 1.3. Let z ∈ Z1(Ω)
be a closed curve on the surface of the knot while z ′ ∈ Z1(R

3 − Ω) is a closed
curve which links the tube. In the figure, z 6∈ B1(Ω) and β1(Ω) = 1. The cosets
of H1(Ω) can be expressed as az +B1(Ω) where a ∈ R. Dually, z′ ∈ B1(R

3 −Ω)
and β1(R

3−Ω) = 1, hence the cosets of H1(R
3−Ω) are a′z′ +B1(R

3−Ω) where
a′ ∈ R. ˜

Example 1.4 3-d solid with internal cavities: Ω ⊂ R3, H2(Ω), H0(R
3−Ω)

of interest. Suppose Ω is a compact connected subset of R3. In this case we
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z′

Figure 1.3. A (5,2) torus knot, illustration for Example 1.3.

take a compact set to mean a closed and bounded set. By an abuse of language,
we assume Ω ∈ C3(Ω) where, when considered as a chain, ∂Ω has the usual
orientation so that Ω is considered as both a chain and set. The boundary
∂3Ω = S0∪S1∪S2∪ · · ·∪Sn where Si ∈ Z2(Ω), for 0 ≤ i ≤ n, are the connected
components of ∂3Ω (think of Ω as a piece of Swiss cheese). Furthermore, let
S0 be the connected component of ∂3Ω which, when taken with the opposite
orientation, becomes the boundary of the unbounded component of R3 − Ω.
Given that Ω is connected, it is possible to find n+ 1 components Ω′

i of R3 −Ω
such that

∂3Ω
′
i = −Si for 0 ≤ i ≤ n.

It is obvious that surfaces Si cannot possibly represent independent generators
of H2(Ω) since their sum (as chains) is homologous to zero, that is,

n∑

i=0

Si = ∂3Ω or

n∑

i=0

Si ∼ 0.

However, H2(Ω) is generated by cosets of the form
n∑

i=1

aiSi +B2(Ω).

This can be rigorously shown through duality theorems for manifolds which
are the topic of Chapter 3, but a heuristic justification of the statement is the
following. Choose 0-cycles pi (points), 0 ≤ i ≤ n, such that pi ∈ Z0(Ω

′
i) and

define 1-chains (curves) ci ∈ C1(R
3), 1 ≤ i ≤ n, by the following:

∂ci = pi − p0.

The points pi are n + 1 generators of H0(R
3 − Ω) while the ci connect the

components of R3 −Ω. It is apparent that for 1 ≤ i, j ≤ n, the curves ci can be
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arranged to intersect Si once and not intersect Sj if i 6= j. If the curves ci are
regarded as point sets,

β2

(
Ω−

( n⋃

i=1

ci

))
= 0

and

β0

((
R3 − Ω

)
∪
( n⋃

i=1

ci

))
= 1,

where, in the latter case, multiples of the 0-cycle p0 can be taken to generate the
zeroth homology group. This property cannot be achieved by taking fewer than
n such ci. That is, for every curve ci which goes through Ω there corresponds
one and only one generator of H2(Ω). In summary

β2(Ω) = n = β0(R3 − Ω)− 1

where the n independent cosets of the form
n∑

i=1

aiSi +B2(Ω) for ai ∈ R

and
n∑

i=0

a′iPi +B0(R3 −Ω) for a′i ∈ R

can be used to generate H2(Ω) and H0(R3 − Ω), respectively. These arguments
are essentially those of Maxwell [Max91, Art. 22]. In Maxwell’s terminology the
periphractic number of a region Ω is β2(Ω). The general case where Ω consists of
a number of connected components is handled by applying the same argument to
each connected component of Ω and choosing the same p0 for every component.
In this case it will also be true that

β0(R3 − Ω) = β2(Ω) + 1. ˜

Example 1.5 Curves on an orientable surface: Ω an orientable surface,
H1(Ω) of interest. It is a fact that any bounded orientable 2-dimensional
surface is homeomorphic to a disc with n handles and k holes. For some integers
n and k, any orientable 2-dimensional surface with boundary can be mapped in
a 1-1 continuous fashion into some surface like the one shown in Figure 1.4 (see
[Mas67, Chapter 1] or [Cai61, Chapter 2] for more pictures and explanations).

Let Ω be the surface described above and let β1 = 2n + k − 1. Consider
1-cycles zi ∈ Z1(Ω) for 1 ≤ i ≤ β1 where z2j−1 and z2j (1 ≤ j ≤ n) is a pair of
cycles which correspond to the jth handle, while z2n+j , where 1 ≤ j ≤ k − 1,
corresponds to the jth hole as shown in Figure 1.5. The kth hole is ignored as far
as the zi are concerned. It is clear that for 1 ≤ i ≤ β1, the zi are nonbounding
cycles. What is less obvious is that H1(Ω) can be generated by β1 linearly
independent cosets of the form

β1∑

i=1

aizi +B1(Ω) for ai ∈ R.
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n handles

k holes

Figure 1.4. Disc with handles and holes.

jth handle

jth holez2j

z2j−1

z2n+j

Figure 1.5. Handle and hole generators.

That is, no linear combination with nonzero coefficients of the zi is homologous
to zero and any 1-cycle in Z1(Ω) is homologous to a linear combination of the zi.
In order to justify this statement, consider k 0-cycles (points) pj , such that pj is
on the boundary of the jth hole, for 1 ≤ j ≤ k. That is, the pj can be regarded
as generators of H0(∂1Ω). Next define β1 1-chains ci ∈ C1(Ω) such that

z2j = c2j−1 and z2j−1 = c2j for 1 ≤ j ≤ n,

and

∂c2n+j = pj − pk for 1 ≤ j ≤ k − 1.

Note ci intersects zi once for 1 ≤ i ≤ β1 and does not intersect zl if i 6= l.
If the surface is cut along the ci, it would become simply connected while

remaining connected. Furthermore it is not possible to make Ω simply connected
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with fewer than β1 cuts. Hence, regarding the ci as sets, one can write

H1

(
Ω−

( β1⋃

i=1

ci

))
= 0

and the ci can be said to act like branch cuts in complex analysis. Removing the
cuts along ci successively introduces a new generator for H1(Ω) at each step, so
that

β1(Ω) = 2n+ k − 1

and the zi, are indeed generators of H1(Ω).
Throughout this construction the reader may have wondered about the special

status of the kth hole. It should be clear that

0 ∼ ∂2Ω ∼
k−1∑

i=1

z2n+i + ∂2(kth hole)

hence associating z2n+k with the kth hole as z2n+j is associated with the jth
hole does not introduce an independent new generator to H1(Ω). Finally, if Ω is
not connected, then the above considerations can be applied to each connected
component of Ω. ˜

In examples 1.2, 1.3, 1.4, and 1.5 the ranks ofHp(Ω) were 1, 1, n, and 2n+k−1,
respectively. In order to prove this fact, it is necessary to have a way of computing
homology, but from the definition Hp(Ω) = Zp(Ω)/Bp(Ω) involving the quotient
of two infinite groups (vector spaces) it is not apparent that the homology groups
should even have finite rank. In general, compact manifolds have homology
groups of finite rank, but it is not worthwhile to pursue this point since no
method of computing homology has been introduced yet. Instead the relation
between homology and vector analysis will now be explored in order to show the
importance of homology theory in the context of electromagnetics.

1C. Cohomology and Vector Analysis

To relate homology groups to vector analysis, consider Stokes’ theorem
∫

c

dω =

∫

∂c

ω

rewritten for the case of p-chains on Ω:

[c, dp−1ω] = [∂pc, ω].

Stokes’ theorem shows that dp−1 and ∂p act as adjoint operators. Since ∂p∂p+1 =
0, we have

[c, dpdp−1ω] = [∂p+1c, d
p−1ω] = [∂p∂p+1c, ω] = 0

for all c ∈ Cp(Ω) and ω ∈ Cp(Ω). This results in the operator equation

dpdp−1 = 0 for all p,



16 1. FROM VECTOR CALCULUS TO ALGEBRAIC TOPOLOGY

when integration is assumed to be a nondegenerate bilinear pairing. Hence,
surveying the classical versions of Stokes’ theorem, we immediately see that the
vector identities

div curl = 0

and
curl grad = 0

follow as special cases.
As in the case of the boundary operator, the identity dpdp−1 = 0 does not

imply that ω = dp−1η for some η ∈ Cp−1(Ω) whenever dpω = 0 and it is useful to
define subgroups of Cp(Ω) as follows. The group of p-cocycles (or closed forms)
on Ω is denoted by

Zp(Ω) = ker dp,

and the group of p-coboundaries (or exact forms ) on Ω is denoted by

Bp(Ω) = im dp−1.

The equation
dpdp−1 = 0

can thus be rewritten as
Bp(Ω) ⊂ Zp(Ω)

and, in analogy to the case of homology groups, we can define

Hp(Ω) = Zp(Ω)/Bp(Ω),

the pth cohomology group of Ω. This is a measure of the extent by which the
inclusion misses being an equality. The groups Bp(Ω), Zp(Ω) are vector spaces,
while Hp(Ω) is a quotient space in the present case since the coefficient group
is R. Cosets of Hp(Ω) come about from the following equivalence relation. Given
z1, z2 ∈ Zp(Ω), z1 ∼ z2 (read z1 is cohomologous to z2) if z1 − z2 ∈ b for some
b ∈ Bp(Ω). That is, z1 is cohomologous to z2 if z1 and z2 lie in the same coset
of Hp(Ω).

The topological problems of vector analysis can now be reformulated. Let Ω
be a uniformly n-dimensional region which is a bounded subset of R3. Tech-
nically speaking, Ω is a compact 3-dimensional manifold with boundary (see
Section MA-H for the meaning of this term). Consider the following questions:

(1) Given a vector field D such that div D = 0 on Ω, is it possible to find a
continuous vector field C such that D = curlC?

(2) Given a vector field H such that curlH = 0 in Ω, is it possible to find a
continuous single-valued function ψ such that H = gradψ?

(3) Given a scalar function φ such that gradφ = 0 in Ω, is φ = 0 in Ω?

These questions have a common form: “Given ω ∈ Zp(Ω), is ω ∈ Bp(Ω)?”
where p takes the values 2, 1, 0, respectively. Equivalently, we can ask: Given
ω ∈ Zp(Ω), is ω cohomologous to zero?

Given an n-dimensional Ω, suppose that, for all p, Cp(Ω) and Cp(Ω) are both
finite-dimensional. In this case, the fact that ∂p and dp−1 are adjoint operators
gives an instant solution to the above questions since, the identity

Nullifier(im dp−1) = ker ∂p,
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that is,

Nullifier (Bp(Ω)) = Zp(Ω)

can be rewritten as the following compatibility condition:

(1–2) ω ∈ Bp(Ω) if and only if

∫

z

ω = 0 for all z ∈ Zp(Ω).

Next, suppose ω ∈ Zp(Ω) and consider the integral of ω over the coset

z +Bp(Ω) ∈ Hp(Ω).

Let c′ ∈ Cp+1(Ω) and b = ∂p+1c
′ an arbitrary element of Bp(Ω). This gives

∫

z+b

ω =

∫

z

ω +

∫

∂p+1c′
ω by linearity

=

∫

z

ω +

∫

c′
dpω by Stokes’ theorem

=

∫

z

ω since ω ∈ Zp(Ω).

Hence, when ω ∈ Zp(Ω), the compatibility condition (1–2) depends only on the
coset of z in Hp(Ω). Thus condition (1–2) can be rewritten as

ω ∈ Bp(Ω)⇐⇒ ω ∈ Zp(Ω) and

∫

zi

ω = 0 for 1 ≤ i ≤ βp(Ω),

where Hp(Ω) is generated by cosets of the form

βp(Ω)∑

i=1

aizi +Bp(Ω).

It turns out that when Cp(Ω), Cp(Ω) are finite-dimensional the result of this
investigation is true under very general conditions. The result of de Rham which
is stated in the next section amounts to saying that

Hp(Ω) ' Hp(Ω),

where the isomorphism is obtained through integration. Moreover, βp(Ω) =
dimHp(Ω), and βp(Ω) = dimHp(Ω) are finite and βp(Ω) = βp(Ω). Hence, for
an n-dimensional region Ω, given ω ∈ Zp(Ω), then z ∈ Bp(Ω) provided that

∫

z

ω = 0

over βp(Ω) independent p-cycles whose cosets in Hp(Ω) are capable of generating
Hp(Ω). To the uninitiated, this point of view may seem unintuitive and exces-
sively algebraic. For this reason the original statement of de Rham’s Theorem
and several examples illustrating de Rham’s theorem will be considered next.
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1D. Nineteenth-Century Problems Illustrating the First and Second
Homology Groups

In order to state the theorems of de Rham in their original form the notion of a
period is required. Consider a n-dimensional region Ω. The period of ω ∈ Zp(Ω)
on z ∈ Zp(Ω) is defined to be the value of the integral

∫

z

ω.

By Stokes’ theorem, the period of ω on z depends only on the coset of z in
Hp(Ω) and the coset of ω in Hp(Ω). That is,

∫

z+∂p+1c′
ω + dp−1ω′ =

∫

z

ω +

∫

∂p+1c′

(
ω + dp−1ω′

)
+

∫

z

dp−1ω′

=

∫

z

ω +

∫

c′
dpω +

∫

∂pz

ω′ by Stokes’ theorem

=

∫

z

ω since ω ∈ Zp(Ω), z ∈ Zp(Ω).

Postponing technicalities pertaining to differentiable manifolds, de Rham’s orig-
inal two theorems can be stated as follows. Let z̃i, 1 ≤ i ≤ βp(Ω) be homology
classes (cosets in Hp(Ω)) which generate Hp(Ω). Then:

(1) A closed form whose periods on the z̃i vanish is an exact form. That is,
ω ∈ Bp(Ω) if ω ∈ Zp(Ω) and

∫

z̃i

ω = 0, for 1 ≤ i ≤ βp(Ω).

(2) Given real ai, 1 ≤ i ≤ βp(Ω), there exists a closed form ω such that the
period of ω on z̃i is ai, 1 ≤ i ≤ βp(Ω). That is, given ai, 1 ≤ i ≤ βp(Ω),
there exists a ω ∈ Zp(Ω) such that

∫

z̃i

ω = ai for 1 ≤ i ≤ βp(Ω).

The two theorems above are an explicit way of saying that Hp(Ω) and Hp(Ω)
are isomorphic. The following examples will illustrate how the de Rham isomor-
phism between homology and cohomology groups occurs in vector analysis and,
whenever possible, the approach will mimic the nineteenth century reasoning.

Example 1.6 Cohomology: Ω ⊂ R3, H2(Ω) is of interest. Let Ω be a
three-dimensional subset of R3 and consider a continuous vector field D such
that div D = 0 in Ω. When is it possible to find a vector field C such that
D = curlC? We consider three cases.

(1) If Ω has no cavities, that is if R3 − Ω is connected, then no such a vector
field exists since if H2(Ω) = 0 then H2(Ω) = 0.

(2) In order to illustrate that there may be no vector field C if H2(Ω) 6= 0
consider the following situation. Let S be a unit sphere centered at the
origin of R3, S′ a sphere of radius 3 concentric with S, and Ω the spherical
shell with S and S′ as its boundary, ∂Ω = S′ − S. It is clear that a sphere
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z of radius 2, centered about the origin and oriented by its unit outward
normal is not homologous to zero and that β2(Ω) = 1. Let div D = 0 in Ω,
and

Q =

∫

z

D · n dS

specifies the period of the field D over the nontrivial homology class. In
terms of electromagnetism, one can think of S as supporting a nonzero elec-
tric charge Q, S′ as a perfectly conducting sphere, and regard D as the
electric flux density

(3) More generally, the “intuitive” condition for ensuring that such a vector field
C exists if div D = 0 can be given as follows [Ste54, Max91]. As mentioned in
Example 1.4, Maxwell uses the term periphractic region referring toH2(Ω) 6=
0 and periphractic number for β2(Ω). [Max91, Article 22]. Consider again
the region Ω of Example 1.4 where the boundary of Ω had n+ 1 connected
components Si, for 0 ≤ i ≤ n, S0 being the boundary of the unbounded
component of R3−Ω. In this case H2(Ω) is generated by linear combinations
of the closed surfaces Si, and the conditions for ensuring that D = curlC
in Ω if div D = 0 in Ω are

∫

Si

D · n dS = 0 for 1 ≤ i ≤ n = β2(Ω).

This is also the answer to be expected by de Rham’s Theorem. The integral
condition above is satisfied identically on S0 in this case, since

0 =

∫

Ω

div D dV =

∫

∂Ω

D · n dS =

n∑

i=0

∫

Si

D · n dS =

∫

S0

D · n dS;

this reaffirms that
n∑

i=0

Si ∼ 0.

The case where Ω is not connected is easily handled by applying the above
considerations to each connected component of Ω. ˜

Example 1.7 Cohomology: Ω ⊂ R3,H0(Ω) is of interest. Let Ω be a three-
dimensional subset of R3 and consider a function φ such that gradφ = 0 in Ω.
When is it possible to say that φ ∈ B0(Ω), that is φ = 0? If Ω is connected, then
φ is determined to within a constant since β0(Ω) = 1 if and only if β0(Ω) = 1.

This problem is the usual one in electrostatics and in this context it is possible
to see that φ is not necessarily a constant if β0(Ω) > 1. The physical situation
is the following. Suppose that there are n connected parts Ω′

i in R3 − Ω, each
a conducting body supporting an electrical charge Qi, for 1 ≤ i ≤ n. The n
charged bodies are inside a conducting shell Ω′

0 which supports a charge Q0. Let

Ω′ =

n⋃

i=0

Ω′
i.
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The electric field vector E = − gradφ vanishes inside each conducting body.
However, depending on the charges Qi and hence on the charge

−
n∑

i=0

Qi

somewhere exterior to the problem, it is well-known that constants

φ
∣∣
Ω′

i

= φi, for 1 ≤ i ≤ n,
can be assigned arbitrarily. In general, the scalar potential φ vanishes only if the
constants all vanish; hence

β0(Ω
′) = n+ 1.

This example can be used to illustrate an additional point. In electrostatics
it is customary to let

φ
∣∣
Ω′

0
= 0 (datum)

and

Q0 =

n∑

i=1

Qi (conservation of charge).

Let Ω′ = R3−Ω where Ω′
i, for 0 ≤ i ≤ n, are the connected parts of Ω′ while Ω′

0

is the unbounded part of Ω′. Using the final equation of Example 1.4, it is clear
that

n = β2(Ω) = β0(R
3 − Ω)− 1 = β0(Ω

′)− 1.

Interpreting β2(Ω) as the number of independent charges in the problem and
β0(Ω

′) − 1 as the number of independent potential differences, this equation
says that the number of independent charges equals the number of independent
potential differences . ˜

Example 1.8 Cohomology: Ω a 2-dimensional surface, H1(Ω) is of in-
terest. Let Ω be a two-dimensional orientable surface and consider the conjugate
versions of the usual integral theorems:∫

c

curlχ · n dl = χ(p2)− χ(p1) for c ∈ C1(Ω) and ∂c = p2 − p1

and
∫

c

div K dS =

∫

∂c

K · n dl for c ∈ C2(Ω),

where n is the unit vector normal to the curve c. The operation curlχ is de-
fined as n

′ × gradχ, where n
′ is the unit normal vector to the two-dimensional

orientable surface [Ned78, p. 582]. In this case, the operator identity

div curl = 0

shows that it is natural to ask the following question. Consider a vector field
J on Ω such that div J = 0. When is it possible to write J = curlχ for some
single-valued stream function χ? If Ω is simply connected, then it is well-known
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that K = curlχ, i.e. β1(Ω) = 0 ⇒ β1(Ω) = 0. In order to see that it may not
be possible to find such a χ if Ω is not simply connected, consider the following
situation where Ω is homeomorphic to an annulus. On Ω let K flow outward in

z

Ω

Figure 1.6. Radial surface current on conducting annulus.

the radial direction, and let z ∈ Z1(Ω) be a 1-cycle which encircles the hole (see
Figure 1.6). The period of K on the cycle z will be called the current per unit of
thickness through z and denoted by I. In this case, relating K to a single-valued
stream function χ leads to a contradiction because

0 6= I =

∫

z

K · n dl =

∫

z

curlχ · n dl =

∫

∂z

χ = 0 since ∂z = 0.

More generally, consider the surface Ω of Example 1.5 where there are gener-
ators zi of H1(Ω), and corresponding cuts ci where 1 ≤ i ≤ β1(Ω) = 2n+ k − 1,
so that

Ω− = Ω−
( β1(Ω)⋃

i=1

ci

)

is connected and simply connected. Since Ω− is simply connected it is possible
to define a stream function χ− on Ω− such that

K = curlχ− on Ω−.

Letting the current flowing through zi be Ii so that
∫

zi

K · n dl = Ii,

it is apparent from the integral laws that

Ii =

∫

zi∩Ω−

curlχ− = (jump in χ− across ci).

That is, χ− is in general multivalued and it is single-valued if and only if all the
periods of K on the zi vanish, that is each Ii must vanish. Hence K = curlχ
on Ω for some single-valued χ if and only if div K = 0 and

∫

zi

K · n dl = 0 for 1 ≤ i ≤ β1(Ω).
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See Klein [Kle63] for pictures, interpretations and references to the nineteenth
century literature on similar examples. ˜

Example 1.9 Cohomology: Ω ⊂ R3, H1(Ω) is of interest. Let Ω be a three-
dimensional subset of R3 and consider a vector field H such that curlH = 0 in
Ω. Is there a single-valued function ψ such that H = gradψ?

If Ω is simply connected, that is, if every closed curve in Ω can be shrunk to
a point in a continuous fashion, then it is possible to find such a single-valued
function ψ. In order to see that there may be no such function ψ if Ω is not simply

I

Vz′

+

−

z

Figure 1.7.

connected, let Ω be the region exterior to a thick resistive wire connected across
a battery and Ω′ = R3 − Ω as shown in Figure 1.7. Here, β1(Ω) = β1(Ω

′) = 1,
z ∈ Z1(Ω), and z′ ∈ Z1(Ω

′) represent nontrivial homology classes of H1(Ω)
and H1(Ω

′) respectively. Let S, S ′ ∈ C2(R
3) be a pair of 2-chains which, when

considered as sets, are homeomorphic to discs so that

∂S′ = z′ and ∂S = z.

Under the assumption of magnetostatics,

curlH = 0 in Ω, and curlE = 0 in Ω′.

The periods of H and E,
∫

z

H · t dl = I and

∫

z′
E · t dl = V,

are nonzero. However, assuming that E and H can be represented as gradients
of single-valued scalar potentials ψ′ and ψ, respectively, leads to contradictions
since

0 6= I =

∫

z

H · t dl =

∫

z

gradψ · t dl =

∫

∂z

ψ = 0
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since ∂z = 0 and

0 6= V =

∫

z′
E · t dl =

∫

z′
gradψ′ · t dl =

∫

∂z′
ψ′ = 0

since ∂z′ = 0. In this case, note that

H1(Ω− S′) = 0 and H1(Ω
′ − S) = 0

so that the magnetic field can be represented as the gradient of a scalar ψ in Ω−S ′

where the scalar has a jump of value I whenever S ′ is traversed in the direction
of its normal. Similarly, the electric field can be represented as the gradient of a
scalar ψ′ in Ω′−S where the scalar has a jump of value V whenever S is traversed
in the direction of its normal. Note that ψ, ψ′ are continuous and single-valued
on Ω, and Ω′ respectively if and only if I = 0 and V = 0. Thus it is seen that
the irrotational fields H and E in Ω can be expressed in terms of single-valued
scalar functions once the cuts S and S ′ are introduced.

The general intuitive conditions for representing an irrotational vector field
H as the gradient of a scalar potential have been studied for a long time. See
[Tho69], [Max91, articles 18–20, 421] and [Lam32, articles 47–55, 132–134, and
139–141]. In Maxwell’s terminology, acyclic means that Ω is simply connected,
cyclosis refers to multiple connectivity, and cyclic constants are periods on gen-
erators of H1(Ω). Cyclic constants were usually called “Kelvin’s constants of
circulation” in the nineteenth century literature.

A formal justification for introducing cuts into a space involves duality the-
orems for homology groups of orientable manifolds which will be considered in
Section 3A. For the time being, the general procedure for introducing cuts will
be illustrated by trying to generalize the above case involving a battery and a
wire. Let Ω be a connected subset of R3. The first thing to do is to find 2-chains
S′
i ∈ C2(R

3), for 1 ≤ i ≤ n, which, when considered as surfaces, satisfy the
following conditions:

(1) H1(R
3 − Ω) is generated by cosets of the form

n∑

i=1

a′i∂S
′
i +B1(R

3 −Ω) for ai ∈ R,

and n is chosen so that n = β1(R
3−Ω). Note that ∂S′

i 6∈ B1(R
3−Ω), where

1 ≤ i ≤ β1(R
3 −Ω).

(2) It turns out that one can also do the reverse, namely find 2-chains Si ∈
C2(R

3), for 1 ≤ i ≤ n, that when considered as surfaces satisfy the following
condition: H1(Ω) is generated by cosets of the form

n∑

i=1

ai∂Si +B1(Ω) for ai ∈ R

and n is chosen such than n = β1(Ω). Note that ∂Si 6= B1(Ω) for 1 ≤ i ≤
β1(Ω).

With luck, the ∂Si intersect S′
j very few times and likewise for ∂S ′

i and
Sj . The result

β1(Ω) = β1(R
3 −Ω)
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is apparent at this stage and was known to Maxwell [Max91, Article 18].

If curlH = 0 in Ω then by the above construction, there exists a

ψ ∈ C0

(
Ω−

( β1(Ω)⋃

i=1

S′
i

))

such that

H = gradψ on Ω−
( β1(Ω)⋃

i=1

S′
i

)
.

Furthermore the jump in ψ over the surface S ′
i can be deduced from the periods

∫

∂Sl

H · t dl = Il, for 1 ≤ l ≤ β1(Ω)

by solving a set of linear equations which have trivial solutions if and only if all
of the periods vanish.

c1 c2

S′

I

Figure 1.8. A 2-cycle relative to the boundary in the trefoil knot complement.

As a simple example of this procedure, consider a current-carrying trefoil knot
R3 −Ω and its complement Ω as shown in Figure 1.8. Here

Ii =

∫

∂Si

H · t dl = (current flowing through Si),

β1(Ω) = β1(R
3 − Ω) = 1,

and
H = gradψ on Ω− S′.

The jumps in ψ across S′
i are given by Ii. It is clear that the scalar potential

will be continuous and single-valued in Ω if and only if I = 0.
Although this illustration makes the general procedure look like a silly inter-

pretation of the method of mesh analysis in electrical circuit theory, problems
where the ∂S′

i are not necessarily in the same plane may be harder to tackle
as are problems where β0(Ω) > 1. The case where Ω may be disconnected is
handled by separately treating each connected part of Ω. As a nontrivial mental
exercise the reader may convince himself that

β1(Ω) = β1(R
3 −Ω) = 2n+ k − 1
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when Ω is the two-dimensional region of example 1.5. This is straightforward
when one realizes that generators of H1(Ω) can be taken to be the boundaries of
cuts in R3−Ω and generators of H1(R

3−Ω) can be considered to be boundaries
of surfaces which intersect Ω along the cuts ci, where 1 ≤ i ≤ β1(Ω). ˜

1E. Homotopy Versus Homology and Linking Numbers

By some divine justice the homotopy groups of a finite polyhedron or a
manifold seem as difficult to compute as they are easy to define.

Raoul Bott [BT82]

While there can be no single-valued scalar potential if the region Ω is not
simply connected, it is not true that the cuts must render the region simply
connected. One such example has already surfaced in Figure 1.8 where the
relative 2-cycle S is a cut for a scalar potential in the scalar potential. Authors
in various fields, including Maxwell [Max91] and others [Str41, Lam32, VB89,
AL65, HS85], have assumed that the cut must make the (nonconducting) region
simply connected. Seeking simple connectivity has led to formulations based on
the notion of homotopy. For two-dimensional problems, the assumption leads
to the right cuts. The relation between homotopy and homology reveals that in
three-dimensional problems such an assumption is not equivalent to the physical
conclusion drawn from Ampère’s law that the problem of making cuts is one of
linking zero current.

While the present objective is to avoid homotopy notions, we briefly consider
a geometric and algebraic summary of the first homotopy group. The first ho-
motopy group π1 of a region V embedded in R3 is an algebraic classification
of all closed loops in V which are topologically different in the sense of contin-
uous deformation described below. In order to illustrate homotopy and make
the above description more precise, consider a closed, oriented curve such as the
current-carrying trefoil knot shown in Figure 1.9, where V denotes the region
complementary to the knot and R3 − V is the knot itself. An arbitrary point p
in V is chosen as a base for drawing oriented, closed paths a, b, c, . . . in V . The
set of all closed curves based at p can be partitioned into equivalence classes
called homotopy classes where two closed paths are homotopic if either curve
can be continuously deformed into the other. The path a represents or gener-
ates a class [a] which contains all paths homotopic to a. It can be shown that
composition of paths induces a product law for homotopy classes, [a][b] = [ab]
where we think of ab as traversing a followed by b as shown in Figure 1.9. The
loop a−1 is a with opposite orientation and generates its own homotopy class
[a−1] while the constant, or identity, loop e is a path which can be contracted to
the basepoint without encountering the knot. These notions are discussed and
extensively illustrated in [Neu79].

It can also be shown that homotopy classes satisfy the following properties:

([a][b])[c] = [a]([b][c]) (associativity),
[a][e] = [a] = [e][a] (identity),
[a][a−1] = [e] = [a−1][a] (inverse).



26 1. FROM VECTOR CALCULUS TO ALGEBRAIC TOPOLOGY

e

b

bf
f

c

d

a

Figure 1.9. Closed loops based at p in the region complementary to the cur-
rent-carrying knot. Loops a and b are homotopic. So are c and d. Loop e is
trivial since it can be contracted to p. Product bf is shown.

Hence, the set of all homotopy classes in V forms a group, written π1, where the
group law is written as a multiplication. Note that a region is said to be simply
connected if all loops in the region are homotopic to the identity, in which case
π1 is trivial. Formally, a multiply connected region is one which is not simply
connected in this sense.

Particularly significant to π1 are the homotopy classes of the form [xyx−1y−1],
called commutators. If π1 is commutative, commutators are equal to the identity,
that is xy is deformable to yx so that both represent the same homotopy class,
[x][y] = [y][x]. In general π1 is not commutative so that commutators are not
equal to the identity and π1 has a commutator subgroup [π1, π1] generated by
all possible commutator products.

z1 z3

z2

Figure 1.10.

Example 1.10 Fundamental group of the torus. In reference to Figure 1.10
we note that on the torus π1 is generated by z1 and z3, before adding the puncture
shown enclosed by z2. In this case the commutator subgroup is trivial so that π1

is commutative. On the other hand, π1 of the punctured torus has a nontrivial
commutator subgroup since the commutator is homotopic to the boundary of
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c

I

V

Figure 1.11. c is in the commutator subgroup of π1 for the trefoil knot complement
V . c links zero net current and is the boundary of a surface (a disc with a handle)
in V .

the hole. Note that in homology, the effect of puncturing the torus becomes
apparent only in the second homology group. ˜

The formal relationship between the first homotopy and homology groups is
a homomorphism, π1(V ) → H1(V ). The Poincaré isomorphism theorem states
that the kernel of the homomorphism is [π1, π1] so that there is an isomorphism

π1/[π1, π1] ' H1

for any region V . When [π1, π1] is nontrivial, commutators are nontrivial closed
loops which, by virtue of the Poincaré isomorphism, are zero-homologous. It can
be shown that this is the case [Sti93, GH81], thus commutators are boundaries
of surfaces which lie entirely in V . The homology classes of 2-chains bounded by
zero-homologous paths can be represented by orientable manifolds in V [Sti93].
Hence no current can be linked by a commutator and surfaces bounded by com-
mutators are unrelated to surfaces used in Ampère’s law. A proof of the π1-H1

relation can be found in [GH81] and is discussed in the context of Riemann sur-
faces and complex analysis in [Spr57]. A discussion of the consequences of the
π1-H1 relation for computational methods can be found in [Cro78].

Figure 1.11 illustrates a commutator element and the surface bounded by
the commutator for the current-carrying trefoil knot where c denotes a class in
[π1, π1]. Since c ∈ [π1, π1] and [π1, π1] is the kernel of the Poincaré map, c is
zero-homologous meaning that a surface S such that c = ∂S exists. By Ampère’s
Law we then have ∫

c

H · dr =

∫

S

J · n ds = 0,

because S lies in V and J = 0 in V . It follows that Link(c, c′) = 0 for c ∈ [π1, π1]
and c′ ∈ H1(R

3 − V ).
To make the nonconducting region simply connected requires elimination of

all nontrivial closed paths in the region. In problems where [π1, π1] is nontrivial,
there exist commutator loops which are zero-homologous, but since commutators
link zero current, they are unimportant in light of Ampère’s law; and they are
irrelevant to finding cuts which make the scalar potential single-valued.
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The quote at the beginning of this section suggests that there exist other fun-
damental problems with a homotopy approach to cuts. While π1 is appealing
because it “accurately” describes holes in a multiply connected region, practi-
cal aspects of its computation continue to be open problems in mathematics
[DR91, Sti93]. While π1 is computable for the torus, it is difficult in general to
resolve basic decision problems involving noncommutative groups. In homology,
groups are abelian and can be expressed as matrices with integer entries. Fur-
thermore, for the constructions presented in this book, the matrices associated
with homology are sparse with O(n) nonzero entries (where n is the number of
tetrahedra in the tetrahedralization of a three-dimensional domain) and can be
computed with graph-theoretical techniques. This is made clear in [BS90] and
[Rot71] for electrical circuits and is discussed in Chapter 6.

1F. Chain and Cochain Complexes

Chain and cochain complexes are the setting for homology theory. Alge-
braically speaking, a chain complex C∗ = {Cp, ∂p} is a sequence of modules Ci
over a ring R and a sequence of homomorphisms

∂p : Cp → Cp−1

such that

∂p−1∂p = 0.

For our purpose, the ring R will be R or Z in which case the modules Cp
are vector spaces or abelian groups respectively. A familiar example is the chain
complex

C∗(Ω; R) = {Cp(Ω; R), ∂p}
considered up to now. Similarly, one has the chain complex

C∗(Ω; Z) = {Cp(Ω; Z), ∂p}
when the coefficient group is Z.

Cochain complexes are defined in a way similar to chain complexes except
that the arrows are reversed. That is, a cochain complex C∗ = {Cp, dp} is a
sequence of modules Cp and homomorphisms

dp : Cp → Cp+1

such that

dp+1dp = 0.

An example of a cochain complex is

C∗(Ω; R) = {Cp(Ω; R), dp}
which has been considered in the context of integration. When the coefficient
group is not mentioned, it is understood to be R.

From the definition of chain and cochain complexes, homology and cohomol-
ogy are defined as follows. For homology,

Bp = im ∂p+1 and Zp = ker ∂p,
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so that

Bp ⊂ Zp and Hp = Zp/Bp,

where

βp = RankHp.

For cohomology,

Bp = im dp−1 and Zp = ker dp,

so that

Bp ⊂ Zp and Hp = Zp/Bp,

where

βp = RankHp.

When dealing with chain and cochain complexes, it is often convenient to
suppress the subscript on ∂p and the superscript on dp and let ∂ and d be the
boundary and coboundary operators in the complex where their interpretation
is clear form context.

The reader should realize that the introduction has thus far aimed to moti-
vate the idea of chain and cochain complexes and the resulting homology and
cohomology. Explicit methods for setting up complexes and computing homol-
ogy from triangulations or cell decompositions can be found in [Mas80, Gib81,
Wal57, GH81], while computer programs to compute Betti numbers and other
topological invariants have existed for over four decades [Pin66]. In contrast to
the vast amount of literature on homology theory, there seems to be no systematic
exposition on its role in boundary value problems of electromagnetics, though
early papers by Bossavit [Bos81, Bos82], Bossavit and Verité [BV82, BV83], Mi-
lani and Negro [MN82], Brown [Bro84], Nedelec [Ned78], and Post [Pos78, Pos84]
were valuable first steps.

Just as groups, fields and vector spaces are examples of algebraic structures,
complexes are a type of algebraic structure and as such it is useful to consider
mappings between complexes. In the case of a chain complex the useful mappings
to consider are the ones which have nice properties when it comes to homology.
Such mappings, called chain homomorphisms, are defined as follows. Given two
complexes

C∗ = {Cp, ∂p} and C ′
∗ = {C ′

p, ∂
′
p}

a chain homomorphism

f∗ : C∗ → C ′
∗

is a sequence of homomorphisms {fp} such that

fp : Cp → C ′
p

and

∂′pfp = fp−1∂p.
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That is, for each p, the diagram

Cp
?

fp - C ′
p

?

Cp−1

∂p

?
fp−1- C ′

p−1

∂′

p

?

? ?

is commutative. In the case of cochain complexes, cochain homomorphisms are
defined analogously.

In order to illustrate chain and cochain homomorphisms, consider a region
Ω and a closed and bounded subset S. Since Cp(S) ⊂ Cp(Ω) for all p and the
boundary operator ∂′ in the complex C∗(S) is the restriction of the boundary
operator ∂ in C∗(Ω) to C∗(S), where C∗(S) is a subcomplex of C∗(Ω). There is
a chain homomorphism

i∗ : C∗(S)→ C∗(Ω),

where

ip : Cp(S)→ Cp(Ω)

is an inclusion. Obviously ip−1∂
′
pc = ∂pipc for all c ∈ Cp(S) as required. Simi-

larly, considering the restriction of a p-form on Ω to one on S for all values of p,
there is a cochain homomorphism

r∗ : C∗(Ω)→ C∗(S)

where

rp : Cp(Ω)→ Cp(S).

If the coboundary operator (exterior derivative) in C∗(Ω) is d and the corre-
sponding coboundary operator in C∗(S) is d′ then

d′prpω = rp−1dpω for all ω ∈ Cp(Ω)

as required.

Chain Complexes in Electrical Circuit Theory. The notion of a complex
is a fundamental idea in electrical circuit theory. Let A be the incidence matrix
of branches with vertices, and B the loop matrix of a network. Since ABT = 0
there is a chain complex

0→ {meshes} BT

−→ {branches} A−→ {nodes} → 0

in which 2-chains are linear combinations of mesh currents and 1-chains are linear
combinations of branch currents. In addition, the transpose of this complex,
results in a cochain complex. Since BAT = 0, there is a cochain complex

0← {meshes} B←− {branches} AT

←− {nodes} ← 0
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where 0-cochains are linear combinations of potentials at nodes of the network,
and 1-cochains are linear combinations of branch voltages [BB69, Sect. 2.2].
Furthermore, if the network is planar and A is the reduced incidence matrix
obtained by ignoring one node on each connected component of the network
graph, then the homology of the complex is trivial. Kirchhoff’s laws can be
expressed as

Kirchhoff Voltage Law: v ∈ imAT (or v is a 1-coboundary)

Kirchhoff Current Law: i ∈ kerA (or i is a 1-cycle)

so that if v = AT e for some set of nodal potentials e, then Tellegen’s Theorem
is easily deduced:

0 = (e,Ai) = (AT e, i) = (v, i).

Thus Tellegen’s Theorem is an example of orthogonality between cycles and
coboundaries. This view of electrical network theory is usually attributed to
Weyl [Wey23] (see also [Sle68, Fla89, Sma72]). Systematic use of homology
theory in electrical network theory can be found in [Chi68] and in the work
of Roth [Rot55b, Rot55a, Rot59, Rot71]. Kron [Kro59] generalized electrical
network theory by introducing branch relations associated with k-dimensional
ones. An explanation of Kron’s method as well as references to additional papers
by Kron can be found in [BLG70].

The interplay between continuum and network models through the use of
complexes is developed in [Bra66, Ton77, KI59, MIK59]. Examples of cochain
complexes for differential operators encountered in the work of Tonti and Branin
are, for vector analysis in three dimensions where informally, the complex is

0→
{

scalar

functions

}
grad−→

{
field

vectors

}
curl−→

{
flux

vectors

}
div−→

{
volume

densities

}
→ 0

with

curl(grad) = 0

div(curl) = 0.

Similarly, in two dimensions,

0→
{

scalar

functions

}
grad−→

{
field

vectors

}
curl−→ {densities} → 0.

The two complexes above are special cases of the complex C∗(Ω) considered thus
far; however, when there is no mention of the domain Ω over which functions
are to be defined, it is impossible to say anything about the homology of the
complex. Hence, unless an explicit dependence on the domain Ω is recognized in
the definition of the complex, it is virtually impossible to say anything concrete
about global aspects of solvability conditions, gauge transformations or comple-
mentary variational principles, since these aspects depend on the cohomology
groups of the complex which in turn depend on the topology of the domain Ω.
Furthermore, imposing boundary conditions on some subset S ⊂ ∂Ω necessitates
the consideration of relative cohomology groups to resolve questions of solvabil-
ity and gauge ambiguity. Again the situation becomes hopelessly complicated
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unless a complex which depends explicitly on Ω and S is defined. The cohomol-
ogy groups of this complex, which are called the relative cohomology groups of
Ω modulo S are the ones required to describe the global aspects of the given
problem. Relative homology and cohomology groups are considered in the next
section.

1G. Relative Homology Groups

Relative chain, cycle, boundary and homology groups of a region Ω modulo a
subset S will now be considered. Relative homology groups are the generaliza-
tion of ordinary homology groups necessary in order to describe the topological
aspects of cochains (forms) subject to boundary conditions.

Consider a region Ω and the chain complex C∗(Ω) = {Cp(Ω), ∂p} associated
with it. Let S be a compact subset of Ω and C∗(S) = {Cp(S), ∂′p} be the chain
complex associated with S. The boundary operator of C∗(S) is the boundary
operator on C∗(Ω) with a restricted domain. Furthermore,

Cp(S) ⊂ Cp(Ω) for all p.

It is useful to define the quotient group of p-chains on Ω modulo S

Cp(Ω, S) = Cp(Ω)/Cp(S)

when one wants to consider p-chains on Ω while disregarding what happens on
some subset S. In this way, the elements of Cp(Ω, S) are cosets of the form

c+ Cp(S), where c ∈ Cp(Ω).

Although this definition makes sense with any coefficient ring R, in the case
of coefficients in R the definition of Cp(Ω, S) is made intuitive if one defines
Cp(Ω, S) to be the subset of Cp(Ω) where the support of ω ∈ Cp(Ω, S) lies in
Ω − S. In this case it is possible to salvage the idea that integration should be
a bilinear pairing between Cp(Ω, S) and Cp(Ω, S). That is,

∫
: Cp(Ω, S)× Cp(Ω, S)→ R

should be such that∫

c

ω = 0 for all ω ∈ Cp(Ω, S) implies c ∈ Cp(S)

and ∫

c

ω = 0 for all c ∈ Cp(Ω, S) implies ω = 0.

Note that when S is the empty set, the definitions of relative chain and cochain
groups reduce to those of their absolute counterparts.

Returning to the general case where the chains could be considered with
coefficients in rings such as R or Z, the induced boundary operator

∂′′p : Cp(Ω)/Cp(S)→ Cp−1(Ω)/Cp−1(S)

makes the following definitions appropriate:

Zp(Ω, S) = ker
(
Cp(Ω, S)

∂′′

p−→ Cp−1(Ω, S)
)
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is the group of relative p-cycles of Ω modulo S, and

Bp(Ω, S) = im
(
Cp+1(Ω, S)

∂′′

p+1−→ Cp(Ω, S)
)

is the group of relative p-boundaries of Ω modulo S. Intuitively, relative cycles
and boundaries can be interpreted as follows. Given z, b ∈ Cp(Ω),

z + Cp(S) ∈ Zp(Ω, S) if ∂pz ∈ ip−1 (Cp−1(S)) ,

b+ Cp(S) ∈ Bp(Ω, S) if ∂p+1c− b ∈ ip (Cp(S)) ,

for some c ∈ Cp+1(Ω). Hence, z is a relative p-cycle if its boundary lies in the
subset S while b is a relative p-boundary if it is homologous to some p-chain
on S.

From the definition of ∂ ′′p , it is apparent that

∂′′p ∂
′′
p+1 = 0.

Hence
Bp(Ω, S) ⊂ Zp(Ω, S);

the pth relative homology group of Ω modulo S is defined as

Hp(Ω, S) = Zp(Ω, S)/Bp(Ω, S)

and the relative pth Betti number of Ω modulo S as

βp(Ω, S) = RankHp(Ω, S).

By defining Cp(Ω, S) = 0 for p < 0 and p > n, the above definitions make it
apparent that

C∗(Ω, S) =
{
Cp(Ω, S), ∂′′p

}

is a complex. Furthermore, if

jp : Cp(Ω)→ Cp(Ω, S)

is the homomorphism which takes a c ∈ Cp(Ω) into a coset of Cp(Ω, S) according
to the rule

jp(c) = c+ Cp(S),

then the collection of homomorphisms j∗ = {jp} is a chain homomorphism

j∗ : C∗(Ω)→ C∗(Ω, S),

since
∂′′p jp(c) = jp−1∂p(c) for all c ∈ Cp(Ω).

Though the definitions leading to relative homology groups seem formidable at
first sight, they are actually quite a bit of fun as the following example shows.

Example 1.11 Two-dimensional example of relative homology. In
this example the relative homology groups associated with the cross-section of
a coaxial cable are considered. The usefulness of relative homology groups will
become apparent in later sections once relative cohomology groups have been
introduced. Consider a piece of coaxial cable of elliptic cross-section, let Ω be the
“insulator” as shown in Figure 1.12, and consider 1-chains z, z ′, z′′ and 2-chains
c, c′ as shown in Figure 1.12. From the picture we see that z, z ′, z′′ represent
nontrivial cosets in Z1(Ω, ∂Ω) but
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c z

z′′

c′

z′

Figure 1.12. Cycles and relative cycles on elliptical annulus.

j1(z) ∼ 0 in H1(Ω, ∂Ω) since ∂c− z ∈ i1 (C1(∂Ω)) ,

and

j1(z
′) ∼ j1(z′′) in H1(Ω, ∂Ω) since ∂c′ − z′ + z′′ ∈ i1 (C1(∂Ω)) .

However, it is apparent that j1(z
′) is not homologous to zero in H1(Ω, ∂Ω) and

that β1(Ω, ∂Ω) = 1 so that the cosets of H1(Ω, ∂Ω) are az′+B1(Ω, ∂Ω) for a ∈ R.
Next consider the other relative homology groups. Obviously β0(Ω, ∂Ω) = 0,

since any point in Ω can be joined to the boundary by a curve which lies in Ω.
Furthermore, considering Ω as a 2-chain in C2(Ω, ∂Ω) it is apparent that

Ω ∈ Z2(Ω, ∂Ω) since ∂2(Ω) ∈ i1 (C1(∂Ω))

hence, since B2(Ω, ∂Ω) = 0, Ω is a nontrivial generator of H2(Ω, ∂Ω) and since
the region is planar, it is plausible that there are no other independent generators
of H2(Ω, ∂Ω). Thus β2(Ω, ∂Ω) and the cosets of H2(Ω, ∂Ω) are aΩ for a ∈ R.

In the light of the previous examples the absolute homology groups of the
region Ω are obvious once one notices that β0(Ω) = 1, the 1-cycle z is the
only independent generator of H1(Ω) hence β1(Ω) = 1, and β2(Ω) = 0 since
Z2(Ω) = 0. Hence, in summary,

β0(Ω) = β2(Ω, ∂Ω) = 1,

β1(Ω) = β1(Ω, ∂Ω) = 1,

β2(Ω) = β0(Ω, ∂Ω) = 0.

In order to exercise the newly acquired concepts, suppose that the capacitance
of the cable was to be determined by a direct variational method. In this case
it is convenient to exploit the inherent symmetry to reduce the problem to one-
quarter of the annulus. Consider the diagram shown in Figure 1.13. It is apparent
that for a1, a2 ∈ R, the cosets of H1(Ω

′, S1) and H1(Ω
′, S2) look like

a1z1 +B1(Ω
′, S1) and a2z2 +B1(Ω

′, S2)

respectively, and that

Z2(Ω
′, S1) = 0 = Z2(Ω

′, S2).
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S′′

2

Ω′

z2

S′

1

S′′

1
z1

S′

2

Figure 1.13. Cycles and relative cycles of elliptical annulus with respect to symmetry
of the full annulus. The boundary ∂Ω′ equals S1 + S2, where S1 = S′

1 + S′′

1 and
S2 = S′

2 + S′′

2 .

Hence
β0(Ω

′, S1) = 0 = β2(Ω
′, S2),

β1(Ω
′, S1) = 1 = β1(Ω

′, S2),

β2(Ω
′, S1) = 0 = β0(Ω

′, S2). ˜

Let the pth relative homology group of Ω modulo a subset S with coefficients
in Z, be denoted by

Hp(Ω, S; Z).

This is an abelian group by construction. By the structure theorem for finitely
generated abelian groups (see [Jac74, Theorem 3.13] or [Gib81, Theorem A.26
and Corollary A.27]), this relative homology group is isomorphic to the direct
sum of a free abelian group F on βp(Ω, S) generators and a torsion group T
on τp(Ω, S) generators, where τp(Ω, S) is called the pth torsion number of Ω
modulo S. When homology is computed with coefficients in R one obtains all
the information associated with the free subgroup F and no information about
the torsion subgroup T . It turns out that τp(Ω, S) = 0 if Ω is a subset of R3 and
S is the empty set. In other words, for subsets of R3 the torsion subgroups of
the homology groups

Hp(Ω; Z), for 0 ≤ p ≤ 3,

are trivial (see, for example, [Mas80, Ch. 9, Ex. 6.6] for details). The relationship
between Hp(Ω, S; R) and Hp(Ω, S; Z) is important since problems in vector anal-
ysis are resolved by knowing the structure of Hp(Ω, S; R) while it is convenient
to use integer coefficients in numerical computations and determine Hp(Ω, S; Z).
When Hp(Ω, S; Z) is found, the absolute homology groups with coefficients in R

are easily deduced and relative homology groups with coefficients in R are de-
duced by throwing away torsion information. The following example illustrates
a relative homology group with nontrivial torsion subgroup.

Example 1.12 Torsion phenomena in relative homology. Consider a
Möbius band which is obtained by identifying the sides of a square I2 as shown
in Figure 1.14. Let Ω be the Möbius band and S = za + zb be the 1-chain along
the edge of the band. Regarding S as a set, the homology groups H1(Ω,Z) and
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za

z̃1 I2
a

z

z̃2

z̃2 I2
b z̃1

zb

z̃

Figure 1.14. Möbius band. Note that I2 = I2
a + I2

b and z̃ = z̃1 + z̃2.

H1(Ω, S; Z) will be deduced. The cosets of H1(Ω,Z) are az + B1(Ω,Z) with
a ∈ Z so that β1(Ω) = 1.

In contrast, the situation is different when the relative homology group is
considered. Observe that j1(z̃) is not homologous to zero in H1(Ω, S; Z), that is
∂z̃ ∈ C0(S,Z) but there is no c ∈ C2(Ω,Z) such that ∂c− z̃ ∈ C1(S,Z). However,
the square I2 from which Ω was obtained has boundary

∂2(I
2) = 2z̃ + zb − za;

hence
∂2(I

2)− 2z̃ ∈ i1 (C1(S,Z)) ,

or
j1(2z̃) ∼ 0 in H1(Ω, S; Z).

Thus z̃ is an element of the torsion subgroup of the relative homology group
since it is not homologous to zero, although a multiple of z̃ is zero-homologous.
Similarly j1(z) 6∼ 0 in H1(Ω, S,Z) and j1(2z) ∼ 0 in H1(Ω, S,Z). In order to see
this one may imagine the Möbius band to be made out of paper and is cut along
the 1-cycle z to yield a surface Ω′. The surface Ω′ is orientable and

∂2(Ω
′) = 2z − za − zb

or
2z − ∂2(Ω

′) ∈ C1(S,Z).

Hence z and z̃ are nontrivial generators of H1(Ω, S,Z). However z ∼ z̃ since,
referring back to the picture, it is apparent that

∂2(I
2
a) = z̃1 + z + z̃2 − za = z̃ + z − za,

∂2(I
2
b ) = z̃1 − z + z̃2 + zb = z̃ − z + zb,

so that

z̃ − (−z)− ∂2(I
2
a) ∈ C1(S; Z) and z̃ − (z)− ∂2(I

2
b ) ∈ C1(S; Z).

That is,
j1(z̃) ∼ j1(z) and j1(z̃) ∼ −j1(z) in H1(Ω, S,Z).

Thus, it is plausible that
H1(Ω, S; Z) ' Z/2
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where Z denotes the integers modulo 2. In summary,

β1(Ω, S) = 0, β1(Ω) = 1, τ1(Ω, S) = 1, τ1(Ω) = 0. ˜

Before considering the role of relative homology groups in resolving topological
problems of vector analysis it is useful to consider the long exact homology
sequence since it is the key to understanding relative homology.

1H. The Long Exact Homology Sequence

In the context of this book, the long exact homology sequence is a result which
enables one to visualize a full set of generators for the homology of a region Ω
modulo a closed subset S in situations where intuition can be trusted only with
the absolute homology groups of Ω and S. To see how the long exact homology
sequence comes about, consider the three complexes

C∗(Ω) = {Cp(Ω), ∂p},
C∗(S) = {Cp(S), ∂′p},

C∗(Ω, S) = {Cp(Ω, S), ∂′′p },
and the two chain homomorphisms

i∗ = {ip}, j∗ = {jp},

0→ C∗(S)
i∗−→ C∗(Ω)

j∗−→ C∗(Ω, S)→ 0

where the inclusion map ip takes a p-chain on S and sends it to a p-chain which
coincides with it on S and vanishes elsewhere on Ω−S while jp takes a c ∈ Cp(Ω)
and sends it into the coset c+Cp(S) in Cp(Ω, S). It is clear that i∗ is injective,
j∗ is surjective and that im i∗ = ker j∗. Such a sequence of three complexes
and chain homomorphisms i∗, j∗ is an example of a “short exact sequence of
complexes”. When written out in full, the sequence is:

0 - Cp+1(S)
?

ip+1- Cp+1(Ω)
?

jp+1- Cp+1(Ω, S)
?

- 0

0 - Cp(S)

∂′

p+1

?
ip- Cp(Ω)

∂p+1

?
jp- Cp(Ω, S)

∂′′

p+1

?
- 0

0 - Cp−1(S)

∂′

p

?
ip−1- Cp−1(Ω)

∂p

?
jp−1- Cp−1(Ω, S)

∂′′

p

?
- 0

∂′

p−1
? ∂p−1

? ∂′′

p−1
?

It is a fundamental and purely algebraic result (see [Jac80, Vol. II, Sect. 6.3,
Theorem 6.1]) that given such a short exact sequence of complexes, there is a long
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exact sequence in homology. This means that if ı̃p and ̃p are the homomorphisms
which ip and jp induce on homology, and δp is a map on homology classes which
takes z ∈ Zp(Ω, S) into z′ ∈ Zp−1(S) according to the rule

(z′ +Bp−1(S)) = (ip−1)
−1∂p(jp)

−1 (z +Bp(Ω, S)) ,

then the diagram

0 - Hn(S)
ı̃n - · · · - Hp+1(Ω, S) -

δp+1- Hp(S)
ı̃p- Hp(Ω)

̃p- Hp(Ω, S) -

δp- Hp−1(S)
ı̃p−1- Hp−1(Ω)

̃p−1- Hp−1(Ω, S)
δp−1 -

· · · ̃0- H0(Ω, S) - 0

satisfies three conditions:

ker ı̃p = im δp+1, ker ̃p = im ı̃p, ker δp = im ̃p.

This result is valid for the coefficient groups Z and R. Here we consider the case
where homology is computed with coefficients in R so that all of the homology
groups are vector spaces. Let

Hp(Ω, S) '
(
Hp(Ω, S)

ker δp

)
⊕ ker δp.

The two summands can be interpreted using the conditions above. The first
satisfies

Hp(Ω, S)

ker δp
' δ−1

p (im δp) ' δ−1
p (ker ı̃p−1)

by the first condition, and the second satisfies

ker δp = im ̃p ' ̃p
(
Hp(Ω)

ker ̃p

)
' ̃p

(
Hp(Ω)

ı̃p (Hp(S))

)

by the second condition. Thus, Hp(Ω, S) can be rewritten as

(1–3) Hp(Ω, S) ' δ−1
p (ker ı̃p−1)⊕ ̃p

(
Hp(Ω)

ı̃p (Hp(S))

)
.

By this identity it is usually easy to deduce a set of generators of Hp(Ω, S) if
Hp(S), Hp(Ω), Hp−1(S), and Hp−1(Ω) are known. The generators for these
groups can be found by the following three-step procedure:

(1) Find a basis for the vector space Vp defined by

Hp(Ω) = (im ı̃p)⊕ Vp.

Hence, ̃p(Vp) gives βp(Ω)− dim im ı̃p generators of Hp(Ω, S).
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(2) Find a basis for ker ı̃p−1 from the basis for Hp−1(S) so that the

dim ker ı̃p−1

remaining generators of Hp(Ω, S) can be deduced from

δ−1
p (ker ı̃p−1) .

This is done as follows: Let z̃i be a basis for ker ı̃p−1 and find a set of zi, for
1 ≤ i ≤ dim ker ı̃p−1, such that

zi = jp(∂p)
−1ip−1z̃i.

(3) Hp(Ω, S) = (j∗pVp)⊕ δ−1
p (ker ı̃p−1), where a basis results from steps 1 and 2.

Furthermore

βp(Ω, S) = βp(Ω)− dim im ı̃p + dim ker ı̃p−1.

Although this procedure is algebraic, it enables one to proceed in a systematic
way in complicated problems, as illustrated in the following example.

Example 1.13 Embedded surfaces and relative homology. Recalling
the 2-dimensional surface with n “handles” and k “holes” which was considered
in Example 1.5, we will deduce the relative homology groups H1(Ω, ∂Ω) and
H2(R

3,Ω).
ForH1(Ω, ∂Ω), consider the long exact homology sequence for the pair (Ω, ∂Ω):

0
ı̃2- H2(Ω)

̃2- H2(Ω, ∂Ω) -

δ2- H1(∂Ω)
ı̃1- H1(Ω)

̃1- H1(Ω, ∂Ω) -

δ1- H0(∂Ω)
ı̃0- H0(Ω)

̃0- H0(Ω, ∂Ω) - 0.

Following the three-step procedure for homology generators H1(Ω, ∂Ω) is ob-
tained as follows.

(1) im ı̃1 and V1 are readily seen to be of the form
∑k−1

j=1a2n+jz2n+j + B1(Ω)
and

∑2n
j=1ajzj +B1(Ω), respectively. That is, j1(z2n+j), with 1 ≤ j ≤ k− 1,

are homologous to zero in H1(Ω, ∂Ω), while j1(zj), for 1 ≤ j ≤ 2n, are not
homologous to zero in H1(Ω, ∂Ω).

(2) The kernel ker ı̃0 is of the form

k−1∑

j=1

aj(pj − pk) +B0(∂Ω),

while the point pk can be used to generateH0(Ω). Thus the curves j1(C2n+j),
for 1 ≤ j ≤ k−1, from Example 1.5 can be used as k−1 additional generators
in H1(Ω, ∂Ω) since

∂c2n+j = pj − pk for 1 ≤ j ≤ k − 1.
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(3) Looking at the definitions of the cj , for 1 ≤ j ≤ 2n+ k − 1, it is clear that

2n∑

j=1

ajcj +B1(Ω, ∂Ω) = im ̃1

and
2n+k−1∑

j=2n+1

ajcj +B1(Ω, ∂Ω) = δ−1
1 (ker ı̃0) .

Thus, the cosets of H1(Ω, ∂Ω) look like

2n+k+1∑

j=1

ajcj +B1(Ω, ∂Ω);

that is to say, the chains along which cuts were made to obtain a simply
connected surface yield a set of generators for H1(Ω, ∂Ω), and

β1(Ω) = 2n+ k − 1 = β1(Ω, ∂Ω).

For H2(R
3,Ω), consider part of the long exact homology sequence for the pair

(R3,Ω):

· · · ı̃2−→ H2(R
3)

̃2−→ H2(R
3,Ω)

δ2−→ H1(Ω)
ı̃1−→ H1(R

3)
̃1−→ · · ·

Given that

Hp(R
3) '

{
R if p = 0,

0 if p 6= 0,

the part of the long exact sequence displayed above reduces to:

0
̃2−→ H2(R

3,Ω)
δ2−→ H1(Ω)

ı̃1−→ 0.

Hence δ2 is an isomorphism since the sequence is exact. It is instructive to
deduce H2(R

3,Ω) by the three-step procedure for homology generators:

(1) The first step can be ignored, since H2(R
3) ' 0 implies that im ̃2 = 0.

(2) Since H2(R
3,Ω) ' H1(Ω) take generators zi of H1(Ω), for 1 ≤ i ≤ β1(Ω),

and consider δ−1
2 zi. In other words, relative 2-cycles j2(Si) ∈ Z2(R

3,Ω) must
be found such that

j2(Si) = j2(∂
−1
2 )i1zi for 1 ≤ i ≤ β1(Ω)

can be used to generate a basis vector of H1(R
3,Ω). By individually consid-

ering the “handles” and “holes” of Ω, we easily see that such a set can be
found for the jth handle and the jth hole, as illustrated in Figure 1.15.

There is nothing to do at this stage. The cosets of H2(R
3,Ω) look like

2n+k−1∑

i=0

aiSi +B2(R
3,Ω) for ai ∈ R

and

β2(R
3,Ω) = 2n+ k − 1 = β1(Ω).
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jth handle
jth hole

z2j−1

S2j−1

z2j
S2j

S2n+j

z2n+j

Figure 1.15. Regions bounded by homology generators of handles on the body in
Figure 1.4. For the handle 1 ≤ j ≤ n and for hole 1 ≤ j ≤ k − 1.

It is useful to realize that the same arguments hold if Ω is knotted or has several
connected components with the exception that representatives of generators of
H2(R

3,Ω) may not be homeomorphic to discs. ˜

Instead of considering more examples of relative homology groups, a heuris-
tic argument will now be considered in order to illustrate the use of relative
homology groups in vector analysis.

1I. Relative Cohomology and Vector Analysis

Given a region Ω, one can form a vector space Cpc (Ω) by considering linear
combinations of p-cochains (p-forms) which have compact support in Ω. Since
the coboundary operator (exterior derivative) applied to a p-cochain of compact
support yields a p+ 1-cochain of compact support, one can define a complex

C∗
c (Ω) = {Cpc (Ω), dp}

and, by virtue of the fact that one has a complex, the cocycle, coboundary,
cohomology groups, and Betti numbers can be defined as usual:

Zpc (Ω) = ker
(
Cpc (Ω)

dp

−→ Cp+1
c (Ω)

)
,

Bpc (Ω) = im
(
Cp−1
c (Ω)

dp−1

−→ Cpc (Ω)
)
,

Hp
c (Ω) = Zpc (Ω)/Bpc (Ω),

βpc (Ω) = Rank (Hp
c (Ω)) .

In general, if Ω is a compact region then the cohomology of the complexes C∗
c (Ω)

and C∗(Ω) are identical. However, if Ω is an open set then the cohomology of
the set of complexes will in general be different from C∗

c (Ω) since the cochains
with compact support have restrictions on the boundary of the set.

In order to formulate the idea of relative cohomology, let Ω be a compact
region, S a compact subset, and consider the complexes C∗

c (Ω) = {Cpc (Ω), dp}
and C∗

c (S) = {Cpc (S), dp} . It is understood that the coboundary operator in the
latter complex is the coboundary operator of the first complex except that the
domain is restricted. In the heuristic motivation for relative homology groups it
was mentioned that in order to regard integration as a bilinear pairing between
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Cp(Ω, S) and Cp(Ω, S), the definition of Cp(Ω, S) makes sense if Cp(Ω, S) is
taken to be the set of linear combinations of p-forms whose support lies in Ω−S.
In the present case where Ω and S are assumed to be compact, define the set of
relative p-cochains to be Cpc (Ω− S). The result is a cochain complex

C∗
c (Ω− S) = {Cpc (Ω− S), dp} ,

where it is understood that the coboundary operator is the restriction of the
coboundary operator in C∗

c (Ω). In analogy with the case of homology, consider
the sequence of complexes

0 −→ C∗
c (Ω− S)

e∗−→ C∗
c (Ω)

r∗−→ C∗
c (S) −→ 0

and the cochain homomorphisms

e∗ = {ep} , r∗ = {rp} .
Here ep takes a p-cochain on Ω−S and extends it by 0 to the rest of Ω, while rp

takes an p-cochain on Ω and gives its restriction to S. Although this sequence of
complexes fails to be exact at C∗

c (Ω), (that is im e∗ 6= ker r∗), a limiting argument
shows that there is still a long exact sequence in cohomology (see [Spi79, p. 589,
Theorems 12 and 13]). Furthermore, there exist relative de Rham isomorphisms
(see Duff [Duf52] for the basic constructions).

Instead of trying to develop the idea that the coboundary operator in the com-
plex C∗

c (Ω − S) is adjoint to the boundary operator in the complex C∗(Ω, S),
and trying to justify a relative de Rham isomorphism, familiar examples of the
relative isomorphism will be considered. These examples will serve to solidify
the notion of relative homology and cohomology groups and relative de Rham
isomorphism so that an intuitive feel can be developed before a more concise
formalism is given in the next chapter. When considering relative chains on
C∗
c (Ω − S) there are certain boundary conditions which cochains must satisfy

when S is approached from within Ω− S. Although these conditions are trans-
parent in the formalism of differential forms, they will be stated often in the
following examples, without proof, since in specific instances they are easily de-
duced by using the integral form of Maxwell’s Equations.

In these examples, the relative de Rham isomorphism is understood to mean

Hp(Ω, S) ' Hp
c (Ω− S) for all p.

Also, two forms ω1, ω2 ∈ Zpc (Ω− S) are said to be cohomologous in the relative
sense if

ω1 − ω2 ∈ Bpc (Ω− S).

As usual, this forms an equivalence relation where the condition above is written
as

ω1 ∼ ω2.

The notion of a relative period is defined as follows. If ω ∈ Zpc (Ω − S) and
z ∈ Zp(Ω, S), the integral

∫
z
ω is called the relative period of ω on z; here,

by Stokes’ theorem, it is easily verified that the period depends only on the
cohomology and homology classes of ω and z respectively. Thus the relative



1I. RELATIVE COHOMOLOGY AND VECTOR ANALYSIS 43

de Rham theorem should be interpreted as asserting that integration induces a
nondegenerate bilinear pairing

∫
: Hp(Ω, S)×Hp

c (Ω− S)→ R

where the values of this bilinear pairing can be deduced from evaluating the
periods of basis vectors of Hp

c (Ω−S) on basis vectors of Hp(Ω, S). In most cases
these periods have the interpretation of voltages, currents, charges, or fluxes.

One of the virtues of axiomatic homology theory is that one can show that
once a method of computing homology for a certain category of spaces, such as
manifolds, has been devised, the resulting homology groups are unique up to an
isomorphism. Thus, for example, the de Rham isomorphism can be regarded
as a consequence of devising a method of computing cohomology with differen-
tial forms and simplicial complexes, and showing that both methods satisfy the
requirements of the axiomatic theory in the case of differentiable manifolds.

Example 1.14 Electrostatics: Visualizing H1(Ω, S) in 3 dimensions.
Consider a compact subset Ω of R3. On the boundary ∂Ω let ∂Ω be a union
S1∪S2, where S1∩S2 has no area. There is a vector field E in Ω with a constraint
on S1 such that:

curlE = 0 in Ω,

n×E = 0 on S1.

No constraint is specified on S2. Elements of C1
c (Ω−S1) are associated with vec-

tor fields whose components tangential to S1 vanish, hence E can be associated
with an element of Z1

c (Ω− S1).
Considering the long exact homology sequence for the pair (Ω, S1), one has

H1(Ω, S1) = δ−1
1 (ker i0)⊕ ̃1

(
H1(Ω)

ı̃1 (H1(S1))

)
,

where the relevant portion of the long exact homology sequence is

· · · δ2−→ H1(S1)
ı̃1−→ H1(Ω)

̃1−→ H1(Ω, S1)
δ1−→ H0(S1)

ı̃0−→ H0(Ω) −→ · · ·
Let ci, for 1 ≤ i ≤ β1(Ω, S), be a set of curves which are associated with the

generators of H1(Ω, S1). These curves can be arranged into two groups according
to the three-step procedure on page 38:

(1) There are dim im j1 generators of H1(Ω, S1) which are homologous in the
absolute sense to generators of H1(Ω). These generators can be associated
with closed curves ci, for 1 ≤ i ≤ dim im ı̃1.

Thinking of electromagnetism, the period
∫

ci

E · t dl = Vi

is equal to the rate of change of magnetic flux which links ci. Although there
is a static problem in Ω, the periods are associated with magnetic circuits
in R3 − Ω. It is usually wise to set these periods equal to zero if possible.
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(2) There are dim ker ı̃0 remaining generators of H1(Ω, S1) which can be asso-
ciated with simple open curves whose end points lie in distinct points of S1.
In other words, if

c(i+dim im ̃1) for 1 ≤ i ≤ dimker ı̃0,

is such a set of curves, they can be defined (assuming Ω is connected) so
that

∂c(i+dim im ̃) = pi − p0,

where p0 is a datum node lying in some connected component of S1 and each
pi lies in some distinct connected component of S1. That is, there is one pi
in each connected component of S1.

In this case, the electromagnetic interpretation is that the period∫

ci

E · t dl = Vi

is associated with potential differences between connected components of S1.

Now suppose that the periods of E on generators of the first group vanish.
In this case, it is seen from the long exact sequence that the period of E van-
ishes on all generators of H1(Ω) since the tangential components of E vanish
on S1. Hence, E may be expressed as the gradient of a single-valued scalar φ.
Furthermore, the scalar is a constant on each connected component of S1. That
is, E = gradφ in Ω, where φ = φ(pi) on the ith component of S1.

When E is expressed in this form, the periods of E on the generators of
H1(Ω, S1) which lie in the second group are easy to calculate:

V(i+dim im ̃1) =

∫

c(i+dim im ̃1)

gradφ · dl = φ(pi)− φ(p0)

since
∂c(dim im ̃1+1) = pi − p0. ˜

Example 1.15 Magnetostatics: Visualizing H2(Ω, S) in 3 dimensions.
As in the previous example, let Ω be a compact subset of R3 such that ∂Ω =
S1∪S2 where S1∩S2 has no area. Let B be a vector field in Ω so that div B = 0
in Ω and B · n = 0 on S1. There is no constraint on B with respect to S2.
Elements of C2

c (Ω − S1) can be identified with vector fields whose component
normal to S1 vanishes, so B can be associated with an element of Z2

c (Ω − S1).
We also let Σi, where 1 ≤ i ≤ β2(Ω, S1), be a set of surfaces associated with a
basis of H2(Ω, S1).

The long exact homology sequence for the pair (Ω, S1) is

H2(Ω, S1) = δ−1
2 (ker ı̃1)⊕ ̃2

(
H2(Ω)

ı̃2 (H2(S1))

)

where the relevant portion of the long exact homology sequence is

· · · δ3−→ H2(S1)
ı̃2−→ H2(Ω)

̃2−→ H2(Ω, S1) −→ δ2−→ H1(S1)
ı̃1−→ H1(Ω)

̃1−→ · · ·
Using the three-step procedure from page 38, surfaces Σi can be arranged into
two groups:
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(1) There are dim im ̃2 generators of H2(Ω, S1) which are homologous in the
absolute sense to generators of H2(Ω). Thus let ∂Σi = 0, for 1 ≤ i ≤
dim im ̃2 and associated to these Σi is a basis of im ̃2 in H2(Ω, S1).

(2) There are dim ker ı̃1 remaining generators of H2(Ω, S1) whose image under
δ2 form in H1(S1) a basis for ker ı̃1. Hence let

∂Σdim im ̃2+i = z1 for 1 ≤ i ≤ dim ker ı̃1

where the zi are associated with ker ĩ1.

Considering the periods of B on the generators of H2(Ω, S1) in the first group,
it is clear that if

B = curlA in Ω

then the periods must vanish because

Φi =

∫

Σi

B · n dS =

∫

∂Σi

A · t dl = 0,

since

∂Σi = 0 for 1 ≤ i ≤ dim im ̃2.

While this is a restriction, it is still natural to formulate the problem in terms of
a vector potential since the nonzero periods of B on the generators of the first
group can only be associated with distributions of magnetic monopoles in R3−Ω.
Assuming that the periods of B on the generators of the first group vanish, and
B is related to a vector potential A, the periods of B on the generators of
H2(Ω, S1) which lie in the second group can easily be expressed in terms of the
vector potential:

Φdim im ̃2+i =

∫

Σ1+dim im ̃2

B · n dS =

∫

∂Σdim im ̃2+i

A · t dl =

∫

zi

A · t dl,

since

∂Σdim im ̃2+i = zi for 1 ≤ i ≤ dim ker ı̃1.

It is worthwhile to consider how the tangential components of A are to be
prescribed on S1 so that B ·n = 0 and the periods of A can be prescribed. One
cannot impose curlA · n = 0 on S1 by forcing n × A = 0 on S1 because this
would imply

Φdim im ̃2+i =

∫

zi

A · t dl = 0,

since

zi ∈ C1
c (S1).

Instead, as in the analogous case of electrostatics, one has to let

n×A = n× gradψ = curlψ on S1,

where ψ is a multivalued function of the coordinates on S1. Following the rea-
soning in Example 1.5, this function can be made single-valued on

S1 −
β1(S1,∂S1)⋃

j=i

di,
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where the di are a set of curves associated with the generators of H1, (S1, ∂S1)
and the periods of the multivalued function ψ are given by specifying the jumps
of ψ on dj , denoted by [ψ]dj

, where 1 ≤ j ≤ β1(S1, ∂S1). To see how this is
done, consider the following portion of the long exact homology sequence for the
pair (Ω, S1):

· · · −→ H2(Ω)
̃2−→ H2(Ω, S1)

δ2−→ H1(S1)
ı̃1−→ H1(Ω)

̃1−→ H1(Ω, S1)
δ1−→ · · ·

Using the reasoning of the three-step procedure one has

H1(S1) ' (̃ı1)
−1 (ker ̃1)⊕ δ2

(
H2(Ω, S1)

̃2 (H2(Ω))

)
.

Thus the generators of H2(S1) can be arranged into two groups where β1(S2)
curves zi, for 1 ≤ i ≤ dim im δ2, can be associated with boundaries of generators
of H2(Ω, S1). In addition, zi+dim im δ2 curves, for 1 ≤ i ≤ dimker ̃1, which are
homologous in H1(Ω), are associated to a set of generators of im ı̃1.

One can define an intersection number matrix I whose ijth entry is the num-
ber of oriented intersections of curve zi with curve dj . Then, if pj is the period
of gradψ on zj ,

pi =

∫

zi

A · t dl =

∫

zi

gradψ · t dl

=

β1(S1,∂S1)∑

j=1

Iij [ψ]dj
for 1 ≤ i ≤ β1(S1),

where pi = Φi+dim im ̃2 , for 1 ≤ i ≤ dim im δ2, and the remaining pi are pre-
scribed arbitrarily. Assuming, as before, that the matrix with entries mij is
nonsingular, the above system of linear equations can be inverted to give the
jumps in the scalar ψ in terms of the dim im δ2 periods of the vector potential
and dim ker ̃1 other arbitrary constants. This technique generalizes and simpli-
fies that of [MN82]. The assumption that the matrix with entries mij is square
and nonsingular is a consequence of the Lefschetz duality theorem which will be
considered in the next chapter. ˜

1J. A Remark on the Association of Relative Cohomology Groups
with Perfect Conductors

The introduction of relative cohomology groups in order to describe the elec-
tromagnetic field outside of a good conductor follows logically from two assump-
tions:

(1) The normal component of the magnetic flux density vector B and the tan-
gential components of the electric field intensity vector E, are continuous
across the interface between two media. One of the two media can be a
perfect conductor.

(2) The fields E and B vanish inside a perfect conductor.

In practice, we do not derive the exact conditions under which these assumptions
hold on a case-by-case basis, but we do have general criteria for deciding when
these assumptions are valid. The first assumption follows from the assumption
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that the electromagnetic field is finite at every point in space and that the length
scales of interest are large compared to the size of an atom. Otherwise, the
notion of an interface is open to question. The second assumption pertaining to
the vanishing of fields in a perfect conductor is a little more tricky since a precise
justification depends on the notion of a skin depth, denoted by δ. The general
rule of thumb is that the fields inside a conductor are considered to be negligible if
the local radius of curvature is much larger than δ. This criterion is simple enough
to understand if we are given δ, but there is a hitch. The skin depth depends
on the frequency of the excitation and the material properties of the medium.
Hence, the criterion applies to the Fourier transform of the electromagnetic field
with respect to time. Specifically, for a nonmagnetic medium of conductivity σ
and a Fourier component of frequency f , we have in MKS units,

δ =
1

2π

√
σf

107

.

Although this completes the criteria for deciding whether or not a given conduc-
tor behaves like a perfect conductor for some excitation, it is useful to give a few
numbers by way of example. For copper, σ = 5.6× 107 ohms/meter, so

δ =
1

2π
√

5.6f
.

To relate this to engineering applications involving copper wires, consider the
following table, which lists operating frequency and skin depth of several familiar
electromagnetic systems:

Application f δ

Power system 60 Hz 9 mm
AM radio 1 MHz 67 µm
FM radio / PC motherboard 100 MHz 6.7 µm
Cellular phone / VLSI circuit 2 GHz 1.5 µm

As a rule, if the conductors are much thicker than the frequency-dependent
skin depth, we can assume that the tangential electric fields and the normal
magnetic fields are negligible.

The axiomatic method has many advantages over honest work.
Bertrand Russell





May one plow with an ox and an ass together? The like of you may write
everything and prove everything in quaternions, but in the transition period
the bilingual method may help to explain the more perfect.

James Clerk Maxwell, in a letter to P. G. Tait.

2
Quasistatic Electromagnetic Fields

The purpose of this chapter is to articulate the notion of a quasistatic elec-
tromagnetic system, and develop the topological aspects of the boundary value
problems encountered in the analysis of quasistatic systems. The topological ap-
proach gives a new perspective on variational formulations which form the basis
of finite element analysis.

2A. The Quasistatic Limit Of Maxwell’s Equations

Maxwell’s Equations. Let S be a surface with boundary, V a volume in
R3, and note that ∂ denotes the boundary operator. The integral versions of
Maxwell’s equations are as follows:

∫

∂S

E · dl = − d

dt

∫

S

B · dS (Faraday’s Law)(2–1)

∫

∂V ′

B · dS = 0 (Gauss’ Law for magnetic charge)(2–2)

∫

∂S′

H · dl =
d

dt

∫

S′

D · dS +

∫

S′

J · dS (Ampère’s Law)(2–3)

∫

∂V

D · dS =

∫

V

ρ dV (Gauss’ Law)(2–4)

where

E = Electric field intensity vector,

B = Magnetic field flux density vector,

H = Magnetic field intensity vector,

D = Electric field flux density vector,

49
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and the current and charge sources are described by

J = Electric current flux density vector,

ρ = Electric charge density.

If we let S′ = ∂V in Ampère’s Law (2–3) and remember that ∂∂ = 0, then the
field vector can be eliminated between Ampère’s and Gauss’ law, (2–3) and (2–4)
to reveal a statement of charge conservation:

0 =
d

dt

∫

V

ρ dV +

∫

∂V

J · dS.

This shows that conservation of charge is implicit in Maxwell’s equations.
When the surfaces and volumes S, S ′, V , V ′ are stationary with respect to the

inertial reference frame of the field vectors, one can use the standard theorems
of vector calculus to rewrite Maxwell’s equations as follows:

curlE = −∂B

∂t
,(2–5)

div B = 0,(2–6)

curlH =
∂D

∂t
+ J ,(2–7)

div D = ρ,(2–8)

div J +
∂ρ

∂t
= 0.(2–9)

Equations (2–5)–(2–8) are the differential versions of Maxwell’s equations. Equa-
tion (2–9) is the differential version of the conservation of charge and can be
obtained independently by taking the divergence of Equation (2–7) and substi-
tuting in (2–9), remembering that div curl = 0.

The differential versions of Maxwell’s equations are much less general than
the integral laws for three main reasons:

(1) They need to be modified for use in problems involving noninertial reference
frames. Differential forms are an essential tool for this modification.

(2) The differential laws do not contain “global topological” information which
can be deduced from the integral laws. The machinery of cohomology groups
is the remedy for this problem.

(3) The differential laws assume differentiability of the field vectors with respect
to spatial coordinates and time. However, there can be discontinuities in
fields across medium interfaces, so it is not possible to deduce the proper
interface conditions from the differential laws.

In order to get around the third obstacle, we must go back to the integral laws
and derive so-called interface conditions which give relations for the fields across
material or media interfaces (Figure 2.1). Here we simply state the interface
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a
b

n

E
a (Ha)

E
b (Hb)

D
a (Ba)

D
b (Bb)

σs(K)

Figure 2.1.

conditions:

n× (Ea −E
b) = 0,(2–10)

n · (Ba −B
b) = 0,(2–11)

n× (Ha −H
b) = K,(2–12)

n · (Da −D
b) = σs,(2–13)

where the superscripts refer to limiting values of the field at on the interface when
the interface is approached from the side of the indicated medium. The source
vectors do not really exist in nature but rather represent a way of modeling
current distribution in the limit of zero skin depth (that is, when ω = 2πf →∞
or σ → 0). This approximation will be discussed soon. From a limiting case of
the integral laws one has a statement of conservation of surface charge:

n · (Ja − J
b) + divS K +

∂σS
∂t

= 0,

where divS is the divergence operator in the interface.
In summary, one can say that the integral version of Maxwell’s equations is

equivalent to three distinct pieces of information:

(1) the differential version in regions where constitutive laws are continuous,
and the field vectors are continuous and have the appropriate degree of
differentiability;

(2) interface conditions where constitutive laws are discontinuous;
(3) global topological information which is lost when problems are specified on

subsets of Euclidean space—these are the lumped parameters of circuit
theory.

Constitutive Laws. In general, Maxwell’s equations are insufficient for de-
termining the electromagnetic field since there are six independent equations in
twelve unknowns, namely the components of E, B, D, and H. The first step
to closing this gap is to introduce constitutive laws. For stationary media, these
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typically take the form

D = ε0E + P ,

B = µ0(H + M)

and, if J is not fixed, but related to E by Ohm’s law,

J = σ(E + E
i).

The new variables are

ε0 = 8.854× 10−12farad/meter (permittivity of free space),

µ0 = 4π × 10−7henry/meter (permeability of free space),

σ = conductivity,

P = polarization,

M = magnetization,

E
i = external impressed field due to forces of chemical origin.

Generally the functional relationships

P = P (E, r), M = M(H, r)

are assumed, though sometimes it makes sense to have M = M(B, r).
There are several ways to characterize media:

(1) Lossless: ∂Pi/∂Ej = ∂Pj/∂Ei, ∂Mi/∂Hj = ∂Mj/∂Hi when referred to
Cartesian coordinates.

(2) Homogeneous: P = P (E), M = M(H).
(3) Isotropic: P = ε0χe(|E|2, r)E, M = χm(|H|2, r)H where χe and χm are

called the electric and magnetic susceptibilities, respectively.
(4) Linear: P is a linear function of E, and M is a linear function of H.

Occasionally the constitutive laws are replaced by linear differential operators:

P = ε0

( 2∑

i=0

χi
di

dti

)
E.

This leads into the topic of dispersion relations in optics and other interesting
phenomena which we will sidestep.

Remark on the concept of energy. The condition for lossless media is equiva-
lent to saying that the integrals

∫ E1

E0

D(E) · dE,
∫ H1

H0

B(H) · dH

are independent of path connecting initial and final states (at each point in
physical space). Often integration by parts or some monotonicity assumption
then shows that the values of the integrals

we =

∫ D(E1)

D(E0)

E(D) · dD, wm =

∫ B(H1)

B(H0)

H(B) · dB
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representing “electric and magnetic energy densities” are defined independent of
how final states are achieved. When this is so, we define total energies by:

We =

∫

V

we dV, Wm =

∫

V

wm dV

so that
dWe

dt
=

∫

V

E · ∂D

∂t
dV,

dWm

dt
=

∫

V

H · ∂B

∂t
dV

Parameters Characterizing Linear Isotropic Media. For linear media the
constitutive relations are simply

D = εE (ε = ε0(1 + χe)),

B = µH (µ = µ0(1 + χm)),

J = σE (Ohm’s Law).

It is often necessary to take a Fourier transform with respect to time in which
case the frequency parameter ω plays an important role in approximations. Thus
the four parameters, ω, σ, µ, ε describe the behavior of the constitutive relations
at each point in space. From the point of view of wave propagation, it is usually
more convenient to introduce a different set of parameters:

v =
1√
µε

(wave speed)

η|σ=0 =

√
µ

ε
(wave impedance in lossless media, i.e. σ = 0)

τe =
ε

σ
(dielectric relaxation time)

δ =

√
2

ωσµ
(skin depth)

RS =

√
ωµ

2σ
(surface resistivity)

(Note that c = 1/
√
ε0µ0 is the speed of light in vacuum.) Although this set of pa-

rameters is unmotivated at this point, their interpretation and role in simplifying
solutions will become clear when we consider electromagnetic waves.

The Standard Potentials for Maxwell’s Equations. In this section we
present the familiar potentials for the electromagnetic field as an efficient way to
end up with “fewer equations in fewer unknowns.” Recall Maxwell’s equations
in space-time R3 × R:

curlH = J +
∂D

∂t
,(2–14)

div D = ρ,(2–15)

curlE = −∂B

∂t
,(2–16)

div B = 0.(2–17)
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It appears that we have eight scalar equations in twelve unknowns, the twelve
unknowns being the components of E,B,D, and H. However, constitutive laws
provide six more equations so that we should think of the above as eight equations
in six unknowns. The standard potentials enable us to solve equations (2–16)
and (2–17) explicitly so that we end up with four equations in four unknowns.

Since Equation (2–17) is valid throughout R3 and the second cohomology
group of R3 is trivial, we have

(2–18) B = curlA

for some vector potential A. Equations (2–16) and (2–18) can be combined to
give

curl

(
E +

∂A

∂t

)
= 0.

Using the fact that this equation is valid throughout R3, one can conclude that
for a scalar potential φ

E +
∂A

∂t
= − gradφ

or

(2–19) E = −∂A

∂t
− gradφ.

Equations (2–18) and (2–19) express the six vector components of E and B in
terms of the four components of A and φ. Note that this is the most general
solution to Equations (2–16) and (2–17). We have neglected to state conditions
on the differentiability of A and φ. However it is straightforward to verify that
the interface conditions associated with equations (2–16) and (2–17), namely

n× (Ea −E
b) = 0, n · (Ba −B

b) = 0,

are satisfied if A and φ are continuous, and we appeal to energy arguments
to show that A and φ are differentiable if the constitutive laws are smooth in
spatial variables. Another way of understanding this is by regarding A and φ to
be solutions to the integral forms associated with (2–16) and (2–17).

The substitution of the potentials (2–18) and (2–19) and constitutive laws
relating D and H to E and B into Equations (2–14) and (2–15) now yields
four scalar equations in four unknowns. It turns out that although Maxwell’s
equations and constitutive laws specify E and B uniquely, they do not specify
A and φ uniquely. This ambiguity in the potentials is a result of equations
(2–14) and (2–15) being dependent and consistent only if the conservation of
charge is satisfied. Hence, for a physically meaningful prescription of J and ρ,
the potentials are nonunique.

The nonuniqueness of the potentials is summarized by gauge transformations
which will now be described. Suppose one has two sets of potentials (A, φ) and
(A′, φ′) related by the “gauge transformation”

A
′ = A + gradχ

φ′ = φ− ∂χ

∂t
.

(2–20)
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It is easy to verify that the gauge transformation leaves the field vectors invariant:

B
′ = curlA′ = curlA + curl gradχ = B

since curl grad = 0, and

E
′ = −∂A

′

∂t
− gradφ′ = −∂A

∂t
− ∂

∂t
(gradχ)− gradφ+ grad

∂χ

∂t

= −∂A

∂t
− gradφ = E.

In this way we see that the substitution of equations (2–18) and (2–19) into
(2–14) and (2–15) yields three independent scalar equations for three indepen-
dent scalar fields. We expect a solution if and only if the sources J and ρ are
prescribed in a way consistent with the conservation of charge. The nonunique-
ness of A and φ enables us to add additional constraints which have no physical
significance but result in mathematical convenience through a process called
gauge-fixing. Gauge-fixing usually consists of imposing an additional constraint
in the form of a linear differential operator acting on A and φ. We consider two
examples describing the Lorentz and Coulomb gauges.

Example 2.1 The Lorentz gauge. Suppose that

(2–21) div A + µ0ε0
∂φ

∂t
= 0

is imposed on A and φ as an additional constraint. This places a constraint on
the gauge function χ which can be computed as follows:

0 =
(
div A

′ + µ0ε0
∂φ′

∂t

)
−
(
div A + µ0ε0

∂φ

∂t

)

or

0 = div(A′ −A) + µ0ε0
∂

∂t
(φ′ − φ).

By Equation (2–20) this becomes

0 = div gradχ− µ0ε0
∂2χ

∂t2
,

so we see that χ must satisfy a homogeneous wave equation. If suitable boundary
and initial conditions are imposed on div and φ, χ would also be constrained
by homogeneous boundary and initial conditions. Furthermore χ = 0 by the
uniqueness of solutions to the wave equation. Hence, the Lorentz condition
(2–21) enables A and φ to be specified uniquely. ˜

Example 2.2 The Coulomb gauge. Suppose that

(2–22) div A = 0.

Then, proceeding as before, by (2–20) we have

0 = div A
′ − div A = div(A′ −A) = div gradχ.

χ is now constrained to be a harmonic function, and suitable boundary conditions
on A force χ to be a constant, and we can once more specify A and φ uniquely
by using the Coulomb gauge (2–22). ˜
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Wave Equations and Superposition Integrals. As promised, we will write
four scalar wave equations in the components of A and φ by substituting equa-
tions (2–18) and (2–19) into (2–14) and (2–15) and appealing to the constitutive
relations. In order to avoid getting bogged down in modeling of material proper-
ties, we will assume the simplest constitutive laws, namely linear, homogeneous,
isotropic media. This is accomplished by letting

B = µ0H

and

D = εE (ε ≥ ε0),
where ε and µ are constant scalars when the vectors are written in terms of
Cartesian coordinates. Hence equations (2–18), (2–19), (2–14), and (2–15) give

(2–23) J = curlH − ∂D

∂t
= curl

B

µ
− ∂

∂t
(εE)

= curl

(
1

µ
curlA

)
+

∂

∂t

(
ε
∂A

∂t

)
+

∂

∂t
(ε gradφ)

and

ρ = div D = div(εE) = −div

(
ε
∂A

∂t

)
− div(ε gradφ).

That is,

(2–24) − curl curlA− µε∂
2
A

∂t2
− grad

(
µε
∂φ

∂t

)
= −µJ

and

(2–25) div gradφ+
∂

∂t
(div A) = −ρ

ε
.

Although this is the final product, it is possible to do much better. From the
discussion of gauge invariance we know that we have four equations but, assuming
that J and ρ are prescribed in a manner consistent with the conservation of
charge, only three equations are independent and one is free to impose a gauge-
fixing condition for convenience. In the case at hand, the Lorentz gauge (2–21)
uncouples A from φ in Cartesian coordinates. Putting (2–21) into (2–24) and
(2–25) results in the following uncoupled equations:

(2–26) grad(div A)− curl(curlA)− µε∂
2
A

∂t2
= −µJ

and

(2–27) div(gradφ)− µε∂
2φ

∂t2
= −ρ

ε
.

It is possible to take one more step by delving into the arcana of Cartesian
coordinates. If some vector field C has the form

C =

3∑

i=1

Ciêi
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in terms of the unit coordinate vectors êi, 1 ≤ i ≤ 3, we have the identity

grad div C − curl curlC =
3∑

i=1

(div gradCi)êi.

Applying the vector identity to the vector potential A and substituting into
(2–26) gives:

(2–28) div gradAi − µε
∂2Ai
∂t2

= −µJ i (i = 1, 2, 3).

Thus, φ and the Cartesian components of A all satisfy a wave equation of the
form

(2–29) div gradψ − 1

v2

∂2ψ

∂t2
= f

where (Section 2A)

v =
1√
µε

< c =
1√
µ0ε0

= 3× 108 meters/second.

As a historical note, it was Maxwell who made the fundamental discovery that
adding the displacement current term to Ampère’s Law enables one to show that
electromagnetic disturbances can propagate and that they do so at the speed of
light. Others had computed the value of (ε0µ0)

−1/2 but attached no physical
significance to the number. A further comment is that at this stage, the Lorentz
gauge seems to work “like magic.” To demystify it and give a forward pointer to
the use of differential forms, we will simply say that the Lorentz gauge makes the
four-component 1-form (A, φ) a coclosed form on Minkowski space and that the
Cartesian vector identity is a special case of the Weizenbrock identity relating
the Laplace–Beltrami operator to the curvature tensor and covariant derivatives.

A more pedestrian view of the Lorentz gauge is that equations (2–27) and
(2–28) can now be “solved” by appealing to the fundamental solution of equation
(2–29). However, before doing so it is useful to reflect on the possibility of
misinterpreting these equations by contrasting Equations (2–24) and (2–25) with
(2–27) and (2–28). Equations (2–24) and (2–25) have a solution only if the
conservation of charge is respected in the prescription of J and ρ. When this
is the case, the potentials are not unique but related by gauge transformation
(2–20). On the other hand, Equations (2–27) and (2–28) always have a unique,
regardless of how J and ρ are prescribed. To reconcile these statements, it is
possible to derive from equations (2–27) and (2–28) the identity

div grad f − 1

µ0ε0

∂2f

∂t2
= div J +

∂ρ

∂t

where

f =
1

µ0

(
div A + µ0ε0

∂φ

∂t

)
.

Thus, we see that if the conservation of charge is violated in the modeling of
an electromagnetic device, the potentials cannot satisfy the Lorentz gauge and
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so Equations (2–27) and (2–28) are no longer equivalent to (2–24) and (2–25)
which describe the electromagnetic field.

Quasistatics and Limitations of Superposition Integrals. It is impor-
tant to interpret equations (2–27) and (2–28) in the context of quasistatics. In
particular, the limits of µ and ε tending to zero give two ways to think of the
limiting case of the speed of light c = 1/

√
µε becoming infinite. Electrical engi-

neers call these two limits the electroquasistatic and magnetoquasistatic limits,
respectively.

Electroquasistatics (EQS). For the moment let’s ignore interface conditions
and constitutive relations and naively set µ = 0 in Equations (2–21), (2–27),
and (2–28). This results in the following equations for the potentials:

div gradφ = −ρ
ε
,

div gradAi = 0, for i = 1, 2, 3,

div A = 0.

Thus, since a harmonic function vanishing at infinity is zero, we see that A

vanishes. The electric field is described by the gradient of a scalar potential
which can be time-varying. The advantage of the EQS approximation is that
it enables us to work with a scalar potential while ignoring the magnetic field,
and then determine the magnetic field as a perturbation by letting µ be a small
parameter.

Magnetoquasistatics (MQS). If we now naively set ε = 0 in equations (2–21),
(2–27), and (2–28) we see that the irrotational part of the electric field is unde-
fined, and that

div gradAi = −µJi for i = 1, 2, 3,

div A = 0.

Here the Lorentz gauge reduces to the Coulomb gauge, and the magnetic field
can be computed from a vector potential. The solenoidal part of the electric
field is also deducible from the vector potential even though the irrotational part
is undefined. If one reintroduces a small permittivity ε, and specifies a charge
distribution ρ, the electric field can be modeled quite accurately.

To appreciate the limitations of these two extreme quasistatic limits, consider
the “series RLC circuit” usually encountered in a first course on circuits (Fig-
ure 2.2). The second-order linear constant-coefficient differential equation which
results from applying Kirchhoff’s voltage law is a mathematical model of the
circuit. The model is not valid if the electromagnetic field around the actual cir-
cuit is not quasistatic. Note that the converse of this statement is not generally
true. For the circuit to be quasistatic, we require that the wavelengths of elec-
tromagnetic radiation at the Fourier components of v(t) with nontrivial energy
be large compared to the overall size of the circuit. Note however that even if
the circuit can be described by quasistatics, it is neither MQS nor EQS since
the magnetic field surrounding the inductor is not EQS and the electric field in
the capacitor is not MQS. Furthermore, the circuit model can break down at
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C

Figure 2.2. RLC circuit.

quasistatic frequencies where “parasitic capacitances” between windings in the
inductor come into play.

In general engineering practice the aim is to break a quasistatic system into
EQS and MQS subsystems and a quasistatic field analysis is performed on each
of these subsystems. These subsystems (inductors, capacitors, and so on) are
then given black box models where the terminal variables are related to periods
of closed differential forms. Kirchhoff’s laws then tie the topological information
together in order to arrive at circuit equations. In this way electromagnetism
and topology become the servants of circuit theory.

There is another perspective on quasistatics and engineering methodology. If
one does not prescribe the current density J , but rather invokes Ohm’s law, then
in a system which is rigid and can’t do any mechanical work there are only three
things that can happen with the energy in the system. It can be

(1) stored in the electric field,
(2) stored in the magnetic field, or
(3) dissipated as heat.

Hence, in the analysis of quasistatic systems, one identifies subsystems which are
EQS, MQS, or characterized by the laws of steady current conduction. In the
case of linear circuits, we end up with capacitors, inductors, and resistors. To
clarify the process of extracting circuit parameters from EQS, MQS, and ohmic
subsystems from the boundary value problems of computational electromagnet-
ics, we devote one section of this chapter to each of these topics. The final section
of the chapter then combines these three aspects of the electromagnetic field into
a variational picture. However, before leaving the general picture of electromag-
netics, we consider the fundamental solution for the scalar wave equation and
see how it provides another framework for quasistatics, one which is not compu-
tationally useful but reconciles quasistatics with the theory of electromagnetic
waves.

We return to Equation (2–29) as a means to investigating equations (2–27)
and (2–28). Since we are trying to avoid issues of boundary values, interfaces,
and topology in this section, we consider the wave equations in all of R3, and all
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EQS MQS Steady Currents

(n = 3, p = 1) (n = 3, p = 2) 3-d (n = 3, p = 1) 2-d (n = 2, p = 1)

lumped parameter
defined via
relative period

V =
∫
c
E · dl Φ =

∫
S

B · n dS V =
∫
c
E · dl V =

∫
z
E · dl

relative groups
[E · dl] ∈ H1(Ω, ∂Ω) [B · dS] ∈ H2(Ω, ∂Ω) [E · dl] ∈ H1(Ω, S2) [E · dl] ∈ H1(Ω, S2)

[c] ∈ H1(Ω, ∂Ω) [S] ∈ H2(Ω, ∂Ω) [c] ∈ H1(Ω, S2) [z] ∈ H1(Ω, S2)

lumped parameter
defined via dual
period

Q =
∫
S

D · n dS I =
∫
c
H · dl I =

∫
S

J · n dS I =
∫
c
(K × n

′) · dl

dual

groups
[D · dS] ∈ H2(Ω) [H · dl] ∈ H1(Ω) [J · dS] ∈ H2(Ω, S1)

[(K × n
′) · dl] ∈

H1(Ω, S1)

[S] ∈ H2(Ω) [c] ∈ H1(Ω) [S] ∈ H2(Ω, S1) [c] ∈ H1(Ω, S1)

quadratic form
which descends to
cohomology
classes (energy)

∫
Ω

E ·D dV =∫
∂Ω
φD ·dS =

∑
i ViQi

=
∑

i,j CijViVj

∫
Ω

H ·B dV =∫
∂Ω

(H ×A) · dS =∑
i φiIi =

∑
i,j LijIiIj

∫
E · JdV =∫

φJ · dS =
∑

i ViIi =∑
i,j ViRijVj

∫
Ω

E ·KdS

topological
obstructions to
dual formulations
(Lefschetz duality)

D = curlC H = gradψ J = curlH K = n
′ × gradχ

Table 2.1. Lumped parameters and cohomology groups
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time. In this case, the solution to Equation (2–29) takes the form

(2–30) ψ(r, t) = −
∫

V ′

f(r0, t− |r−r
0|

v )

4π|r − r
0| dV ′

so that the solutions to (2–27) and (2–28) are:

A(r, t) = −
∫

V ′

µJ(r0, t− |r−r
0|

v )

4π|r − r
0| dV ′,

Φ(r, t) = −
∫

V ′

ρ(r0, t− |r−r
0|

v )

4πε|r − r
0| dV ′.

(2–31)

These solutions to the wave equations are called the retarded potentials, since
they look like the solutions to the MQS and EQS problems, respectively, but the
time variable in the sources is delayed by the time it takes for an electromagnetic
disturbance to travel from the source to the point of observation. These integral
formulae for the solutions also yield the correct insights into precise definition
of quasistatics. Fourier transforms of (2–30) with respect to time look like the
MQS and EQS integrals with an extra factor of

expi(2πf/v)|r−r
0|

in the integrand (where i =
√
−1). Hence in order to say that a system is

quasistatic we need to define a highest frequency fmax above which we can agree
that the Fourier components of J and ρ have negligible energy and a maximum
distance lmax which is an upper bound on the distance between any observation
point of interest and any point where the sources are nonzero. In terms of fmax

and lmax, the engineer’s criterion for a system to be quasistatic is

(2–32) f ≤ fmax �
v

lmax
<

v

|r − r
0| .

Here, f is any frequency of interest, and a factor of 10 or greater is usually
used to interpret the middle inequality. Care must be taken in interpreting v.
If ε = εrε0 is evaluated at the frequency of interest, then assuming µ = µ0, we
have (section 2A)

v =
1√
µ0ε

=
1√

εr
√
µ0ε0

=
c√
εr
.

For example, if a computer circuit board has εr ' 9 when evaluated in the range
of 108 < f < 109, then we have that v is about one-third the speed of light or
v = 108 m/s. Another way to understand the inequalities (2–32) is to rephrase
them in terms of wavelengths. That is, if we define

λ =
v

f
, λmin =

v

fmax
,

then, in terms of wavelength, (2–32) becomes

(2–33) λ ≥ λmin � lmax ≥ |r − r
0|

This inequality makes clear that there is no clearly defined frequency at which a
generic electromagnetic system stops being quasistatic. Thus, a 60 Hertz power
grid extending across a portion of North America, a 100 MHz circuit board
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in a computer, and a package for a 1 GHz microprocessor chip are all similar
situations from the point of view of pushing the limits of quasistatic analysis.
Furthermore, it is common to have systems which are not easily categorized.
For example, the circuitry in a 1.8 GHz cell phone is designed using quasistatic
assumptions while the antenna can’t possibly be designed in this framework.

In summary we can state that Equations (2–31) enable us to articulate the
validity of quasistatic analysis but do not help us analyze or design quasistatic
systems. There are several reasons why (2–31) play a minor role in quasistatics:

(1) The superposition integrals (2–31) are, in a sense, a fortunate accident result-
ing from the ability to exploit the symmetries of Euclidean space in Fourier
analysis. There is no analogous closed form solution in the case of inhomo-
geneous media or in the interface conditions associated with generic device
geometries. This is a practical way of saying that (2–31) are derived under
very restrictive assumptions on constitutive laws.

(2) In typical situations, the “sources” J and ρ are not known a priori but rather
are part of the solution. For instance, in the case of Ohm’s law J is a func-
tion of E so that, when restricted to a conducting body, Equations (2–31)
become integral equations. The solution to these integral equations is sel-
dom attempted when the electromagnetic field in a region of space is to be
determined (as opposed to a single parameter such as antenna impedance
or a scattering parameter), or when there are volumetric currents. For a
survey of quasistatic applications of integral operators in the context of low
frequency problems, see [Bos98].

(3) As an elaboration on the above point and as an introduction to this chapter
as a whole, we should note that the “excitations” of a quasistatic system
are nonlocal and topological in nature. Specifically, excitations come in the
forms of voltages, currents, charges, and fluxes, which are periods of closed
differential forms. Hence, we seek a formulation and language that brings us
closer to these lumped parameters and associated capacitance, inductance,
and resistance matrices (i.e. period matrices). This will be accomplished by
identifying EQS and MQS substructures by focusing on the movement be-
tween different forms of energy. We shall see that (2–31) provide a framework
for defining quasistatics, but the formalism of analytical mechanics gives us
the power to make “simple” models of quasistatic systems.

(4) Although integral equations have their place in computational electromag-
netics, and direct solution of differential equations has the limitation of not
being useful for unbounded domains, there is no need for ideological debates.
Computational electromagnetism has a brutally simple way of resolving these
types of debates: once a given computational problem is defined, formula-
tions and algorithms have been established, and a computer implementation
is chosen, one “merely” looks at the accuracy of the computed solution for
a given amount of computation and how this ratio scales with problem size.

As we go along, the above considerations will return to us time and time
again. We will strive for formulations which are useful for nonlinear constitutive
laws and inhomogeneous media, have a clear link between quasistatic fields and



2B. VARIATIONAL PRINCIPLES FOR ELECTROQUASISTATICS 63

the topological constraints which generate them, propose finite element solution
strategies, and for the more innovative aspects, we will develop techniques to
estimate the amount of computational work for a given task so that there is a
basis for comparing different methods.

2B. Variational Principles For Electroquasistatics

The Electroquasistatics Problem. The objective of this section is to un-
derstand how the three-step procedure for determining homology generators
(page 38) comes into calculations involving the EQS coenergy principle. In par-
ticular, we will give a basic statement of the EQS problem and draw connections
to the groups and the 3-step procedure outlined in Chapter 1. Then we will
state the energy and coenergy functionals for electroquasistatics in the case of
a linear constitutive law and see how these connect to Chapter 1. Finally, for
the case of a linear constitutive law, we evaluate the coenergy functional at the
extremum and see how the familiar notion of the capacitance matrix comes out
of this process.

Consider a compact region Ω which contains no conducting bodies or free
charges. The boundary ∂Ω = S1 ∪ S2 where S1 ∩ S2 has no area and there are
conditions

n×E = 0 on S1,

D · n = 0 on S2.

The boundary condition on S1 is associated with an interface to a conducting
body or to a symmetry plane of the geometry while the boundary condition on S2

can be associated with a symmetry plane. The boundary conditions associated
with S1 and S2 can also arise on ∂Ω if there exists an interface where there
is a sudden change in permittivity across ∂Ω. Figure 2.3 shows S1 and S2 for
the case of a charged loop after the geometry has been reduced by considering
symmetries.

S1

S1

S2

S2

——S1

Figure 2.3. Geometry of a charged loop in a box after reduction by problem symmetry
to an octant.

At this point it is possible to begin to employ the terminology of Chapter 1.
Elements of C1

c (Ω − S1) are associated with vector fields whose components
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tangent to S1 vanish. For the electric field intensity E, since

curlE = 0 in Ω,

n×E = 0 on S1,

it is possible to associate E with an element of Z1
c (Ω−S1). Similarly (and dually),

elements of C2
c (Ω − S2) can be identified with vector fields whose component

normal to S2 vanishes. The electric field flux density D, characterized by

div D = 0 in Ω,

D · n = 0 on S2,

can therefore be identified with an element of Z2
c (Ω− S2).

Going to the level of homology, it can be stated that the nondegenerate bilinear
pairings

∫
: H1(Ω, S1)×H1

c (Ω− S1)→ R,

∫
: H2(Ω, S2)×H2

c (Ω− S2)→ R,

induced on homology and cohomology classes by integration, are associated with
potential differences and charges respectively. The fact that there are as many
independent potential differences as there are independent charges suggests that

β1(Ω, S1) = β2(Ω, S2).

This result is discussed in Chapter 3. For now, by considering a few concrete
situations the reader can convince himself that the periods of E on generators of
H1(Ω, S1) are associated with prescribed electromotive forces while the periods
of D on the generators of H2(Ω, S2) correspond to charges.

For variational principles where the electric field E is the independent variable
and potential differences are prescribed, the variation of the extremal lies in the
space B1

c (Ω−S1). Dually, for variational principles where the electric flux density
D is the independent variable and charges are prescribed, the variation of the
extremal occurs in the space B2

c (Ω− S2).
The long exact homology sequence is useful for showing the appropriateness

of the variational principles involving scalar potentials and the limited usefulness
of variational principles involving an electric vector potential. When the electric
vector potential is used, the long exact homology sequence indicates how to
prescribe the tangential components of the vector potential in terms of a scalar
function defined on S2. Finally, the vector potential is unique up to an element
of Z1

c (Ω− S2) when its tangential components are prescribed on S2.

Introduction of the Metric. It is useful to illustrate how the various spaces
associated with the cochain complexes C∗

c (Ω − S1) and C∗
c (Ω − S2) arise in

variational principles. Assume that there is a tensor constitutive relation

D = D(E, r)
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and an inverse transformation

E = E(D, r)

such that

D (E(D, r), r) = D.

Furthermore, assuming the matrix

∂Di
∂Ej

is symmetric positive definite, then

∂Ei
∂Dj

is symmetric positive definite.

The Capacitive Coenergy and Energy Principles. With the metric as
described above, the principles of stationary capacitive energy and coenergy can
be stated as follows [Mac70, pp. 332–333]. The stationary capacitive coenergy
principle is

U(E) = inf
E∈Z1

c (Ω−S1)

∫

Ω

(∫ E

0

D(ξ, r) · dξ
)
dV

subject to the constraint that on generators of H1(Ω, S1) periods are prescribed
as follows

Vi =

∫

ci

E · dl 1 ≤ i ≤ β1(Ω, S1).

The stationary capacitive energy principle is

U ′(D) = inf
D∈Z2

c (Ω−S2)

∫

Ω

(∫ D

0

D(ξ, r) · dξ
)
dV

subject to the constraint that on generators of H2(Ω, S2) periods are prescribed
as follows

Qi =

∫

Σi

D · dl 1 ≤ i ≤ β1(Ω, S2).

Note that in both of these variational principles the extremal is a relative co-
cycle and when the principal conditions are prescribed on the generators of a
(co)homology group the variation of the extremal is constrained to be a relative
coboundary. This is readily seen from the identities

Z1
c (Ω− S1) ' H1

c (Ω− S1)⊕B1
c (Ω− S1),

Z2
c (Ω− S2) ' H2

c (Ω− S2)⊕B2
c (Ω− S2).

In the case where the constitutive relations are linear, the coenergy and energy
principles can be used to obtain upper bounds on capacitance and elastance
lumped parameters respectively. This is achieved by expressing the minimum
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of the functional as a quadratic form in the prescribed periods and making the
identifications

U(E) =
1

2

β1(Ω,S1)∑

i,j=1

ViCijVj , U ′(D) =
1

2

β2(Ω,S2)∑

i,j=1

QipijQj .

From the upper bound on elastance, a lower bound on capacitance can be ob-
tained in the usual way. The estimation of partial capacitance can be obtained
by leaving certain periods free so that their values can be determined as a by
product of the minimization.

Not only is the above statement of stationary capacitive energy and coenergy
principles succinct but it also gives a direct correspondence with the lumped
parameter versions of the same principles. The derivation of the corresponding
variational principles in terms of scalar and vector potentials is instructive since
insight is gained into why the coenergy principle is naturally formulated in terms
of a scalar potential while the formulation of the energy principle in terms of a
vector potential requires topological constraints on the model in order for the
principle to be valid. Let the coenergy principle in terms of a scalar potential be
considered first.

Capacitance Via Direct Variational Methods with the Stationary Ca-
pacitive Coenergy Principle. When E = gradφ the coenergy principle can
be restated as follows:

U(gradφ) = inf
gradφ∈Z1

c (Ω−S1)

∫

Ω

(∫ φ

0

D (grad η, r) · grad(dη)

)
dV,

subject to the constraints

V(i+dim im ̃1) = φ(pi)− φ(p0), 1 ≤ i ≤ dim ker ı̃0.

Note that for this functional the space of admissible variations is still B1
c (Ω−S1),

that is, φ can be varied by any scalar which vanishes on S1.
Although the coenergy principle seems to be more natural when expressed in

terms of a scalar potential, the only difference between the two principles is how
they treat magnetic circuits in R3 − Ω. The situation is quite different when
one tries to express the energy principle in terms of a vector potential since,
in general, the energy principle cannot be reformulated in terms of the vector
potential alone.

We now elaborate on this scalar potential form of the coenergy in order to
show how, when evaluated at the extremum, the capacitance matrix is a natural
result of the variational principle. To begin, we write the coenergy functional as
above:

(2–34) U(gradφ∗) = inf
gradφ∈Z′

c(Ω−S1)

∫

Ω

∫ φ

0

D(grad η, r) · grad(dη) dV.

It helps to recall the meaning of gradφ ∈ Z1
c (Ω−S1). For this we need the long

exact cohomology sequence

· · · ← H1(Ω)
̃1←− H1(Ω, S1)

δ̃1←− H0(S1)
i0←− H0(Ω)← H0(Ω, S1)← · · ·
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The connecting homomorphism δ̃1 describes fields for which E = − gradφ, and
gradφ× n = 0 on S1 but φ 6= 0 on S1.

In electrostatics, where ∂B/∂t = 0, the periods of
∫

E · dl in H1(Ω) vanish
so that ̃1 is trivial. The nontrivial relative periods are then associated with

(δ1)
−1

(
H0(S1)

(i0)−1(H0(Ω))

)
.

Let

S1 =

Rank δ1⋃

i=0

S1i

with S1i connected and disjoint from S1j , for i 6= j. If Ω is connected and φ is
zero a single connected component S10 of S1 (i.e., one component is “grounded”),
then φ ∈ Z1

c (Ω− S1) means that

φ =

{
0 on S10,

Vi, for 1 ≤ i ≤ Rank δ1, on S1i,

where the Vi are constants.
Differentiating the integral in the space of fields, the variation of this func-

tional becomes

U(grad(φ+ δφ))− U(gradφ) =

∫

Ω

D(gradφ, r) · grad δφ dV +O(‖δφ‖2),

where, since the Vi are constants,

(2–35) δφ = 0 on S1i, 0 ≤ i ≤ Rank δ1.

The first variation δU is integrated by parts as follows. Note from the variation
of the functional above that

δU =

∫

Ω

D(gradφ, r) · grad(δφ) dV.

Integrating by parts:

(2–36) δU =

∫

∂Ω

δφ D(gradφ, r) · n dS −
∫

Ω

δφ div(D(gradφ, r)) dV.

Since δU must vanish for all admissible variations δφ, Equations (2–35) and
(2–36) imply that

div(D(gradφ∗, r)) = 0 in Ω,

D(gradφ∗, r) · n = 0 on ∂Ω− S1,

φ∗ = Vi on S1i, 0 ≤ i ≤ Rank δ̃1,

(2–37)

where the conditions on φ∗ are global constraints. This is the boundary value
problem for φ∗.

Next, we would like to evaluate the coenergy functional (2–34) at the ex-
tremum using (2–37). Note that the relation

∂Di
∂Ej

=
∂Dj
∂Ei
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ensures that the line integral in the functional

U(gradφ∗) =

∫

Ω

(∫ φ∗

0

D(grad η, r) · grad(dη)

)
dV

is independent of path. This is how φ goes from the function that vanishes
everywhere to φ∗. Now consider a family of functions φ∗

s(r), parametrized by s
which are solutions to the following boundary value problem which, for 0 ≤ s ≤ 1,
is a variant of (2–37) and which interpolates between 0 and φ∗.

div(D(gradφ∗
s, r)) = 0 in Ω

D(gradφ∗
s, r) · n = 0 on ∂Ω− S1

φ∗s = sVi on S1i, 0 ≤ i ≤ Rank δ1.

(2–38)

Substituting φ∗
s into (2–37) gives the following functional:

U(gradφ∗
s) =

∫

Ω

(∫ 1

0

D(gradφ∗
s, r) · grad

(
dφ∗s
ds

)
ds

)
dV

Interchanging the order of integration, integrating by parts, and using (2–38)
gives

U(gradφ∗
s)

=

∫ 1

0

(∫

Ω

D(gradφ∗
s, r) · grad

(
dφ∗s
ds

)
dV

)
ds

=

∫ 1

0

(∫

∂Ω

dφ∗s
ds
D(gradφ∗

s, r) · n dS −
∫

Ω

dφ∗s
ds

div(D(gradφ∗
s, r)) dV

)
ds,

where the second term in the last expression is 0 because divD(gradφ∗
s , r) van-

ishes in Ω. The remaining term can be split:

U(gradφ∗
s) =

∫ 1

0

(∫

S1

dφ∗s
ds
D(gradφ∗

s, r) · n dS

+

∫

∂Ω−S1

dφ∗s
ds
D(gradφ∗

s , r) · n dS

)
ds,

where the second term vanishes because D(gradφ∗
s, r) · n = 0. Then

U(gradφ∗
s) =

∫ 1

0

(Rank δ1∑

i=1

∫

S1i

dφ∗s
ds
D(gradφ∗

s , r) · n dS

)
ds.

From (2–38), on S1i

dφ∗s
ds

=
d

ds
(sVi) = Vi.

which is a constant, so

U(gradφ∗) =

∫ 1

0

(Rank δ1∑

i=1

Vi

∫

S1i

D(gradφ∗
s, r) · n dS

)
ds.
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This can be rewritten as

(2–39) U(gradφ∗) =
Rank δ1∑

i=1

Vi

∫ 1

0

Qi(s) ds,

where

Qi(s) =

∫

S1i

D(gradφ∗
s, r) · n dS.

Having a relatively neat expression for the stationary value of the functional,
we turn to the case of a linear isotropic constitutive law and the notion of a
capacitance matrix. In this case, the boundary value problem is linear and
Qi(s) = sQi so that

∫ 1

0

Qi(s) ds = Qi

∫ 1

0

s ds =
Qi
2

and Equation (2–39) becomes

(2–40) U(gradφ∗) =
1

2

Rank δ1∑

i=1

ViQi.

To develop a basic notion of capacitance matrix, we use the linearity of the
present case. Let ϕi, 1 ≤ i ≤ Rank δ1 be the unique solutions to the boundary
value problem

div(ε(r) gradϕi) = 0 in Ω,

(ε(r) gradϕi) · n = 0 on ∂Ω− S1,

ϕi =

{
1 on S1i,

0 on S1j if j 6= i.

Using the functions defined above, we can express the solution to this linear
isotropic version of (2–37) as

φ∗ =
Rank δ1∑

j=1

Vjϕj .

Note that ϕi is dimensionless but φ is not.
Furthermore, to evaluate (2–40), we note that

Qi =

∫

S1i

(ε(r) gradϕ∗
j ) · n dS =

∫

S1i

Rank δ1∑

j=1

Vj(ε(r) gradϕj) · n dS.

This can be written as

Qi =

Rank δ1∑

j=1

VjCij ,

where the Cij are the entries of the capacitance matrix:

Cij =

∫

S1i

(ε(r) gradϕj) · n dS.
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Combining the last two equations with (2–40), we finally have

U(gradφ∗) =
1

2

Rank δ1∑

i=1

Rank δ1∑

j=1

CijViVj .

That is, the energy of the linear system is a quadratic form in the voltages, and
the coefficients of the capacitance matrix are as given above. Physically, the Cij
represent the charge on S1i due to a unit potential on S1j and zero potential on
S1k when k 6= j. The capacitance matrix is symmetric and positive definite.

2C. Variational Principles For Magnetoquasistatics

The Magnetoquasistatics Problem. In order to make the connection be-
tween the long exact sequence in homology and the definition of lumped param-
eters in circuit theory, we will now look at boundary value problems involving
the magnetic field. Consider a connected compact three-dimensional region Ω
which contains no infinitely permeable or superconducting material, but whose
boundary may contain an interface with an infinitely permeable or supercon-
ducting body. The boundary ∂Ω = S1 ∪ S2 where the two parts comprising the
boundary are disjoint, that is S1∩S2 has no area. On each part of the boundary
let there be the following boundary conditions:

B · n = 0 on S1,

n×H = 0 on S2.

The boundary condition on S1 is associated with the boundary of a perfect con-
ductor, a superconductor, or a symmetry plane. Alternatively, when Ω contains
a very permeable body, part of whose boundary coincides with ∂Ω and it is
known that no flux can escape through that part, the boundary condition for
S1 is also appropriate. This latter situation occurs if Ω is an ideal magnetic
circuit. The boundary condition on S2 is associated with boundaries of infinitely
permeable bodies or symmetry planes.

Assume that no free currents flow in Ω. Since elements of C2
c (Ω − S1) can

be identified with vector fields whose component normal to S1 vanishes, the
magnetic flux density B can be associated with an element of Z2

c (Ω−S1) because

div B = 0 in Ω,

B · n = 0 on S1.

Similarly, elements of C1
c (Ω − S2) can be associated with vector fields whose

components tangent to S2 vanish. Since it is assumed that no free currents
can flow, the magnetic field intensity H can be associated with an element of
Z1
c (Ω− S2) because

curlH = 0 in Ω,

n×H = 0 on S2.

The magnetic flux density B is associated with an element of Z2
c (Ω− S1) while

the magnetic field intensity H is associated with an element of Z1
c (Ω−S2). The
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nondegenerate bilinear pairings
∫

: H2(Ω, S1)×H2
c (Ω− S1)→ R,

∫
: H1(Ω, S2)×H1

c (Ω− S2)→ R,

induced on homology and cohomology classes by integration, are associated with
fluxes and magnetomotive forces respectively. In particular, these lumped vari-
ables can be associated with the generators of relative homology groups in the
following sense. Let

Σi, 1 ≤ i ≤ β2(Ω, S1)

is a set of surfaces associated with a basis of H2(Ω, S1) and

ci, 1 ≤ i ≤ β1(Ω, S2)

is a set of curves associated with a basis of H1(Ω, S2). Then the periods of B

on the Σi,

Φi =

∫

Σi

B · n dS, 1 ≤ i ≤ β2(Ω, S1),

are associated with fluxes, and the periods of H on the ci,

Ii =

∫

ci

H · dl, 1 ≤ i ≤ β1(Ω, S2),

are associated with currents in R3 − Ω.
For variational principles involving the magnetic flux density B where fluxes

are prescribed, the variation of the extremal lies in the space B2
c (Ω− S1). Typ-

ically it is convenient to reformulate such variational principles in terms of a
vector potential A. When this is done the tangential components of A are pre-
scribed on S1 in order to specify fluxes corresponding to generators of H2

c (Ω−S1)
and to ensure that the normal component of B vanishes on S1. In such cases
the vector potential which gives the functional its stationary value is unique to
within an element of Z1

c (Ω− S1).
Dually, for variational principles where the magnetic field intensity H is the

independent variable and magnetomotive forces are prescribed, the variation of
the extremal is in the space B1

c (Ω− S2). Though it is not possible in general to
reformulate such principles in terms of a continuous single-valued scalar poten-
tial, it is possible to find a scalar potential formulation if one introduces suitable
barriers, called cut surfaces, into Ω, prescribing jumps to the scalar potential
as the surfaces are crossed and fixing the scalar potential to be a different fixed
constant on each connected component of S2.

Whether the variational principles are formulated in terms of vector or scalar
potentials, the long exact homology sequence plays a crucial role in understand-
ing the topological implications of the formulations. In addition it sheds light
on prescribing boundary conditions for the vector potential formulation.



72 2. QUASISTATIC ELECTROMAGNETIC FIELDS

Introduction of Metric. In order to illustrate the role of cochain complexes
in the statement of variational principles, a constitutive relation must be intro-
duced. Let

H = H(B, r)

be a a tensor constitutive relation and let

B = B(H , r)

be the inverse transformation satisfying

B (H(B, r), r) = B.

Furthermore, assume that the matrix with entries

∂Hi
∂Bj

is symmetric positive definite. Consequently,

∂Bi
∂Hj

is symmetric positive definite.

Stationary Inductive Coenergy and Energy Principles. As stated before
for electroquasistatics, we now write the inductive energy principles. With the
metric as stated, the principles of stationary inductive coenergy and energy are
the following (see also [Mac70, pp. 330–332]) The coenergy principle is

T ′(H) = inf
H∈Z1

c (Ω−S2)

∫

Ω

∫ H

0

B(ξ, r) · dξ dV,

subject to the constraints that prescribe periods of H on generators ofH1(Ω, S2):

Ii =

∫

ci

H · dl, 1 ≤ i ≤ β1(Ω, S2).

The stationary inductive energy principle is

T (B) = inf
B∈Z2

c (Ω−S1)

∫

Ω

∫ B

0

H(ξ, r) · dξ dV,

subject to the constraints which prescribe periods of B on generators ofH2(Ω, S1)

Φj =

∫

Σi

B · n dS 1 ≤ i ≤ β2(Ω, S1).

As in the case of electroquasistatics, the extremals in both variational prin-
ciples are constrained to be relative cocycles. When principal conditions are
prescribed on the generators of a (co)homology group, the variation of the ex-
tremal is constrained to be a relative coboundary. This is readily seen from the
identities

Z1
c (Ω− S2) ' H1

c (Ω− S2)⊕B1
c (Ω− S2),

Z2
c (Ω− S1) ' H2

c (Ω− S1)⊕B1
c (Ω− S1),
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and the fact that the following relative de Rham isomorphisms have been as-
sumed:

H1
c (Ω− S2) ' H1(Ω, S2) H2

c (Ω− S1) ' H2(Ω, S1).

For linear constitutive relations the coenergy principle gives an upper bound
for inductance while the energy principle gives an upper bound for inverse induc-
tance. This is done by expressing the minimum of the functional as a quadratic
form in the prescribed periods and making the identifications

T ′(H) =
1

2

β1(Ω,S2)∑

i,j=1

IiLijIi, T (B) =
1

2

β2(Ω,S1)∑

i,j=1

ΦiΓijΦj .

From the upper bound on inverse inductance a lower bound on inductance can
be found in the usual way. The estimation of partial inductances can be obtained
by leaving some of the periods free in a given variational principle so that their
values can be determined by the minimization.

These variational principles are interesting since they provide a direct link
with lumped parameters and show how the various subspaces of the complexes
C∗
c (Ω−S1) and C∗

c (Ω−S2) play a role. As in the case of electrostatics it is useful
to further investigate the relative (co)homology groups of concern in order to see
how the above variational principles can be rephrased in terms of vector and
scalar potentials and to know the topological restrictions which may arise.

The Inductive Energy Principle with a Vector Potential. While we will
briefly state the stationary inductive energy principle in terms of a vector poten-
tial, we will not use it for calculations, preferring to concentrate on calculations
with the coenergy principle and scalar potential. The stationary inductive energy
principle with B = curlA is

T (curlA) = inf
A

∫

Ω

∫ A

H(curl ξ, r) · curl(dξ) dV,

subject to the principal boundary condition

n×A = curlψ on S1,

where [ψ]dj
is prescribed on generators of H1(S1, ∂S1) but ψ is otherwise an

arbitrary single-valued function. Note that in this formulation of the energy
principle the extremal A is unique to within an element of Z1

c (Ω− S1). Since

Z1
c (Ω− S1) = H1

c (Ω− S1)⊕B1
c (Ω− S1),

the nonuniqueness can be overcome by specifying the periods of A on the gen-
erators of H1(Ω, S1) and, in analogy with the uniqueness considerations of the
electric vector potential, specifying the divergence of A and its normal compo-
nent on S2 eliminates the ambiguity in B1

c (Ω− S1). More detailed explorations
of topological aspects of the vector potential in magnetostatics occur in Exam-
ples 1.15 and 3.4.
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The Inductive Coenergy Principle with a Scalar Potential. As in the
case of the capacitive coenergy principle, the three-step procedure from page 38
which came about from the long exact homology sequence plays a role in the
inductive coenergy principle. The added twist is that in order to formulate
the principle in terms of a scalar potential, cuts must be introduced in order
to make the scalar potential single-valued. The introduction of cuts requires
a certain amount of additional bookkeeping, but the method is essentially the
same as before. There are questions of what cuts are and how they might be
computed. These matters are treated more fully in later chapters.

In terms of a scalar potential, the inductive coenergy functional is

T ′(gradψ) = inf
gradψ∈Z1

c (Ω−S2)

∫

Ω−

∫ ψ

0

B(ξ, r) · dξ dV,

where Ω− = Ω−∪Σ′
i, 1 ≤ i ≤ dim im ̃1 denotes the region Ω with cuts removed.

Consider the following portion of the long exact homology sequence associated
with the pair (Ω, S2):

· · · δ̃2−→ H1(S2)
ı̃1−→ H1(Ω)

̃1−→ H1(Ω, S2)
δ̃1−→ H0(S2)

ı̃0−→ H0(Ω)
̃0−→ · · ·

According to the prescription given by Equation (1–3) (page 38), the generators
of H1(Ω, S2) can be constructed from the three-step procedure for

H1(Ω, S2) ' δ̃−1
1 (ker ı̃0)⊕ ̃1

(
H1(Ω)

ı̃1 (H1(S2))

)
.

Let ci, for 1 ≤ i ≤ β1(Ω, S2), be a set of curves which are associated with the
generators of H1(Ω, S2). The generators can be classified into two groups which
lend some insight into the periods of H.

The first group consists of dim im ̃1 generators of H1(Ω, S2) which are ho-
mologous in the absolute sense to generators of H1(Ω). These generators can be
associated with closed curves ci, 1 ≤ i ≤ dim im ̃1. In this case, the period

∫

ci

H · dl = Ii

is equal to the current in R3−Ω which links the generator ofH1(Ω, S2) associated
with ci.

The second group consists of dim ker ı̃0 remaining generators of H1(Ω, S2)
which are associated with simple open curves whose end points lie in distinct
connected components of S2. That is, in each connected component of Ω, one
can find curves ci+dim im ̃1 , for 1 ≤ i ≤ dim ker ı̃0, such that

∂ci+dim im ̃1 = pi − p0,

where p0 is a datum node lying in some connected component of S2 and each pi
lies in some other distinct connected component of S2. In this case, the period

∫

cj

H · dl = Ij , dim im ̃1 < j ≤ β1(Ω, S2)

is associated with a magnetomotive force.
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It is often convenient to describe the magnetic field intensity H in terms of a
scalar potential ψ since, from a practical point of view, it is much easier to work
with a scalar function than three components of a vector field. However, when
the periods of H do not vanish on the 1-cycles in the first group, then it is not
possible to make ψ continuous and single-valued since this would imply

Ii =

∫

ci

H · dl =

∫

ci

gradψ · dl = 0

since

∂ci = 0, 1 ≤ i ≤ dim im ̃1.

In order to overcome this difficulty one can perform an analog of the procedure
used to prescribe the tangential components of the vector potential. There exist
cut surfaces

Σ′
i, 1 ≤ i ≤ dim im ̃1,

such that the Σ′
i are associated with subspaces of H2(Ω, S1) of dimension equal

to dim im ̃1. Let Int (ci,Σ
′
j) denote the number of oriented intersections of the

1-chain ci with the relative 2-chain Σ′
j and let I be the the dim im ̃1×dim im ̃1

matrix such that

Iij = Int (ci,Σ
′
j).

The intersection matrix I is nonsingular as will be apparent when duality theo-
rems are considered. It turns out that one can make the scalar potential single-
valued on

Ω− = Ω−
dim im ̃1⋃

i=1

Σ′
i.

Assuming that the Σ′
i have been chosen properly, the periods of H on the

generators of H1(Ω, S2) which lie in the first group of generators are easily ex-
pressed in terms of the jumps in ψ as the Σ′

i are traversed. That is, if [ψ]Σ′

i
are

these jumps, then for 1 ≤ i ≤ dim im ̃1 one has

Ii =

∫

ci

H · dl =

∫

ci

gradψ · dl =

dim im ̃1∑

j=1

Iij [ψ]Σ′

j
.

This forms a set of linear equations which can be inverted to yield

[ψ]Σ′

i
=

dim im ̃1∑

j=1

I−1
ij Ij .

Thus, once the cuts have been selected, one has an explicit way of prescribing
the first dim im ̃1 periods of H in terms of the jumps in ψ. In order to specify
the remaining dimker ı̃1 periods of H in terms of the scalar function ψ, one
defines a dim ker ı̃0 × dim im ̃1 intersection matrix I ′ij whose entries are the

number of oriented intersections of curves ci+dim im ̃1 with surfaces Σ′
i. Hence
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the periods H on the remaining generators can be expressed as follows:

Ii+dim im ̃1 =

∫

ci+dim im j̃1

H · dl =

∫

ci+dim im ̃1

gradψ · dl

= ψ(pi)− ψ(p0) +

dim im j̃1∑

j=1

I ′ij [ψ]Σ′

j
.

Hence, if ψ(p0) is chosen arbitrarily, we have

ψ(pi) = ψ(p0) + Ii+dim im ̃1 −
dim im ̃1∑

j=1

I ′ij [ψ]Σ′

j

= ψ(p0) + Ii+dim im ̃1 −
dim im ̃1∑

l,j=1

I ′ij(Ijl)−1Il,

which is an explicit formula giving the value of ψ(pi) in terms of the remaining
periods to be prescribed.

Note that on the ith connected component of S2

ψ = ψ(pi), 0 ≤ i ≤ dim im δ1

since the tangential components of H vanish on S2.

Inductance Parameters from the Inductive Coenergy Principle. With
the foregoing discussion in mind, we will show the calculations which lead to
inductance parameters. Once cuts have been introduced, the calculations are,
in almost every respect, parallel to the ones previously done for capacitance
parameters. We start with the inductive coenergy functional

(2–41) T ′(gradψ) = inf
gradψ∈Z1

c (Ω−S2)

∫

Ω−

∫ ψ

0

B(ξ, r) · dξ dV,

where

Ω− = Ω−
⋃

1≤i≤dim im ̃1

Σ′
i

denotes the region Ω with cuts removed. The functional is subject to the follow-
ing constraints:

[ψ]Σ′

i
6= 0 on cuts Σ′

i, 1 ≤ i ≤ dim im ̃1,

n · B(gradψ, r) = 0 on S1,

n× gradψ = 0 on S2,

ψ = ψ(pi) on S2i.

The last constraint specifies a given constant on each connected component of
S2. In particular, for the last constraint let

S2 =

Rank ker ı̃0−1⋃

i=0

S2i,
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with S2i connected and disjoint from S2j when i 6= j. If Ω is connected and ψ is
zero on S20 (i.e., one component is grounded), then ψ ∈ Z1

c (Ω− S2) means that

ψ =

{
0, on S20,

ψ(pi), 1 ≤ i ≤ Rank ker ı̃0 − 1) on S2i,

where the ψ(pi) are constants.
Differentiating functional (2–41) in the space of fields and taking the variation,

the functional becomes
(2–42)

T ′(gradψ + δψ)− T ′(gradψ) =

∫

Ω−

B(gradψ, r) · grad(δψ) dV +O(‖δψ‖2).

Since the ψ(pi) are constants, δψ = 0 on S2i.
The first variation of the functional is the part of (2–42) which is linear in

δψ. Taking the first variation and integrating by parts,

δT ′ =

∫

∂Ω−

δψ B(gradψ, r) dS −
∫

Ω−

δψ divB(gradψ, r) dV.

Since δT ′ must vanish for all admissible variations of T ′, this equation implies
that the following boundary value problem is satisfied at the extremum ψ∗:

(2–43)

divB(gradψ∗, r) = 0 in Ω−,

B(gradψ∗, r) · n0 on S1,

ψ∗ = ψ(pi) on S2i,

with [ψ∗]Σ′

i
prescribed on Σ′

i for 1 ≤ i ≤ dim im ̃1.

Recall that the constitutive law satisfies the relation

∂Bi
∂Hj

=
∂Hj
∂Bj

,

so that the line integral in the functional

T ′(gradψ∗) =

∫

Ω−

(∫ ψ∗

0

B(grad η, r) · grad(dη)

)
dV

is independent of path. We now take a family of functions ψ∗
s (r), parametrized

by s, with 0 ≤ s ≤ 1, which are solutions to the boundary value problem which
is a variant of (2–43) and provides a linear interpolation between 0 and ψ∗.
Putting ψ∗

s into the preceding,

T ′(gradψ∗
s ) =

∫

Ω−

(∫ 1

0

B(gradψ∗
s , r) · grad

(
dψ∗

s

ds

)
ds

)
dV.
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Now interchange the order of integration and integrate by parts:

T ′(gradψ∗
s )

=

∫ 1

0

(∫

Ω−

B(gradψ∗
s , r) · grad

(dψ∗
s

ds

)
dV

)
ds

=

∫ 1

0

(∫

∂Ω−

dψ∗
s

ds
B(gradψ∗

s , r) · n dS −
∫

Ω−

dψ∗
s

ds
div(B(gradψ∗

s , r)) dV

)
ds

+

∫ 1

0

( dim im ̃1∑

i=1

∫

Σ′

i

[
∂ψ∗

s

∂s

]

Σ′

i

B (gradψ∗
s , r) · n dS

)
ds.

The second term in the last expression vanishes because div(B(gradψ∗
s , r)) = 0

and the first term can be split so that

T ′(gradψ∗
s ) =

∫ 1

0

(∫

S2

dψ∗
s

ds
B(gradψ∗

s , r) · n dS

+

∫

∂Ω−−S2

dψ∗
s

ds
B(gradψ∗

s , r) · n dS

)
ds

+

∫ 1

0

( dim im ̃1∑

i=1

∫

Σ′

i

[
∂ψ∗

s

∂s

]

Σ′

i

B (gradψ∗
s , r) · n dS

)
ds,

where the second term vanishes because B(gradψ∗
s , r) · n = 0 on S2. Then

T ′(gradψ∗
s ) =

∫ 1

0

( dim ker ı̃0−1∑

i=1

∫

S2i

dψ∗
s

ds
B(gradψ∗

s , r) · n dS
)
ds

+

∫ 1

0

( dim im ̃1∑

i=1

∫

Σ′

i

[
∂ψ∗

s

∂s

]

Σ′

i

B (gradψ∗
s , r) · n dS

)
ds.

Note that
dψ∗

s

ds
=

d

ds
(sIi) = Ii

is a constant on S2i while a similar relation exists on Σ′
i. Hence,

T ′(gradψ∗
s ) =

∫ 1

0

( dim ker ı̃0−1∑

i=1

Ii

∫

S2i

B(gradψ∗
s , r) · n dS

)
ds

+

∫ 1

0

( dim im ̃1∑

i=1

∫

Σ′

i

[
∂ψ∗

s

∂s

]

Σ′

i

B (gradψ∗
s , r) · n dS

)
ds.

This can be rewritten as

(2–44) T ′(gradψ∗
s ) =

dim ker ı̃0−1∑

i=1

Ii

∫ 1

0

Φi(s) ds

+

dim im ̃1∑

i=1

[ψ]Σ′

i

∫ 1

0

(∫

Σ′

i

B(gradψ∗
s , r) · n dS

)
ds,
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where

Φi(s) =

∫

S2i

B(gradψ∗
s , r) · n dS,

for 1 ≤ i ≤ dim ker ı̃0 − 1. On the cuts we have

Φdim ker ı̃0−1+i =

∫

Σ′

i

B(gradψ∗
s , r) · n dS

for dim ker ı̃0 < i ≤ β1(Ω, S2).
Finally, we develop the expression for the energy of a linear system of currents

which comes out of the preceding variational process. This expression comes
about by a calculation similar to the one made for electroquasistatics and con-
tains the notion of inductance parameters. We take the case of a linear isotropic
constitutive law so that the boundary value problem is linear and Φi(s) = sΦi.
Then ∫ 1

0

Φi(s) ds = Φi

∫ 1

0

s ds =
Φi
2

and (2–44) becomes

(2–45) T ′(gradψ∗) =
1

2

dim ker ı̃0−1∑

i=1

IiΦi +

dim im ̃1∑

j=1

[ψ∗]Σ′

j
Φdim ker ı̃0−1+j .

Let ψi, 1 ≤ i ≤ dim ker ı̃0 − 1 be the unique solutions to the boundary value
problem

[ψi] = 0 on Σ′
k for all k,

div(µ(r) gradψi) = 0 in Ω

(µ(r) gradψi) · n = 0 on ∂Ω− S2

ψi =

{
1 on S2i,

0 on S2j if j 6= i.

Note that ψi is dimensionless but ψ is not. Similarly, for dim im ̃1 ≤ i ≤
β1(Ω, S2), we let

[ψi]Σ′

j
=

{
1 if i = dim ker ı̃0 + j,

0 otherwise,

div(µ(r) gradψi) = 0 in Ω,

µ(r) gradψi · n = 0 on ∂Ω− S2,

ψi = 0 on S2k for all k.

Using the functions defined above, we can express the solution to this linear
isotropic version of (2–43) as

ψ∗ =

dim ker ı̃0−1∑

j=1

Ijψj +

dim im ̃1∑

j=1

[ψ]Σ′

j
Φdim ker ı̃0−1+j .
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To evaluate (2–45), note that

Φi =

∫

S2i

(µ(r) gradψ∗) · n dS

=

∫

S2i

dim ker ı̃0−1∑

j=1

Ij(µ(r) gradψj) · n dS

+

∫

S2i

dim im ̃1∑

j=1

[ψ]Σ′

j
(µ(r) gradψdim ker ı̃0−1+j) · n dS.

In principle this can be written as

Φi =

β1(Ω,S2)∑

j=1

IjLij ,

where the Lij are the entries of the inductance matrix.This step necessarily
involves rewriting the [ψ∗]Σ′

j
in terms of exterior currents by means of linking

information. Combining the last equation with (2–45), we have

T ′(gradψ∗) =
1

2

β1(Ω,S2)∑

i=1

β1(Ω,S2)∑

i=1

LijIiIj .

The energy of the linear system is a quadratic form in the currents, and the
coefficients of the inductance matrix are as given above. Physically, the entries
of the first block of Lij represent the flux linking surface S2i due to a unit current
on S2j and zero current on S2k when k 6= j. The second block on the diagonal
of the inductance matrix relates to the currents circulating on the boundaries of
the cuts. The inductance matrix is symmetric and positive definite.

2D. Steady Current Flow

We will soon see that in the modeling of quasistatic electromagnetic systems
where no mechanical work is being performed, it is important to track the electric
and magnetic energy, as well as the energy dissipated as heat. Having considered
electrostatics and magnetostatics in the previous two sections, we now turn to
steady current conduction. This sets the stage for our discussion of electroqua-
sistatic modeling in the next section.

Example 2.3 Steady Current conduction in three dimensions: n = 3,
p = 2. Consider a connected compact region Ω of finite, nonzero conductivity
and whose boundary may contain interfaces with nonconducting or perfectly
conducting bodies. Let ∂Ω = S1 ∪ S2, where S1 ∩ S2 has no area, and suppose

div J = 0 in Ω,

J · n = 0 on S1,

curlE = 0 in Ω,

n×E = 0 on S2.
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It is readily seen that the transformation

J → B, E →H,

makes this problem formally equivalent to example 1.15. It is clear that current
density J can be associated with an element of Z2

c (Ω − S1). The electric field
intensity E can be associated with an element of Z1

c (Ω − S2). Note that the
boundary condition on S1 can be associated with a symmetry plane or interface
with a nonconducting body while the boundary condition on S2 can be associated
with another type of symmetry plane or the interface of a perfectly conducting
body. If

Σi, 1 ≤ i ≤ β2(Ω, S1),

is a set of surfaces associated with a basis of H2(Ω, S1) then the periods of J on
the Σi,

Ii =

∫

Σi

J · n dS, 1 ≤ i ≤ β2(Ω, S1),

are associated with currents. In addition, if

ci, 1 ≤ i ≤ β1(Ω, S2),

is a set of curves associated with a basis of H1(Ω, S2), then the periods of E on
the ci

Vi =

∫

ci

E · dl, 1 ≤ i ≤ β1(Ω, S2),

are associated with voltages, or electromotive forces.
To obtain a variational formulation of the problem, consider a constitutive

relation

E = E(J , r)

and an inverse constitutive relation

J = J (E, r)

which satisfies

E (J (E, r), r) = E.

Furthermore, assume that the two matrices with elements

∂Ei
∂Jj

,
∂Ji
∂Ej

are symmetric and positive definite. In this case the principles of stationary
content and cocontent can be stated as follows (see [Mac70, pp. 329–330]).

Stationary Content Principle.

G(J) = inf
J∈Z2

c (Ω−S1)

∫

Ω

(∫ J

0

E(ξ, r) · dξ
)
dV,

subject to the constraints which prescribe the periods of J on generators of
H2(Ω, S1)

Ii =

∫

Σi

J · n dS, 1 ≤ i ≤ β2(Ω, S1)
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Stationary Cocontent Principle.

G′(E) = inf
E∈Z1

c (Ω−S2)

∫

Ω

(∫ E

0

J (ξ, r) · dξ
)
dV

subject to the constraints which prescribe the periods of E on generators of
H1(Ω, S2)

Vi =

∫

ci

E · dl, 1 ≤ i ≤ β1(Ω, S2).

As in the previous two examples, the two variational principles stated above
constrain the extremal to be a relative cocycle and when additional constraints
are prescribed on the generators of a (co)homology group, the variation of the
extremal is constrained to be a relative coboundary.

For linear constitutive relations the content principle gives an upper bound
for resistance while the cocontent principle gives an upper bound on conduc-
tance. As usual the upper bounds are obtained by expressing the minimum of
the functional as a quadratic form in the prescribed periods and making the
identifications

G(J) =

β2(Ω,S1)∑

i,j=1

IiRijIj , G(E) =

β1(Ω,S2)∑

i,j=1

ViGijVj .

From the upper bound on conductance, a lower bound on resistance can be found
in the usual way.

By attempting to express the variational principles in terms of vector and
scalar potentials one will find, as in previous examples, many topological sub-
tleties. Noticing the mathematical equivalence between this example involving
steady currents and the previous one involving magnetostatics, one may form a
transformation of variables

J → B, E →H, T → A, φ→ ψ,

as soon as one tries to define potentials φ and T such that

J = curlT , E = gradφ.

Summarizing the results of exploiting the mathematical analogy, one can say
the following about the cocontent principle in terms of a vector potential T . As
in the previous example, one can consider the long exact homology sequence for
the pair (Ω, S1) and obtain

H2(Ω, S1) = δ−1
2 (ker ı̃1)⊕ ̃2

(
H2(Ω)

ı̃2 (H2(S1))

)

where the relevant portion of the long exact homology sequence is

· · · δ3−→ H2(S1)
ı̃2−→ H2(Ω)

̃2−→ H2(Ω, S1)
δ2−→ H1(S1)

ı̃1−→ H1(Ω)
̃1−→ · · ·

As in the case of the vector potential A in Example 1.15, the surfaces Σi, 1 ≤
i ≤ β2(Ω, S1) can be split up into two groups where the first group is associated
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with a basis of the second term in the direct sum and the periods vanish on this
first group. That is: the set

Σi, 1 ≤ i ≤ dim im ̃2,

is related to a basis for im ̃2 and

Ii =

∫

Σi

J · n dS =

∫

∂Σi

T · dl = 0

since

∂Σi = 0, 1 ≤ i ≤ dim im ̃2.

The second group is associated with a basis for the first term in the direct
sum. The periods of the current density J is easily expressed in terms of the
vector potential in this case. Let

∂Σi+dim im ̃2 , 1 ≤ i ≤ dim im δ2,

be associated with a basis of im δ2:

Ii+dim im ̃2 =

∫

Σdim im(̃2)+i

J · n dS =

∫

∂Σi+dim im ̃2

T · dl.

The fact that the periods of J vanish on the first dim im ̃2 generators of
H2(Ω, S1) in order for a vector potential to exist imposes no real constraint on
the problem since these periods represent the rate of change of net charge in some
connected component of R3−Ω. Since the problem is assumed to be static, these
periods are taken to be zero. The next problem which arises is the prescription
of the tangential components of the vector potential on S1 so that the normal
component of J vanishes there and the periods of J on the δ−1

2 (ker ı̃1) remaining
generators of H2(Ω, S1) can be prescribed in terms of the vector potential. This
problem can be overcome by using exactly the same technique as in Example 1.15.
That is, let

n× T = curlψ on S1

where the jumps

[ψ]dj
, 1 ≤ j ≤ β1(S1, ∂S1),

are prescribed on the curves di which are associated with a basis of H1(S1, ∂S1).
As in that previous example, selecting a set of curves zi, 1 ≤ i ≤ β1(S1), associ-
ated with a basis of H1(S1) where

∂Σi+dim im ̃2 = zi, 1 ≤ i ≤ dim im δ2,

one can explicitly describe the jumps [ψ]dj
in terms of the periods

Ii+dim im ̃2 , 1 ≤ i ≤ dim im δ2.

In this way it is possible to restate the stationary content principle as follows:
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Stationary Content Principle (J = curlT ).

G(curlT ) = inf
T

∫

Ω

∫ T

E(curl ξ, r) · curl(dξ) dV,

subject to the principal boundary condition

n× T = curlψ on S1,

where [ψ]dj
are prescribed on curves representing generators of H1(S1, ∂S1) and

ψ is otherwise an arbitrary single-valued function.
Turning to the other variational principle, and using the mathematical analogy

between this example and the previous example, one sees that the stationary
cocontent principle cannot in general be expressed in terms of a continuous
single-valued scalar potential. To see why this is so, one considers the following
portion of the long exact homology sequence of the pair (Ω, S2):

· · · δ2−→ H1(S2)
ı̃1−→ H1(Ω)

̃1−→ H1(Ω, S2)
δ1−→ H0(S2)

ı̃0−→ H0(Ω)
̃0−→ · · ·

Let
ci, 1 ≤ i ≤ dim im ̃1,

be a set of curves associated with a basis of im ̃1 in H1(Ω, S2). The periods of
the electric field intensity E on these curves are in general nonzero, but would
be zero if E is the gradient of a continuous single-valued scalar potential. As in
Example 1.15, this problem can be overcome by letting

Σ′
i, 1 ≤ i ≤ dim im ̃1

be a set of surfaces associated with generators ofH2(Ω, S1) which act like barriers
which cause the scalar potential to be single-valued on

Ω− = Ω−
dim im J̃1⋃

i=1

Σ′
i.

Furthermore, the periods

Vi =

∫

ci

E · dl, 1 ≤ i ≤ dim im ̃1,

can be prescribed in terms of the jumps [ψ]Σ′

i
, and when this is done the remain-

ing periods

Vi+dim im ̃1 =

∫

ci+dim im ̃1

E · dl

can be expressed in terms of the scalar potential, which is constant-valued on
each connected component of S2. That is, if

∂ci+dim im ̃1 = pi − p0, 1 ≤ i ≤ dim im δ1,

then
φ = φ(pi)

on the ith connected component of S2, and if p0 is some datum node then the last
dim im δ1 periods of E can be prescribed by specifying the potential differences

φ(pi)− φ(p0), 1 ≤ i ≤ dim im δ1.
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When this is done the stationary cocontent principle can be rephrased in terms
of a scalar potential as follows.

Stationary Cocontent Principle (E = gradφ).

G′(gradφ) = inf
φ

∫

Ω

∫ φ

J (grad ξ, r) · grad(dξ) dV

subject to the constraints

[φ]Σi
, prescribed on cut surfaces Σ′

i

and

φ = φ(pi), on the ith connected component of S2.

In summary, the problem of calculating steady current distributions in con-
ducting bodies and the problem of three-dimensional magnetostatics are equiv-
alent under the change of variables

A↔ T , B ↔ J ψ ↔ φ, H ↔ E,

hence the mathematical considerations in using vector or scalar potentials are
the same in both problems. Thus it is necessary to summarize only the physical
interpretations of the periods and potentials. In this example vector fields J and
E were associated with elements of Z2

c (Ω−S1) and Z1
c (Ω−S2) respectively and

the nondegenerate bilinear pairings
∫

: H2(Ω, S1)×H2
c (Ω− S1)→ R,

∫
: H1(Ω, S2)×H1

c (Ω− S2)→ R,

induced in homology and cohomology by integration, are associated with currents
and electromotive forces respectively. The formulas

Z2
c (Ω− S1) ' H2

c (Ω− S1)⊕B2
c (Ω− S1),

Z1
c (Ω− S2) ' H1

c (Ω− S2)⊕B1
c (Ω− S2),

show that when there is a variational principle where either J or E are inde-
pendent variables, conditions fixing the periods of these relative cocycles restrict
the variation of the extremal to be a relative coboundary. Alternatively, when
the variational principles are formulated in terms of potentials, the potentials
are unique to within an element of

Z1
c (Ω− S1) for T ,

Z0
c (Ω− S2) for φ,

and techniques of the previous example show how to eliminate this nonuniqueness
in the case of the vector potential. ˜

Example 2.4 Currents on conducting surfaces: n = 2, p = 1. Consider
again the two dimensional surface of Example 1.5, which is homeomorphic to a
sphere with n handles and k holes, and suppose that the component of the mag-
netic field normal to the surface is negligible and that the frequency of excitation
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is low enough to make displacement currents negligible. Hence let ∂Ω = S1∪S2,
where S1 ∩ S2 has no length, and assume

div J = 0 on Ω,

Jn = 0 on S1,

curlE = 0 on Ω,

Et = 0 on S2.

Thus S1 is associated with the edge of the plate which does not touch any other
conducting body and S2 is associated with the interface of a perfect conductor.
Alternatively S1 or S2 can be identified with symmetry planes. In this case the
electric field E is associated with an element of Z1

c (Ω− S2).
Let n

′ be the vector normal to the sheet. Then n
′×J can be associated with

an element of Z1
c (Ω− S1). That is,

curl(n′ × J) · n′ = 0 on Ω,

(n′ × J)t = 0 on S1.

Let ci, for 1 ≤ i ≤ β1(Ω, S1), be a set of curves associated with generators of
H1(Ω, S1) and let zj , 1 ≤ j ≤ β1(Ω, S2), be another set of curves associated with
generators of H1(Ω, S2). Let these sets of curves be arranged in intersecting pairs
as in Example 1.5. That is, if Int (ci, zj) is the number of oriented intersections
of ci with zj , then

Int (ci, zj) = δij (Kronecker delta).

Furthermore let the periods of the two cocycles on these sets of cycles be denoted
by

Ii =

∫

ci

(J × n
′) · dl, 1 ≤ i ≤ β1(Ω, S1),

Vj =

∫

zj

E · dl, 1 ≤ j ≤ β1(Ω, S2).

If d is the thickness of the plate and σ the conductivity of the material, the
stationary content and cocontent principles can be restated as follows (note that
J has units of current per length in this problem).

Stationary Content Principle.

G(J) = inf
J×n′∈Z1

c (Ω−S1)

∫

Ω

|J |2
σd

dS,

subject to the constraints prescribing the periods of J × n
′ on generators of

H1(Ω, S1):

Ii =

∫

ci

(J × n
′) · dl, 1 ≤ i ≤ β1(Ω, S1).
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Stationary Cocontent Principle.

G′(E) = inf
E∈Z1

c (Ω−S2)

∫

Ω

σd |E|2
2

dS

subject to the constraint prescribing the periods of E on generators of H1(Ω, S2):

Vj =

∫

zj

E · dl, 1 ≤ j ≤ β1(Ω, S2).

As in Examples 1.14, 1.15 and 2.3, the extremals are constrained to be rela-
tive cocycles, and when the periods on generators of relative homology groups
are specified, the space of admissible variations of the extremal is the space of
coboundaries. This follows from the identities

Z1
c (Ω− S1) ' H1

c (Ω− S1)⊕B1
c (Ω− S1),

Z1
c (Ω− S2) ' H1

c (Ω− S2)⊕B1
c (Ω− S2).

The relationship of these variational principles to the lumped parameters of
resistance and conductance is the same as in example 2.3 and hence will not
be discussed here. Instead, it is instructive to reformulate the above variational
principles in terms of scalar potentials. By interpreting the ci and the zi as cuts,
one can set

J = curlχ on Ω−
β1(Ω,S2)⋃

i=1

zi, χ = 0 on S1,

and let [χ]zi
denote the jump of χ as zi is traversed. Similarly one can set

E = gradφ on Ω−
β1(Ω,S1)⋃

i=1

ci, φ = 0 on S2,

where the jumps of φ on the ci are denoted by [φ]ci
.

It is quite natural to associate J with an element of Z1
c (Ω−S1) having nonzero

periods. These periods result naturally from a nonzero current being forced by
time varying magnetic fields. On the other hand the assumption that the electric
field is irrotational in the plate seems to preclude the possibility of the electric
field having nonzero periods, but this is not necessarily the case.

The periods of the cocycles in terms of the jumps in the corresponding po-
tentials are easily calculated. Here the duality

H1(Ω, S1) ' H1(Ω, S2)

comes in nicely, for if the entries of the intersection matrix satisfy

Iij = Int (ci, zj) = δij ,
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then

Ii =

∫

ci

(J × n
′) · dl =

∫

ci

(
(curlχ)× n

′
)
· dl =

∫

ci

gradχ · dl

=

β1(Ω,S2)∑

i=1

Iij [χ]zj
(since ∂ci ∈ C0(S1))

= [χ]zi

for 1 ≤ i ≤ β1(Ω, S1), and similarly

Vj =

∫

zj

E · dl =

∫

zj

gradφ · dl

=

β1(Ω,S1)∑

i=1

Iij [φ]ci
since ∂zi ∈ C0(S2)

= [φ]ci
.

Thus when the bases of H1(Ω, S1) and H1(Ω, S2) are arranged so that the inter-
section matrix is the unit matrix, the stationary content and cocontent principles
can be restated as:

Stationary Content Principle (J = curlχ).

G(curlχ) = inf
χ

∫

Ω

|curlχ|2
2σd

dS

subject to
χ = 0 on S1

and the constraints prescribing the periods of J×n
′ on generators of H1(Ω, S1):

Ii = [χ]zi
1 ≤ i ≤ β1(Ω, S1).

Stationary Cocontent Principle (E = gradφ).

G′(gradφ) = inf
φ

∫

Ω

σd |gradφ|2
2

dS

subject to φ = 0 on S2 and the constraints prescribing the periods of E on
generators of H1(Ω, S2):

Vi = [φ]ci
.

Thus, by playing down the role implicitly played by the long exact homology
sequence, the role of duality theorems in handling topological aspects has become
more apparent in this example. Duality theorems will be explored in greater
detail in Chapter 3. ˜

The previous examples show that homology groups arise naturally in bound-
ary value problems of electromagnetics. It is beyond the intended scope of these
introductory chapters to go beyond a heuristic account of axiomatic homology
theory in the context of the boundary value problems being considered because
additional mathematical machinery such as categories, functors, and homotopies
are required to explain the axioms which underlie the theory (see [HY61, Section
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7.7] for an explanation of the axioms). It is sufficient to say that the existence of
a long exact homology sequence is only one of the seven axioms of a homology
theory. The other six axioms of a homology theory, once understood, are “intu-
itively obvious” in the present context and have been used implicitly in many of
the previous examples.

2E. The Electromagnetic Lagrangian and Rayleigh Dissipation
Functions

Introduction. In the beginning of this chapter, we defined quasistatics as fol-
lows. Given an electromagnetic system with overall dimension l, and highest
frequency of interest fmax, the system is quasistatic if the corresponding wave-
length, λmin = c/fmax, is considerably larger than l. Unfortunately this criterion
does not give us any tools for modeling quasistatic systems. The tools for ex-
tracting circuit models from quasistatic systems are based on tracking energy
and identifying circuit variables with the periods of the closed differential forms
which are responsible for the low frequency modes of energy storage and power
dissipation. If the system is rigid, there is no possibility of doing mechanical
work, and energy can only be stored in the electric or magnetic field, or dissi-
pated as heat. These three aspects of the electromagnetic field where introduced
in sections 2B, 2C, 2D, respectively. If we interpret the magnetic energy as the
energy of moving charges and the electric energy as the energy of stationary
charges, then we can naively view the Lagrangian for the electromagnetic field
as the difference between magnetic and electric energies. This is indeed the case
and is the 19th century view of the Lagrangian for the electromagnetic field. In
this section we will add flesh to this bare bones point of view. To do so, we will
first review the Lagrangian mechanics of dissipative systems and the calculus of
variations for multiple integral problems. This provides the basis for building
our electromagnetic Lagrangian and associated Rayleigh dissipation function

Lagrangian Mechanics and Rayleigh Dissipation Function. Lagrangian
mechanics [Lan70] is one of the most beautiful chapters in the history of mathe-
matical physics. In this section we introduce some key aspects which are needed
to develop our picture of electroquasistatics. In order to get started and to avoid
an overly detailed treatment, we will focus on three terms which describe the
simplest systems: dissipationless, holonomic, and scleronomic.

Dissipationless systems are systems whose internal energy may change from
on form to another in a reversible way, but is never dissipated as heat. Holo-
nomic systems are systems whose energy can be described by a set independent
coordinates. Motorists may recognize that a car with tires constrained to roll on
the pavement without slipping is an example of a nonholonomic system. If the
position and orientation of the car are described by three coordinates (x, y, θ),
a car cannot move sideways by using only one of the two variables which can
be changed, namely the position of the steering wheel and the ability to move
forward and backward. Furthermore, the no-slip condition provides a relation
between the differentials dx, dy, and dθ. However the car cannot be described by



90 2. QUASISTATIC ELECTROMAGNETIC FIELDS

two coordinates alone since, by moving forward, turning wheels, moving back-
ward, turning wheels in opposite direction, and repeating these four steps, the
car can be moved sideways as in parallel parking. In effect, one can place and
orient the car to coincide with any chosen values of x, y, and θ, but these co-
ordinates are dependent and no two coordinates suffice. This characterizes a
nonholonomic system.

Since the analysis of nonholonomic systems tends to be involved, and the
subject is often avoided in elementary treatments, we will consider just one
more example before moving on:

Example 2.5 A billiard ball on a flat table as a nonholonomic system.
Consider Cartesian coordinates (x, y, z) in Euclidean space and a table top whose
surface is given by the equation z = 0. Suppose also that a billiard ball whose
surface described by spherical coordinates θ and φ is lying on the table. The
orientation of the ball is described by three coordinates: θ, φ fix the point of
the ball touching the table, and ψ describes a rotation about this fixed point.
Adding the constraint that the ball must always remain in contact with the table,
the five coordinates (x, y, θ, φ, ψ) describe the position of the ball. If the motion
is constrained by requiring that the ball roll without slipping, the coordinates
are not independent since the no-slip condition involves the differentials of all
coordinates. The subtlety is that no four coordinates describe the ball com-
pletely, since there always exists a way of starting at any given (x0, y0, θ0, φ0, ψ0)
and rolling the ball on the table without slipping to end up at another given
(x0, y0, θ1, φ1, ψ1). (Try it!) Hence five coordinates subject to a differential rela-
tion describe the ball but no four coordinates suffice, and we see that the system
is nonholonomic. ˜

We will not consider detailed examples of nonholonomic systems arising in
electromechanical energy conversion, but rather be satisfied with the terms dis-
sipationless and holonomic. For a dissipationless holonomic system, we can con-
sider the energy E which depends on some number n of independent coordinates
{qi}ni=1, their time derivatives and time. The space (or manifold) described
by these local coordinates is called the configuration space. For nonrelativistic
systems, we write

E = T + V

where V is the potential energy which is a function of the coordinates {qi}ni=1

and time, and T is the kinetic energy which is a symmetric positive definite
quadratic form in the velocities {q̇i}ni=1, whose coefficients can be functions of
{qi}ni=1 and time. Thus at a given time, the energy is a function of 2n variables.

The Lagrangian of a dissipationless holonomic system is defined as the differ-
ence between the kinetic and potential energies, L = T −V , and the principle of
least action states that the system evolves in time such that the functional

∫
L(q1, . . . , qn, q̇1, . . . , q̇n) dt

is stationary with respect to variations in the functions {qi(t)}ni=1.
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The significance of the Lagrangian is appreciated when one solves complicated
problems in mechanics. We shall soon see that the techniques of the calculus of
variations show that the above functional is stationary if the functions {qi(t)}ni=1

satisfy the Euler–Lagrange equations:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, 1 ≤ i ≤ n.

For nontrivial systems such as tops, coupled pendulums and spherical pendu-
lums, one quickly learns that it is far simpler to form the Lagrangian and try
solve a system of Euler–Lagrange equations than to attempt to write down the
equations of motion using Newton’s equations. This is the simplest vindication
of the Lagrangian approach.

Often the Lagrangian of a system does explicitly depend on time. Such sys-
tems are called scleronomic systems. This class of systems is of secondary im-
portance to us since we want to consider systems which are subject to external
excitations.

It must be stressed that quasistatic electromagnetic systems may or may not
be dissipationless, holonomic, or scleronomic. Given the elements of Lagrangian
mechanics introduced so far and our goal of modeling electromagnetic systems,
it is imperative that we consider dissipative systems. Although dissipation is a
result of processes described by huge numbers of molecular degrees of freedom, on
a macroscopic scale we are limited to models which use only {qi, q̇i} as variables.
To see how one attempts to model dissipation, we consider the variation of the
Euler–Lagrange equations when external forces are present:

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Fi, 1 ≤ i ≤ n.

Here the Fi are external forces which for the moment we will assume model
dissipative processes. The simplest model involves assuming frictional forces so
that each Fi is a linear combination of the velocities {q̇j}. The Rayleigh dissipa-
tion function arises when one assumes that the heat generated is a well-defined
function of the velocities. For a linear friction law we then have a quadratic form

F =
1

2

n∑

i,j=i

cij q̇iq̇j such that Fi =
∂F

∂q̇i
.

Thus, a holonomic system whose dissipation is a result of linear friction laws is
characterized by T , V , and F . The equations of motion are given by

(2–46)
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=
∂F

∂q̇i
, 1 ≤ i ≤ n,

where L = T −V . This recipe works for continuum systems but before applying
the formalism to electroquasistatic systems where T , V , and F correspond to
magnetic energy, electric energy, and Joule dissipation, we need to invest in the
techniques of the calculus of variations.
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The Calculus of Variations for Multiple Integral Problems. To extend
the formalism of the Lagrangian mechanics of dissipative systems to electro-
magnetic systems, we need the calculus of variations. To get started in the
multidimensional case, we need some notation for differential operators. Con-
sider an n-dimensional region R, and two vector spaces V1 and V2 of dimension
r1 and r2, respectively. Let V1 and V2 be the spaces of smooth functions from
the region R to V1 and V2 respectively. A differential operator is a map

D : V1 → V2

of a special form between two such spaces. Concretely, D is represented by an
r1×r2 matrix whose entries are variable coefficient differential operators of some
specified degree. We consider a few examples:

(1) dp/dtp is a degree p differential operator. Here R is R and r1 = r2 = 1.
(2) grad, div, and curl are first-degree differential operators. Here R is a three-

dimensional subset of R3 and (r1, r2) are (1, 3), (3, 1), and (3, 3) respectively.
(3) The Laplacian operators −div grad and curl curl− graddiv are second order

differential operators defined on subsets of R3. Here (r1, r2) are (1, 1) and
(3, 3), respectively.

(4) The wave operators

−div grad+
1

c2
∂2

∂t2

and

− graddiv + curl curl+
1

c2
∂2

∂t2

are second order differential operators defined on subsets of R4 (space-time).
Here again (r1, r2) are (1, 1) and (3, 3) respectively.

In order to talk about the multidimensional version of an Euler–Lagrange equa-
tion, we need some acquaintance with the notion of an adjoint operator. To get
started, suppose V1 and V2 are inner product spaces with inner products 〈 · , · 〉V1

and 〈 · , · 〉V2
respectively. More generally we can replace the inner products with

nondegenerate symmetric bilinear forms. We can then define inner products on
V1 and V2 by

〈f1, f2〉Vi
=

∫

R

〈f1, f2〉Vi
dV.

Formally, we can define a transpose operator DT by the formula

〈Du, v〉V2
= 〈u,DT v〉V1

,

where DT : V2 → V1, and if we are not dealing with inner product spaces, we
should define DT as a map between dual spaces. In practice, the operators D
and DT are supplemented by boundary conditions, and given D, DT is found via
integration by parts. Returning to our examples, we have, ignoring boundary
conditions:

(1) If D = d/dt then DT = −d/dt on R1, r1 = r2 = 1.
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(2) For R ∈ R3, we have from standard vector identities

D = grad =⇒ DT = −div (r1, r2) = (1, 3),

D = curl =⇒ DT = − curl (r1, r2) = (3, 3),

D = div =⇒ DT = − grad (r1, r2) = (3, 1).

(3) For R ∈ R3 we can iterate the above identities to get

D = −div grad =⇒ DT = D modulo boundary conditions,

D = − grad div + curl curl =⇒ DT = D modulo boundary conditions.

(4) If D is a wave operator as above, then DT = D modulo boundary and initial
conditions. This follows from examples 1 and 3 above.

Refusing to slow down for a careful specification of V1 and V2, or to specify the
boundary conditions picked up when integrating by parts, then we are ready for
a naive introduction to multiple integral problems in the calculus of variations.
Suppose now that u is a map from the region R to a vector space V , u : R→ V
which is, in some sense, smooth. If V is R, then u is a function and if V is Rn

then we can naively think of u as a vector or tensor field. Next, consider a set
of inner product spaces {Vi}mi=1 and spaces of maps

vi = Maps(R,Vi), 1 ≤ i ≤ m.
If each Vi is an inner product space with inner product 〈·, ·〉Vi

, then

〈f1, f2〉Vi
=

∫

R

〈f1, f2〉Vi
dV

is an inner product on Vi. Suppose further that we have differential operators

Di : V → Vi
and associated adjoint operators defined via

〈Diu, v〉Vi
= 〈u,DT

i v〉Vi
.

In this context, consider the following functional defined in terms of an integral
over the n-dimensional region R:

(2–47) F [u] =

∫

R

F (u,D1u, . . . ,Dmu) dV,

where F is a smooth function

F : V ⊕ (⊕mi=1Vi) −→ R.

To derive an Euler equation for such a functional, we can compute the variation
of the functional, take the linear part if the functional is differentiable, and set it
equal to zero. Although this is a tall order, the form of the functional allows us
to reduce the problem to finding the Taylor series of a function, and integration
by parts.

Consider a family of functions ũε parametrized by ε ∈ [0, 1]:

ũε : R× [0, 1] −→ V.



94 2. QUASISTATIC ELECTROMAGNETIC FIELDS

If we assume that ũε is analytic in the parameter ε, the F [ũε] becomes a function
of ε when ũε is given. We call this function f(ε). That is ,

f(ε) = F [ũε],

and f ′(ε)|ε=0 is the variation of F in the direction of ũ′0. Here we can think of ũε
as a curve in the space of functions and ũ′0 as the tangent vector to the endpoint
ũ0. Using the chain rule we have

f ′(0) =

∫

R

〈
∂F

∂u
, ũ′0

〉
+

m∑

k=1

〈
∂F

∂(Dku)
,Dkũ

′
0

〉

Vi

dV.

Here we have taken the liberty of identifying the finite-dimensional vector spaces
with their duals. By the definition of the adjoint operators we have
(2–48)〈

δF

δu
, ũ′0

〉

V

=

∫

R

〈
∂F

∂u
+

m∑

k=1

DT
k

( ∂F

∂(Dku)

)
, ũ′0

〉

V

dV + Boundary Terms.

Since we must have the first variation of the functional vanish for all possible
“admissible variations” ũ′0, we conclude that

(2–49)
∂F

∂u
+

m∑

k=1

DT
k

(
∂F

∂(Dku)

)
= 0 in R

is the Euler equation for the functional (2–47). Boundary conditions and global
topological aspects emerge when the boundary terms arising from integration by
parts are scrutinized.

At this point we see that we have achieved our immediate goal of generalizing
the Euler–Lagrange equation of classical mechanics

∂L

∂qi
− d

dt

(
∂L

∂(dqi/dt)

)
= 0.

Before reconciling quasistatic electromagnetic systems with the Lagrangian me-
chanics of dissipative systems, some of the more subtle aspects of the above
development should be mentioned. They help motivate some ideas which will be
developed in later chapters.

(1) The details of how one performs the integrations by parts in order to de-
duce the transpose operators and boundary conditions can be a huge chore.
Luckily, all of the differential operators encountered in electromagnetism are
special cases of the exterior derivative. This is because they can all be re-
lated to Maxwell’s equations in integral form. As we shall see in the next
chapter, Stokes’ theorem on manifolds will make all of these conditions sim-
ple to compute. Furthermore, our investment in cohomology theory will pay
off when it comes time to extract lumped parameter information from the
boundary integrals.

(2) The argument that the functional is stationary when its first derivative van-
ishes requires that the functional be differentiable and that the remainder
term in the functional Taylor series be bounded in some neighborhood of the
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stationary point. A careful treatment requires defining a space of “admissi-
ble variations”. This is a delicate issue which must be handled case by case.
In most cases, the physics of the situation dictates a suitable “energy norm”
to resolve these issues.

(3) We have considered nonquadratic functionals. We now need to consider how
one reduces a minimization problem to something amenable to computer
solution. Loosely speaking there are three basic steps involved. Although
they are elaborated in the remainder of the book, it is fun to have a sneak
preview:
(a) If we restrict ourselves to convex functionals, we are guaranteed a unique

minimum. If the convex functional is nonquadratic, one can use the
Newton–Kantorovich method to get a sequence of linear boundary value
problems which inherit a variational structure. In this way, minimizing
a convex, nonquadratic functional is reduced to minimizing a sequence
of quadratic functionals.

(b) The second step in reducing a quasistatic problem to something amenable
to computer solution is to consider elliptic problems. Technically speak-
ing, elliptic problems are those for which the characteristics of the system
of equations are trivial. This opens the door to elliptic regularity the-
ory, that is, tools for proving that the solution is smooth. This in turn
guarantees that the solution can be approximated quite well in some
finite-dimensional vector space. In other words, elliptic equations, un-
like hyperbolic equations where singularities can propagate, have smooth
solutions and this is a key step in reliably computing solutions. We will
elaborate on the notion of ellipticity in the context of quadratic func-
tionals below.

(c) Finite element theory provides a way of discretizing the solution space of
an elliptic differential operator and approximating the solution by a func-
tion of a finite number of degrees of freedom. In this way, the problem of
finding a solution reduces to finding the minimum of a matrix quadratic
form. The resulting matrix equation involves a large, sparse, symmetric,
positive definite matrix—a great playground for high-performance com-
puting. Furthermore, as we shall see in following chapters, our invest-
ment in the formalism of chains and cochains points to “Whitney forms”
as an interpolation scheme for finite element discretizations of problems
involving vector fields. A leisurely but accurate survey of these ideas can
be found in the thesis of Tarhasaari [Tar02].

Before we refocus on modeling quasistatic electromagnetic systems by building
a continuum analog of Lagrangian mechanics, we consider the special case of
Equations (2–48) and (2–49) where the functional is quadratic. If Di : V → Vi,
1 ≤ i ≤ n as before, and

F [u] = 〈u, u〉V +

k∑

i=1

〈Diu,Diu〉Vi
+ 〈u, f〉
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In this case, the Euler–Lagrange equation has the form

u+

n∑

i=1

DT
i Diu = −f in R,

and before we consider a few concrete examples we will elaborate on the notion
of ellipticity. Suppose each Di is a first order differential operator. Then the
operator in the equation above is a matrix of second order differential operators.
If we replace the partial derivatives by Fourier variables, we obtain the “sym-
bol”of the differential operator. The principal symbol, denoted by σp is a r × r
matrix of homogeneous second-order polynomials in the Fourier variables. The
equation is elliptic if

det

(
σp

( n∑

i=1

DT
i Di

))
6= 0

for any choice of Fourier variables restricted to the unit sphere in the Fourier
domain. This can be clarified by means of a few examples.

Example 2.6 Ellipticity of the scalar Laplacian. If

−div grad =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

and ( ∂
∂x
,
∂

∂y
,
∂

∂z

)
→ (iξ, iη, iζ)

in Fourier space, then σp(−∇2) = +(ξ2 + η2 + ζ2) is a matrix and

det(σp(−∇2))
∣∣
ξ2+η2+ζ2=1

= 1,

so that −∇2 is elliptic. ˜

Example 2.7 Ellipticity of the vector Laplacian. curl curl− graddiv =
−I3×3∇2 in Cartesian coordinates. Using the same coordinates as before,

det(σp(−I3×3∇2))|ξ2+η2+ζ2=1 = 1,

so that −I3×3∇2 is elliptic. ˜

Example 2.8 Nonellipticity of the wave equation. If −div grad+
1

c2
∂2

∂t2
is the wave operator and

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂t

)
→ (iξ, iη, iζ, iτ),

then σp = ξ2 + η2 + ζ2 − τ2/c2. Finally,

det(σp)|ξ2+η2+ζ2+τ2=1 = 0

when

ξ2 + η2 + ζ2 =
τ2

c2
.

Hence, the wave operator is not elliptic and there can be discontinuous solutions
on the light cone. ˜
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Note that in the case of Lagrangian mechanics there is no need to fuss about
ellipticity. This is because any ordinary differential operator whose highest order
derivative has a nonvanishing coefficient is automatically elliptic. However, once
we know where to be careful, we can return to finding the continuum analogs of
L = T − V and F for an electroquasistatic system.

We now return to the process of reconciling the Lagrangian mechanics of dis-
sipative systems, with the analysis of quasistatic electromagnetic systems. It
turns out that the Lagrangian for Maxwell’s equations subject to the constitu-
tive laws of free space and prescribed current and charge distributions, is most
simply expressed in terms of differential forms. Since Maxwell’s equations in
four dimensions are considered in Example 7.10 (page 229), and the Hodge star
is presented in Section MA-L, we have the basic ingredients of the electromag-
netic Lagrangian at our fingertips. However, we will now see that in the analysis
of quasistatic systems, there is no need to assemble the Lagrangian. There are
practical reasons for not doing so:

(1) The underlying geometry in space-time is not Riemannian, but Lorentzian
and the Hodge star operator is easily modified in order to account for the
signature of the metric. This essential detail, however, has profound conse-
quences; the resulting Euler–Lagrange equations are wave equations and not
elliptic equations like Poisson’s equation. Hence they are much more difficult
to deal with since the regularity results which apply to elliptic equations are
no longer applicable.

(2) If the Lagrangian is expressed as L = T − V , where T and V are positive
semi-definite, then T and V can be individually tied to systems of elliptic
equations. The data required to ensure uniqueness of solution is specified by
the topological degrees of freedom of circuit theory, as well as boundary and
initial conditions. Hence, in the case of quasistatics, the primary coupling
between the T and V parts of the Lagrangian, are via degrees of freedom
given by cohomology groups.

(3) By forming T , V and the Rayleigh dissipation function F , and minimizing
each of these functions subject to boundary and initial data, the time evolu-
tion of the system is given by the time evolution of the topological degrees
of freedom. That is, a system of ordinary differential equations involving the
periods of closed forms and period matrices. These equations have the same
structure as those of analytical mechanics.

This is the big picture of how ellipticity rules in the realm of quasistatics.
It is somewhat vague until we make the identifications of T , V , and F , which
lead to both Table 2.1, and the equations of motion described in Section 2E
(Equation (2–46)). First, the kinetic energy, T , is the magnetic energy. De-
pending on context, it is given by the functionals presented in sections 2C or
3B. The stationary points of these functionals are parametrized by topological
degrees of freedom, and are given by the quadratic form involving currents and
the inductance matrix.This is a natural and intuitive identification since mag-
netic fields arise from the motion of charges. Next, the potential energy V , is
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the electrostatic energy. This functional was considered in Section 2B. The sta-
tionary points of this functional are again parametrized by topological degrees of
freedom, this time by the quadratic form involving charges and the capacitance
matrix. The electromagnetic Lagrangian, L = T −V , is quite remarkable in that
it is both an elegant expression in four dimensions, and intuitive in terms of a
clear connection with classical mechanics. The latter interpretation was the one,
which made sense to Maxwell in the days before his theory of electromagnetic
radiation was verified by Hertz.

The final identification is that of the Rayleigh dissipation function F , with the
Joule heating of steady currents. This functional was considered in Section 2D.
Once again, the stationary points of this functional are parametrized by topo-
logical degrees of freedom, this time by the quadratic form involving currents
and a resistance matrix.

Having made the identifications which are crucial to the modeling process,
we can step back and see how the remainder of the book is organized around
some details of how the engineer’s modeling process works in a computational
setting. The first chapter introduced homology and cohomology theory as a
bridge between the languages of circuit theory and electromagnetics. The present
chapter introduced the notion of quasistatic electromagnetic fields and outlined
how the formalism of circuit theory is tied to quasistatic fields via the formalism
of analytical mechanics. The next chapter relates the quadratic forms arising in
this chapter to the bilinear forms underpinning duality theorems in cohomology
theory. This solidifies the intuitions we sought to develop in the first chapter.
The bridge to data structures and finite element theory is finally laid down in
Chapter 4. Chapter 5 applies the modeling strategy developed in this section
to the problem of modeling eddy currents on sheets. This problem is chosen
because it is of practical importance in the context of eddy current nondestructive
testing, we can give it a relatively complete treatment, and because of the richness
of the topological aspects. Chapter 6 fills in the main gap left in Chapter 5:
the computation of cuts for magnetic scalar potentials in the context of the
finite element method. Finally, all of the variational principles we encounter are
put into a common framework in chapter seven. A transition to the formalism
of differential forms is required to pull this off, but the benefit of formulating
such a paradigm problem yields a recognition that both cohomology theory is
the formalism to articulate all of the topological aspects which relate to circuit
theory, and that Whitney form interpolation is precisely the tool that captures
the topological properties in the discrete setting of finite element analysis.



“The cyclomatic number of a closed surface is twice that of either of the
regions it bounds... The space outside the region has the same cyclomatic
number as the region itself.”

James Clerk Maxwell, A Treatise on Electricity and Magnetism, 1891

3
Duality Theorems for Manifolds With Boundary

3A. Duality Theorems

The next topic from homology theory which sheds light on the topological as-
pects of boundary value problems is that of duality theorems . Duality theorems
serve three functions, namely to show

(1) a duality between certain sets of lumped electromagnetic parameters which
are conjugate in the sense of the Legendre transformation;

(2) the relationship between the generators of the pth homology group of an
n-dimensional manifold and the (n− p)-dimensional barriers which must be
inserted into the manifold in order to make the pth homology group of the
base manifold trivial;

(3) a global duality between compatibility conditions on the sources in a bound-
ary value problem and the gauge transformation or nonuniqueness of a po-
tential.

In order to simplify ideas, the discussion is restricted to manifolds and homol-
ogy calculated with coefficients in the field R. The duality theorems of interest to
us are formulated for orientable n-dimensional manifolds M and have the form

Hp
c (Ω1) ' Hn−p(Ω2),

where Ω1 and Ω2 are manifolds having some geometric relation. In general, the
geometric relationship of interest to us is that of a manifold and its boundary or
the manifold and its complement. A complete development of duality theorems
requires the calculus of differential forms, but we will merely state the relevant
duality theorems without proof and give examples to illustrate their application.
These duality theorems are a result of a nondegenerate bilinear pairing in coho-
mology classes and integration. The Mathematical Appendix covers details of
the exterior product which leads to the necessary bilinear pairing, but for now
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we note that we note that the exterior product of a p-form and an n − p-form
gives an n-form. For orientable manifolds an n-form can be constructed so that
integration over the manifold behaves like a nondegenerate bilinear pairing:

∫

M

: Cpc (M)× Cn−p(M)→ R.

The pairing induces a nondegenerate bilinear pairing on cohomology

∫

M

: Hp
c (M)×Hn−p(M)→ R,

where the product on forms induces a multiplication on homology classes which
is called the cup product . In summary, duality theorems are a consequence
of identifying a nondegenerate bilinear pairing associated with integration just
as the de Rham theorem comes about as a result of a nondegenerate bilinear
pairing between chains and cochains. See [Mas80, Chapter 9] or [GH81, Part 3]
for derivations of the most useful duality theorems which do not depend on the
formalism of differential forms.

The oldest of these duality theorems is the Poincaré duality theorem, which
says that for an orientable n-dimensional manifold M without boundary,

Hp
c (M) ' Hn−p(M).

For compact closed manifolds, an intuitive geometric sense of the meaning of
this duality can be gained by writing

Hp(M) ' Hn−p(M)

and verifying the theorem for some 1- and 2-dimensional manifolds.
In electromagnetics boundary value problems require duality theorems which

apply to manifolds with boundary. The classical prototype of this type of
theorem is the Lefschetz duality theorem, which states that for a compact n-
dimensional region Ω with boundary

Hn−p
c (Ω) ' Hp(Ω, ∂Ω).

By de Rham’s Theorem this implies

Hn−p(Ω) ' Hp
c (Ω− ∂Ω).

Hence

βn−p(Ω) = βp(Ω, ∂Ω),

and again by de Rham’s Theorem

Hn−p(Ω) ' Hp(Ω, ∂Ω).

To appreciate this duality theorem, intuitively consider the following examples.
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3B. Examples of Duality Theorems in Electromagnetism

The Poincaré–Lefschetz duality theorem will turn out to be an immensely
useful tool in later chapters. In particular, it is worth illustrating in the context
of how it relates H1(R; Z) to H2(R, ∂R; Z) for three-dimensional manifolds. At
first, we define spaces so that a special case of Poincaré–Lefschetz duality can
be written in terms of vector fields. Later it will be stated generally in terms of
differential forms to illustrate that this construction is general. Let F and G be
vector fields and set

F =
{
F | curlF = 0 in R such that

∮
c
F · dl ∈ Z

}

for a closed path c satisfying ∂c = 0 (nonbounding 1-cycle). Also let

G = {G | divG = 0 in R, G · n=0 on ∂R}.
Given any surface S used to calculate flux linkage, Poincaré–Lefschetz duality
says that there exists an FS ∈ F dual to S such that

(3–1)

∫

R

FS ·G dV =

∫

S

G · n dS

for all G ∈ G. This illustrates the fact that H1(R; Z) and H2(R, ∂R; Z) are dual
spaces of the space of vector fields G subject to the equivalence relation

G ∼ G′ if G′ = G+ curlA

for some A where n×A = 0 on ∂R.
We digress briefly to review some of the structures defined in sections 1A–1C

and to note the link between Chapter 1 and the theory of differential forms.
Here as in Chapter 1, H1(R) has been articulated in terms of vector fields for an
intuitive understanding of the structure. However, differential forms as described
in the Mathematical Appendix are needed for proper development. Loosely
speaking, differential forms are the objects appearing under integral signs. They
are integrands of p-fold integrals in an n-dimensional manifold where 0 ≤ p ≤ n.
For an n-dimensional manifold Mn, the set of all p-dimensional regions c over
which p-fold integrals are evaluated is denoted by Cp(M

n) while the set of all
p-forms ω are denoted by Cp(Mn). Since Cp(M

n) and Cp(Mn) are spaces with
some algebraic structure, integration

∫
c
ω can be regarded as a bilinear map

which is a nondegenerate bilinear pairing between the spaces:
∫

: Cp(M
n)× Cp(Mn) −→ R.

In this context, the fundamental theorem of calculus, Gauss’ and Stokes’ theo-
rems of multivariable calculus, and Green’s theorem in the plane are generalized
by the Stokes theorem on manifolds:

(3–2)

∫

c

dω =

∫

∂c

ω

where ∂c ∈ Cp−1(M
n) is the boundary of c and the exterior derivative operator

d takes p-forms to p+ 1-forms so as to satisfy Stokes’ theorem. Finally, there is
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a bilinear, associative, graded commutative product of forms, called the exterior
product, which takes a p-form ω and a q-form η and gives a p+ q-form ω ∧ η.

The introduction to homology groups referred to the fact that ∂p−1∂pc = 0.
By a simple calculation, this combines with Stokes’ theorem to show that p-forms
satisfy dp+1dpω = 0 and motivates the following definition. A form µ is said to be
closed if dµ = 0. In vector calculus, this amounts to saying that curl gradφ = 0
and div curlA = 0. Moreover, the existence of nonbounding cycles and Stokes’
theorem also leads to the notion of exact forms: if µ = dω for some ω, µ is said
to be exact. While all exact p-forms are closed, not all closed forms are exact,
so Hp is the quotient group of closed p-forms modulo exact p-forms. Formally,
the coboundary operator is a map dp : Cp(M)→ Cp+1(M) and

(3–3) Hp(M ; R) = ker dp/ im dp−1.

In general, Poincaré–Lefschetz duality says that for a compact, orientable
n-dimensional manifold Mn with boundary,

(3–4) Hk(Mn; Z) ' Hn−k(M
n, ∂Mn; Z) for 0 ≤ k ≤ n.

It holds for any abelian coefficient group, but for us it is enough to deal with
integer coefficients. In the case of n = 3, duality establishes a one-to-one cor-
respondence between classes in H1(R; Z) and classes in H2(R, ∂R; Z). In the
context of magnetoquasistatics, these are, respectively, equivalence classes of
magnetic fields and equivalence classes of surfaces for flux linkage calculations.

Example 3.1 Poincaré–Lefschetz dual of a submanifold. The notion of
the Poincaré–Lefschetz dual of a submanifold is needed in order to develop a
formal definition of a cut. Given an n-dimensional compact, oriented manifold
Mn with boundary, a closed oriented n − k-dimensional submanifold S of M n,
and a closed n−k-form ω whose restriction to ∂M is zero, the Poincaré–Lefschetz
dual of S is a closed k-form ηS such that [BT82]∫

Mn

ω ∧ ηS =

∫

S

ω.

This is a generalized statement of Equation (3–1). When subjected to the
(co)homology equivalence relations, the bilinear pairings on both sides of the
preceding equation become nondegenerate bilinear pairings between Hk(Mn)
and Hn−k(Mn, ∂Mn) on the left, and Hn−k(M

n, ∂Mn) and Hn−k(M,∂M) on
the right. Thus equation (3–4) arises since Hn−k(Mn, ∂Mn) is the dual space
to both spaces. In other words, for the homology class [S] ∈ Hn−k(M

n, ∂Mn)
associated with a submanifold S ∈ Mn, there is an associated unique coho-
mology class [ηS ] ∈ Hk(Mn). As a consequence of Poincaré–Lefschetz duality,
cutsfor the magnetic scalar potential can be defined as representatives of classes
in H2(R, ∂R; Z). ˜

Example 3.2 Lefschetz duality in 3-d electrostatics: n = 3, p = 1.
Consider a nonconducting dielectric region Ω whose boundary ∂Ω is an interface
to conducting bodies. Each connected component of ∂Ω is associated with an
equipotential, and the generators of H1(Ω, ∂Ω) can be associated with curves
ci, for 1 ≤ i ≤ β1(Ω, ∂Ω). The endpoints of the curves ci are used to specify
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the β1(Ω, ∂Ω) independent potential differences in the problem. Dually, the
generators of H2(Ω) can be associated with closed surfaces Σj , for 1 ≤ j ≤
β2(Ω), which can be used to specify the net electrical flux of each of the β2(Ω)
independent charge distributions of the problem. That is, if E denotes the
electric field, D the electric field density, V a potential difference, and Q a net
charge,

∫

ci

E · t dl = Vi, for 1 ≤ j ≤ β1(Ω, ∂Ω)

and
∫

Σj

D · n dS = Qj , for 1 ≤ j ≤ β2(Ω).

Furthermore, the fact that there are just as many independent potential differ-
ences as there are independent charges or charge distributions in the problem is
expressed in the relationship between the ranks of homology groups which comes
from Lefschetz duality:

β1(Ω, ∂Ω) = β2(Ω).

Another interpretation of the Lefschetz duality theorem is obtained by con-
structing a matrix of intersection numbers I where Iij is the number of oriented
intersections of H1 generators ci with H2 generators Σj . The Lefschetz theorem
then asserts that this matrix is nonsingular simply because generators in classes
can be paired. Hence the ci can be interpreted as a minimal set of curves which,
when considered as barriers make

H2

(
Ω−

β1(Ω,∂Ω)⋃

i=1

ci

)
' 0.

In Maxwell’s terminology, the ci eliminate the periphraxity of the region Ω. If
the ci are replaced by tubular neighborhoods of the ci, then it is always the case
that

D = curlC in Ω−
β1(Ω,∂Ω)⋃

i=1

ci

whenever div D = 0 in Ω, regardless of how charge is distributed in the exterior
of the region and on the boundary. ˜

Example 3.3 Lefschetz duality in 3-d magnetostatics: n = 3, p = 2.
Consider a nonconducting region Ω whose boundary ∂Ω is an interface to perfect
conductors. In this case the generators of H2(Ω, ∂Ω) can be associated with open
surfaces Σi, for 1 ≤ i ≤ β2(Ω, ∂Ω), which can be used to compute the β2(Ω, ∂Ω)
independent magnetic fluxes in the problem. Dually, the generators of H1(Ω)
are associated with closed curves cj , for 1 ≤ j ≤ β1(Ω), which can be used to
specify the number of independent currents in the problem. The magnetic flux
density is denoted by B, magnetic field intensity by H, net magnetic flux by
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φ, the magnetic vector potential by A, and current by I. In these terms, the
generators of homology are related to periods as follows:

Φi =

∫

Σi

B · n dS =

∫

∂Σi

A · t dl, for 1 ≤ i ≤ β2(Ω, ∂Ω)

and Ampère’s law,

Ij =

∫

cj

H · t dl, for 1 ≤ j ≤ β1(Ω).

As before, the fact that there are as many independent fluxes as there are currents
comes out of the Lefschetz theorem: β2(Ω, ∂Ω) = β1(Ω).

As noted in Example 3.2, another interpretation of the Lefschetz duality the-
orem can be obtained by constructing the intersection matrix I, where Iij is the
number of oriented intersections of Σi with cj . The Lefschetz theorem asserts
that this matrix is nonsingular. Hence the Σi can be interpreted as a set of
barriers such that

H = grad ζ in Ω−
β2(Ω,∂Ω)⋃

i=1

Σi

whenever

curlH = 0 in Ω

regardless of how currents flow in the exterior of the region or on the boundary.
˜

Example 3.4 Duality and variational principles for magnetostatics.
This example connects variational principles for magnetostatics problems with
current sources to duality theorems for orientable manifolds with boundary. The
reader who is in a hurry may wish to return to this example at a later time.
Consider a magnetostatics problem in a compact region Ω with ∂Ω = S1 ∪ S2,
where S1 ∩ S2 has no 2-dimensional area, and satisfying

div B = 0 in Ω,

B · n = 0 on S1,

curlH = J in Ω,

H × n = 0 on S2.

As before, S1 is the interface to a superconductor or a symmetry plane while S2

is an interface to infinitely permeable bodies. As in Example 1.15, the magnetic
flux density vector B can be associated with an element of Z2

c (Ω − S1) and in
general it is not a relative coboundary. However, considering the long exact
homology sequence for the pair (Ω, S1) one has

H2(Ω, S1) ' δ−1
2 (ker ı̃1)⊕ ̃2

(
H2(Ω)

ı̃2 (H2(S1))

)
,

where the relevant portion of the long exact sequence is

· · · δ3−→ H2(S1)
ı̃2−→ H2(Ω)

̃2−→ H2(Ω, S1)
δ2−→ H1(S1)

ı̃1−→ H1(Ω)
̃1−→ · · ·
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Since the periods of B on the basis of im ̃2 correspond to distributions of
magnetic poles in R3 − Ω, it is natural to set them to zero. When this is done
the periods of B on the generators of H2(Ω) vanish and B can be written as

B = curlA in Ω.

However, as in Example 1.15, one cannot insist that the components of the vector
potential tangent to S1 vanish unless the periods of B on the basis of δ−1

2 (ker ı̃1)
vanish. Since this is not true in general, one lets

n×A = curlχ on S1 −
β1(S1,∂S1)⋃

i=1

di

as in Example 1.15, where the di, for 1 ≤ i ≤ β1(S1, ∂S1), form a basis for
H1(S1, ∂S1). As in Example 1.15, one can express the periods of B on the basis
of δ−1

2 (ker ı̃1) by prescribing the jumps of χ on the di.
Assuming the constitutive relation

H = H(B, r)

defined in Example 1.15, one can rewrite the variational formulation for magne-
tostatics as follows (see [Kot82], Section 1.21).

Variational Principle (B = curlA).

F (A) = extA

∫

Ω

∫ curl A

H(ξ, r) · dξ −A · J dV,

subject to the principal boundary condition

n×A = curlχ on S1 −
β1(S1,∂S1)⋃

i=1

di

where the [χ]di
, for 1 ≤ i ≤ β1(S1, ∂S1), are chosen so that the periods of B on

δ−1
2 (ker ı̃1) have their desired values, and χ is otherwise arbitrarily chosen.

The above functional has a nonunique extremal whenever an extremal exists.
As in the energy formulation of Example 1.15, the nonuniqueness of the extremal
corresponds to an element of Z1

c (Ω − S1). That is, if A and A
′ correspond to

two vector potentials which give the functional its stationary value, then

A−A
′ ∈ Z1

c (Ω− S1).

As noted in Example 1.15, one can write

Z1
c (Ω− S1) ' H1

c (Ω− S1)⊕B1
c (Ω− S1)

and the nonuniqueness of A can be eliminated by specifying the periods of A

on generators of H1(Ω, S1) as well as the divergence of A in Ω and the normal
component of A on S2. This can be done by either making these conditions
principal conditions on the above functional or, as in [Kot82, Chapter 5], by
constructing another variational formulation for which these conditions are a
consequence of extremizing the functional. The question of alternate variational
formulations for this problem is taken up in full generality in Chapter 3.
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At this point one can expose the interplay between the nonuniqueness of A

(the gauge transformation) and the conditions on the solvability of the associated
boundary value problem (the conditions for the functional to have an extremum).
As was noted in [Kot82], certain convexity conditions on the constitutive rela-
tion are sufficient to ensure that questions of solvability can be answered by a
“Fredholm alternative” type of argument which implies that the problem has a
solution if and only if

0 = F (A)− F (A′) =

∫

Ω

(A−A
′) · J dV for all A−A

′ ∈ Z1
c (Ω− S1).

By brute force calculation [Kot82, Chapter 4, Theorem 4.3], the preceding
orthogonality condition can be restated entirely in terms of the current density
vector J . In the present case of homogeneous boundary conditions on S2, as-
suming that Σi, with 1 ≤ i ≤ β2(Ω, S2), is a set of generators of H2(Ω, S2), the
conditions for the solvability of the equations for the extremum of the functional
are as follows. The local conditions on the current density vector J are

div J = 0 in Ω,

J · n continuous across interfaces,

J · n = 0 on S2.

Meanwhile, the global conditions on J are∫

Σi

J · n dS = 0, 1 ≤ i ≤ β2(Ω, S2),

where the global constraints are verified by using the three-step procedure and
the long exact homology sequence for the pair (Ω, S2) in the usual way. The
local conditions in this set of solvability conditions merely state that J can be
associated with an element of Z2

c (Ω − S2) while the global conditions ensure
that the projection of this cocycle into H2

c (Ω− S2) is zero. Thus the solvability
conditions merely state that J can be associated with a relative coboundary in
B2
c (Ω− S2). But this is exactly what one requires of J in order to write

J = curlH in Ω,

with
n×H = 0 on S2.

Returning to the duality theorems, in Example 1.15 the duality between
lumped variables was expressed by

H2(Ω, S1) ' H3−2(Ω, S2) = H1(Ω, S2).

Here, in contrast, when sources are added the duality

H1(Ω, S1) ' H3−1(Ω, S2) = H2(Ω, S2)

expresses a duality between global degrees of freedom in the gauge transformation
and compatibility conditions on the prescription of the current density vector J .

One final remark is in order. The global ambiguity of the gauge of the vector
potential is associated with unspecified fluxes through “handles” of Ω or unspec-
ified time integrals of electromotive forces between connected components of S1,
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while the compatibility conditions on J ensure that Ampère’s law can be used
without contradiction. The intersection matrix for the generators of the groups
H1(Ω, S1) and H2(Ω, S2) can be used to help see how a magnetostatics problem
is improperly posed by checking to see which degrees of freedom in the gauge
transformation do not leave the value of the functional invariant. ˜

Example 3.5 Lefschetz duality and currents on orientable surfaces:
n = 2, p = 1. Consider a conducting sheet Ω which is homeomorphic to a
sphere with n handles and k holes as in Example 1.5. Suppose that slowly-
varying magnetic fields are inducing currents on Ω and that the boundary of Ω
does not touch any other conducting body. If J denotes the current density on
Ω, the physics requires that div J = 0 on Ω and J ·n = 0 on ∂Ω. This problem is
dual to the one considered in Example 1.8 in the sense that current flow normal
to the boundary of the plate must vanish. Define a surface current density vector
K by the relation

J × n
′ = K.

The book’s Mathematical Appendix considers differential forms and phrases this
operation in terms of the Hodge star operator. Readers familiar with differential
forms will note that the operation n

′× corresponds to the Hodge star operator
on 1-forms in two dimensions. In any case, locally,

J = curlψ = n
′ × gradψ,

so that

K = (n′ × gradψ)× n
′ = (n′ · n′) gradψ − (n′ · gradψ)n′ = gradψ.

In other words, the surface current can be expressed in terms of a potential ψ
called a stream function. Since the current density J is tangent to the boundary,
the vector field K has vanishing tangential components at the boundary and can
be associated with an element of

Z1
c (Ω− ∂Ω).

Thus if K can be described by the stream function ψ then ψ is a constant on
each connected component of ∂Ω.

Let ci, for 1 ≤ i ≤ β1(Ω, ∂Ω), be a set of curves which are associated with
generators of H1(Ω, ∂Ω) and let zi, for 1 ≤ i ≤ β1(Ω), be a set of curves as-
sociated with generators of H1(Ω) as in Example 1.8. Dual to the situation in
Examples 1.8 and 1.13, the zi act like cuts which enable ψ to be single-valued
on

Ω−
β1(Ω)⋃

i=1

zi

while ψ = 0 on ∂Ω. Furthermore, discontinuities [ψ]zi
in ψ across the zi are

given by calculating the periods

Ii =

∫

ci

J × n
′ · t dl =

∫

ci

K · t dl =

∫

ci

gradψ · t dl =

β1(Ω)∑

j=1

Iij [ψ]zj
,
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where Iij = Int (ci, zj) is the number of oriented intersections of ci with zj . I is
square since by the Lefschetz duality theorem

β1(Ω) = β1(Ω, ∂Ω).

This matrix is nonsingular if the ci and zj actually correspond to bases of
H1(Ω, ∂Ω) and H1(Ω) respectively. The matrix can be inverted to yield

[ψ]zj
=

β1(Ω,∂Ω)∑

i=1

I−1
ij Ii.

Hence the duality between the homology groups is useful in prescribing periods
of vector fields in terms of jumps in the scalar potential on curves associated
with a dual group. ˜

Example 3.6 Lefschetz duality and stream functions on orientable
surfaces: n = 2, p = 1. When considering the current density vector J on a
sheet as in Example 1.8 or when prescribing the components of a vector tangent
to a surface as in Examples 1.14, 1.15, 2.3, the following situation occurs. Given
a two-dimensional surface S, suppose one of the following is true on S:

(curlC) · n′ = 0,

(curlA) · n′ = 0,

or (curlT ) · n′ = 0.

Alternatively, if J is a vector field defined in the surface, suppose div J = 0 on
S and no boundary conditions are prescribed on ∂S. In these cases it is useful
to set

n
′ ×C

n
′ ×A

n′ × T

J





= curlψ locally on S.

Next let zi, for 1 ≤ i ≤ β1(S), be a set of curves associated with a basis of
H1(S), and ci, for 1 ≤ i ≤ β1(S, ∂S), be a set of curves associated with a basis
of H1(S, ∂S). In this case

H1

(
S −

β1(S,∂S)⋃

i=1

ci

)
' 0,

so that the stream function can be made continuous and single-valued when the
curves ci are regarded as cuts. Furthermore the discontinuities [ψ]ci

across cuts
ci can be used to prescribe the periods

pi =

∫

zi





−C

−A

−T

J × n
′




· t dl,
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since

pi =

∫

zi

(curlψ × n
′) · t dl =

∫

zi

gradψ · t dl =

β1(S,∂S)∑

j=i

Iij [ψ]ci
,

where Iij is the number of oriented intersections of ci with zj . The Lefschetz
duality theorem ensures that the above matrix equation is uniquely soluble for
the [ψ]ci

if the ci and zi are actually associated with a full set of generators for
H1(S, ∂S) and H1(S) respectively. ˜

Example 3.7 Lefschetz duality theorem and nonorientable surfaces. It
has been stated without proof that the duality theorems are true for orientable
manifolds. In order to see that the Lefschetz duality theorem is not true in the
case of a nonorientable manifold, we consider the case when Ω is Möbius strip
of Example 1.12 and Figure 1.14. Recall that β1(Ω, S) = 0 while β1(Ω) = 1.
Clearly the Lefschetz duality theorem does not apply in this case.

Now, let div J = 0 on Ω and J · n = 0 on the Möbius band S. Since S is
connected, one may attempt to set J = curlψ on Ω and ψ equal to a constant on
S. However, if the current flowing around the band is nonzero, it is not possible
to set the stream function ψ to a constant on S, even if S is connected. That is,
if I is the current which flows around the band and ψ is single-valued, then

I =

∫

z̃

(
(curlψ)× n

′
)
· t dl = ψs − ψs = 0,

where ψs is the value of ψ on S. Furthermore, since β1(Ω, S) = 0, there is no
way to take a curve associated with a generator of H1(Ω, S) and use it to specify
the current flowing around the loop. Thus the method of considering curves
associated with generators of H1(Ω) to specify periods of the vector field and
generators of H1(Ω, S) as cuts, is critically dependent on the Lefschetz duality
theorem.

To see how the current flow can be described in terms of a stream function, it
is best to look at the problem in terms of H1(Ω, S; Z) where z̃ ∼ z. The reader
may convince himself that this generator of the torsion subgroup of H1(Ω, S; Z)
can be used as a cut in Ω that enables one to describe the current density J

in terms of a single-valued stream function. Considering the diagram, there are
two obvious ways of doing this:

(1) Take z as the cut, impose the condition ψ → −ψ across the cut, and set

ψs = ±I
2
,

where the sign is chosen depending on the sense of the current.
(2) Take z̃ as the cut, and note that S− z̃ has two connected components which

shall be called S′ and S′′. In order to describe the current flow in terms of
the stream function, let ψ → −ψ across the cut and let

ψs′ = −ψs′′ = ±I
2
,

where the sign is chosen depending on the sense of the current.
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Techniques making implicit use of duality theorems do not necessarily work in
situations where the hypotheses underlying the duality theorems are not satisfied.

˜

It is noteworthy that, for an n-dimensional manifold, the interpretation of
the Lefschetz duality theorem in terms of oriented intersections of p and (n−p)-
dimensional submanifolds makes the duality intuitive when n < 4. For a proper
account of this interpretation see [GH81, Chapter 31]. A leisurely but rigorous
development of intersections is in [GP74, Chapters 2 and 3].

The boundary value problems considered in Examples 1.14, 1.15, and 2.3 show
that the Lefschetz duality theorem is inadequate for dealing with complicated
problems where different boundary conditions are imposed on different connected
components of ∂Ω or when symmetry is used to reduce the size of a given prob-
lem as commonly done for efficiency in numerical problems. In other words the
Lefschetz duality theorem is inadequate for many problems formulated for nu-
merical computation. For cases like Examples 1.14, 1.15, and 2.3, the following
duality theorems apply:

Hp
c (Ω− S1) ' Hn−p(Ω, S2),

Hp
c (Ω− S2) ' Hn−p(Ω, S1),

where ∂Ω = S1 ∪ S2 and S1 ∩ S2 has no (n−1)-dimensional volume. Here it
is understood that the connected components of S1 and S2 correspond to in-
tersections of planes of symmetry with some original problem or to connected
components of the boundary of the original problem which was reduced by iden-
tifying symmetries. This duality was first observed by Conner [Con54] for the
case where S1 and S2 are the union of connected components of ∂Ω. The proof
of the theorem in this case is outlined in [Vic94, Section 5.25]. The more general
version which is assumed in this book can be obtained from the version known
to Conner by the usual method of doubling (see [Duf52] or [Fri55]).

The duality theorem stated above implies that βp(Ω, S1) = βn−p(Ω, S2) and
Hp(Ω, S1) ' Hn−p(Ω, S2). The isomorphism between these two homology groups
can be interpreted as asserting that there is a nondegenerate bilinear pairing
between the two groups which can be represented by a square nonsingular ma-
trix whose entries count the number of oriented intersections of p and (n−p)-
dimensional submanifolds associated with the generators of both groups. The
special cases of this theorem for the case n = 3 can be found in Examples 1.14,
1.15 and 2.3 (where p = 1, 2, 3 respectively).

Finally, we consider the Alexander duality theorem. Although this theorem
might not be considered as visual or easy as Lefschetz or Poincaré dualities,
various special cases of this general theorem were known to Maxwell. In its most
general form the Alexander duality theorem states that for an n-dimensional
manifold M and a closed subset Ω,

Hp(Ω) = Hn−p(M, M − Ω).

There is a question of limits which we are sidestepping here (see Greenberg
and Harper [GH81, p. 233] for an exact statement). Skipping over these details
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is justified since one can say that the exceptions are pathological (see [Mas80,
Chapter 9, §6] for an example). For most applications, M is taken to be R3 in
which case the theorem says

Hp(Ω) = Hn−p(R
3,R3 − Ω).

There is a classical version of the Alexander duality theorem that can be
obtained as a corollary of the one above by the following simplified argument
(compare [GH81, §27.9]). Consider the long exact homology sequence for the
pair (R3,R3 −Ω):

0 - H3(R
3 − Ω)

ı̃3- H3(R
3)

̃3- H3(R
3,R3 − Ω) -

δ3- H2(R
3 − Ω)

ı̃2- H2(R
3)

̃2- H2(R
3,R3 − Ω) -

δ2- H1(R
3 − Ω)

ı̃1- H1(R
3)

̃1- H1(R
3,R3 − Ω) -

δ1- H0(R
3 − Ω)

ı̃0- H0(R
3)

̃0- H0(R
3,R3 − Ω) - 0.

Since

Hp(R
3) '

{
0 if p 6= 0,

R if p = 0,

the long exact sequence tells us that, if Ω is not the empty set,

H3−p(R
3,R3 − Ω) ' H2−p(R

3 − Ω) if p 6= 2,

R⊕H3−p(R
3,R3 − Ω) ' H2−p(R

3 − Ω) if p = 2.

Combining this with the Alexander duality theorem yields

Hp(Ω) ' H2−p(R
3 −Ω) if p 6= 2,

R⊕H2(Ω) ' H0(R
3 − Ω),

or again

βp(Ω) = β2−p(R
3 −Ω) if p 6= 2,

1 + β2(Ω) = β0(R
3 −Ω).

These are the classical versions of the Alexander duality theorem. The case of
p = 1 was known to Maxwell [Max91, Art. 18] in the following form: “The space
outside the region has the same cyclomatic number as the region itself.” And
again: “The cyclomatic number of a closed surface is twice that of either of the
regions it bounds.”

The reader may turn back to Example 1.7 to see how the classical version of the
Alexander duality theorem was used in the case where p = 2, and Example 1.9 for
the case p = 1. In general, the classical version of the Alexander duality is very
useful when one wants to consider how global aspects of gauge transformations,
solvability conditions, or potential formulations for a problem defined in a region
Ω are a result of sources in R3 − Ω.

In summary, there are three types of duality theorems which are invaluable
when considering electromagnetic boundary value problems in complicated do-
mains. They are:
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(1) Lefschetz duality theorem (Ω n-dimensional):

Hp(Ω) ' Hn−p(Ω, ∂Ω).

(2) When Ω is n-dimensional and ∂Ω = S1 ∪ S2 where S1 and S2 are two
regions whose intersection does not have any (n−1)-dimensional volume and
which are associated with dual boundary conditions on symmetry planes and
interfaces, then

Hp(Ω, S1) ' Hn−p(Ω, S2).

(3) Alexander duality theorem:

Hp(Ω) ' H2−p(R
3 − Ω) for p 6= 2,

R⊕H2(Ω) ' H0(R
3 − Ω).

The first two duality theorems can be interpreted in terms of an intersection
matrix.

Note that in the foregoing discussion of duality theorems, the torsion sub-
groups of the integer homology groups are assumed to vanish. Although this
is not the case in general, it is the case for three dimensional manifolds with
boundary embedded in R3. Section 3D is devoted to a proof of this fact.

3C. Linking Numbers, Solid Angle, and Cuts

The classical version of Alexander Duality can be interpreted through the
notion of a linking number [Fla89, §6.4]. This is the approach taken in this
section.

Solid Angle. In order to simplify the following discussion on linking numbers,
we will think of current flowing on a set of thin wires or curves. Such systems have
an infinite amount of energy [PP62], however wires can be regarded as tubular
neighborhoods of curves. This does not limit the generality of the arguments.
In fact, the results hold for surface and volume distributions of current [Kot88],
and for general constitutive laws.

Consider two nonintersecting curves c and c′ as shown in Figure 3.1. Curve
c is the boundary of a surface S ′ (c = ∂S′), and a current I flows on curve c′

which transversely intersects S ′. For magnetoquasistatics, displacement current

c′

cS′

Figure 3.1. Current on curve c′ tranversely crossing surface S′. Here Link(c, c′) = 4.
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is assumed to be negligible such that Ampère’s Law is

(3–5)

∮

c

H · dr =

∫

S′

J · n ds = I Link(c, c′)

where Link(c, c′) is the oriented linking number of curves c and c′, H is the
magnetic field intensity, and J is the conduction current density. The physical
details of Ampère’s Law are not so important here. The main point to note is
that the periods of the field H are related with the linking number to the current
on c′. Note that ∫

S′

J · n ds = I if Link(c, c′) = 1.

In a region where J = 0 the vector field H is irrotational (curlH = 0) and
H may be expressed as the gradient of a magnetic scalar potential,

H(r) = −∇ψ,
so that

(3–6) ψ(p)− ψ(p0) = −
p∫

p0

H · dr.

In general, the region in question is multiply connected so that a closed inte-
gration path c may link a current I. Hence the scalar potential is multivalued,
picking up integral multiples of I depending on c. If c links the current n times,
the value of the scalar potential at a point has an added quantity nI after
traversing c (Figure 3.1).

The magnetic flux B can be expressed in terms of a vector potential A, so
that in linear, isotropic, homogeneous media we have

(3–7) ∇×H = ∇×
( 1

µ
∇×A

)
= J .

However, since we are primarily concerned with topological issues the choice of
constitutive law is not very important. When the Coulomb gauge (div A = 0) is
applied in the magnetoquasistatic case, and A is expressed in terms of Cartesian
coordinates, the components of A satisfy

∇2Ai = −µJi for i = 1, 2, 3.

For a vanishing vector potential as r →∞ there is a Green’s function solution

(3–8) A(r) =
µ

4π

∫

V ′

J(r0)

|r − r′| dV
′,

where r
0 is a source point and the integral is over the conducting region. Noting

that

(3–9) ∇r ×
J(r0)

|r − r
0| =

J(r0)× (r − r0)

|r − r
0|3 ,
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where the r in ∇r refers to differentiation with respect to unprimed variables,
Equations (3–7), (3–8), and (3–9) give

(3–10) H(r) =
1

4π

∫

V ′

J(r0)× (r − r
0)

|r − r
0|3 dV ′.

Now consider c′ contained in a tubular neighborhood as shown in Figure 3.2
such that V ′ = c′×D where D is a disc transverse to c′. Assume, for a point r

0

D
c′

Figure 3.2. Tubular neighborhood of c′.

on c′, that r− r
0 does not vary significantly on D; then (3–10) can be evaluated

over D to give the total current I times an integral on c′, or

(3–11) H(r) =
I

4π

∮

c′

dr0 × (r − r0)

|r − r
0|3

which is the Biot–Savart law. Putting (3–11) into (3–6), we get

(3–12) ψ(p)− ψ(p0) = − I

4π

p∫

p0

∮

c′

[(r − r
0)× dr0] · dr
|r − r

0|3 .

Note also, the related expression for the linking number obtained by putting
Equation (3–11) into (3–5) and canceling I on each side of the resulting equation:

(3–13) Link(c, c′) =
1

4π

∮

c

∮

c′

[dr0 × (r − r0)] · dr
|r − r

0|3 ,

which is due to Gauss [Gau77]. Equation (3–12) is an exact formula if we started
with a current-carrying knot and (3–13) always yields an integer if c′ and c do
not intersect.

Gauss approached Equation (3–13) through the notion of a solid angle, which
we discuss here in order to develop a geometric understanding of the linking
number. The solid angle Ω is defined as the area on the sphere S2 bounded by
the intersection of S2 and a conical surface with vertex at the center of S2 (see
Figure 3.3). If c′ bounds a surface s, then the solid angle at an observation point
r is easily shown to be [Cou36]

Ω =

∫

s

cos θ

|r − r
0|2 ds
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where θ is the angle between r − r
0 and the normal to s. Thus the equation

above can be written as

(3–14) Ω =

∫

s

(r − r
0) · ds

|r − r0|3 .

Suppose the observation point r is moved by an amount dr. This is the same
as moving the circuit by −dr, whereby the shifting circuit sweeps out an area
|ds| = |dr× dr0| where dr0 is on c′. So the change in solid angle is, from (3–14),

dΩ =

∮

c′

(r − r
0) · (dr × dr0)

|r − r
0|3 =

∮

c′

[(r − r
0)× dr0] · dr
|r − r

0|3

(see [PP62]). If the observation point is moved through a closed path c, the total
change in Ω is the expression for the linking number given by Equation (3–13)
up to a factor of 1/(4π). The expression (3–13) is symmetric so that, up to a
sign, integration on either c′ or c gives the same result. A further development
of the linking number can be found in [Spi65].

∆Ω = 4π
∆Ω = 0

Figure 3.3. Solid angle on the unit sphere S2, showing ∆Ω for pairs of linked and
unlinked closed paths.

Figure 3.3 shows that the solid angle provides some geometric insight into the
linking number via multivalued scalar potentials, by showing that Ω increases
by 4π each time the paths link.

Formal interpretations of the linking number, as discussed in the following
section, lead to an understanding of cuts and the intuition behind what is needed
to formulate an algorithm for computing cuts. Other uses of the linking number
in magnetics can be found in [AK98, Chapter 3] and [KG90].

Linking Numbers and Cuts. We would like to add to the geometric intuition
gained from Figure 3.3. As before, consider two closed, nonintersecting, oriented
curves c and c′ in R3 such as those in Figure 3.1. One of the curves, say c, can
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be expressed as c = ∂S′, where S′ is a two-sided (orientable) surface. Then the
linking number can be found by taking the sum of oriented intersections of S ′

and c′,

Int (S′, c′) =
∑

c′∩S′

±1 = Link(c, c′)

where Int ( · , · ) denotes the intersection number.
The intersection number Int (S ′, c′) = Int (S, c) where ∂S = c′. In the case of

Figure 3.1, S can be deformed so that it is simply a disc. Figure 1.8 showed S for
a current-carrying trefoil knot. For a knot the surface S exists though it is not
always intuitive. In any case, an algorithm for the construction of the surface
results from any constructive proof of the fact that such a surface is realizable
as a compact, orientable manifold [Kot89a]. It will turn out that S is the cut
needed to make the magnetic scalar potential single-valued.

If R3 is separated into a nonconducting region V and a conducting region
R3−V , the ranks βk of the kth homology groups in each region are related thus:

β1(V ) = β1(R
3 − V ),

1 + βp(V ) = β2−p(R
3 − V ) for p 6= 1.

This classical form of Alexander duality, known to Maxwell [Max91], is brought
about by the fact that p-cycles in V are linked with (2 − p)-cycles in R3 − V
[ST80], and is the corollary of a more general form which states:

Hp(V ) = H3−p(R
3,R3 − V ).

The classical version results when one applies the general statement to the long
exact homology sequence.

We can now appreciate the meaning of cuts. Consider a set {ci} of 1 -cycles
in V , for 1 ≤ i ≤ β1(V ), as illustrated in Figure 3.4 for β1(V ) = 2. These

V

c1

c2

Figure 3.4. The 1 -cycles c1 and c2 are generators of H1(V ; Z) while curves c′1 and
c′2 on the knot and loop (not shown) are generators of H1(R

3−V ; Z). So β1(V ) = 2.
Cut for the knot is same as that in Figure 1.8. Cut for the loop is an annulus.
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are generators of H1(V ; Z) and comprise the set of interesting curves used to
evaluate the left-hand side of Ampère’s law (3–5) since they link current. They
are boundaries ci = ∂S′

i, of surfaces S′
i in R3 − V used to measure current flux.

Now consider the set {c′j}, 1 ≤ j ≤ β1(R
3 − V ), which forms a basis for

H1(R
3 − V ), and Link(ci, c

′
j), the intersection number of S ′

i with c′j . Alexander
duality guarantees that the β1×β1 intersection matrix which has Link(ci, c

′
j) for

its ij th entry is nonsingular.
The symmetry of the linking number suggests that {c′j} are also boundaries,

c′j = ∂Sj , where Sj is a surface in V . The 1 -cycles which link current are gener-

ators of H1(V ; Z) and intersect surfaces Sj which are generators of equivalence
classes in H2(R

3,R3 − V ; Z). Alexander duality guarantees that the Sj are dual
to H1(V ; Z), insuring that H can be expressed as the gradient of a single-valued
scalar potential. If the scalar potential has a discontinuous jump Ij across Sj ,
then Sj is the cut surface. Furthermore Sj can also be used as a surface for
calculating magnetic flux. The set {Sj} of cuts in V allow ψ to be single-valued
on V − ⋃j Sj . Closed curves in V − ⋃j Sj link zero current as illustrated in

Figure 1.8. Note, however, that there is no guarantee that V − ⋃j Sj is sim-
ply connected! Section MA-I shows that these cuts are compact, orientable,
embedded surfaces.

While Alexander duality provides an intuitive way of defining cuts, it is
phrased in terms of the current-carrying region, making it useless for a finite
elements algorithm which must be expressed entirely in terms of V and ∂V ,
the nonconducting region and its boundary. To express cuts in terms of a mesh
which represents the current-free region, a limiting process [GH81] takes Alexan-
der duality to Lefschetz duality:

Hp(V ) ∼= Hn−p(V, ∂V ),

a duality theorem expressed in terms of the region and its boundary. A construc-
tive proof that generators of H2(V, ∂V ) are realizable as compact, orientable,
embedded manifolds then gives rise to an algorithm for finding cuts which will
be discussed at length in Chapter 6.

3D. Lack of Torsion for Three-Manifolds with Boundary

Consider Ω a compact 3-dimensional manifold with boundary and hence it
is a closed subset of R3 which is “tightly embedded” and has finitely generated
integral homology groups. Hence Alexander duality is applicable [Mas80]. We
would like to show that the integral (co)homology groups of Ω have no torsion
groups. To do this, let S3 be the unit sphere in R4 and map Ω into S3 by
stereographic projection. Call the image of Ω under this map Ωc. The problem
now reduces to proving that Ωc, as a closed subset of the compact orientable
3-dimensional manifold S3, has torsion-free (co)homology groups. This result
can be demonstrated by using the Alexander duality theorem and the universal
coefficient theorem for cohomology while working with S3− Ω̊c, the complement
of the interior of Ωc (X̊ denotes the interior of X). Since S3 is orientable, the
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Alexander duality theorem applies and states that

H̃3−q−1(S3 − Ω̊c; Z) ' H̃q(Ω̊c; Z) for q = 0, 1, 2,

where the tilde indicates that reduced (co)homology groups are used to condense
the statement of the theorem. If we decompose a given (co)homology group
H( · ; Z) into a direct sum of free and torsion subgroups and denote them by F ( · )
and T ( · ) respectively, the Alexander duality theorem then says the following
about torsion subgroups:

(3–15) T 2−q(S3 − Ω̊c) ' Tq(Ω̊c), for q = 0, 1, 2.

A corollary of the universal coefficient theorem for cohomology [BT82] asserts
that

(3–16) T p(·) ' Tp−1(·), for p = 0, 1, 2, 3.

By definition, homology groups are trivial in negative dimensions, so that, by
(3–16),

T 0(S3 − Ω̊c) ' 0

and, by (3–15),

(3–17) T2(Ω̊c) ' 0.

Also, since zeroth homology groups are always torsion-free, the following chain
of reasoning reveals that certain higher homology torsion subgroups vanish:

(3–18)
T0(S

3 − Ω̊c) ' 0 =⇒ T 1(S3 − Ω̊c) ' 0 (by (3–16))

=⇒ T1(Ω̊c) ' 0 (by (3–15)).

Thus by (3–17) and (3–18) we have

Tq(Ω̊c) ' 0, for q = 0, 1, 2,

T q(Ω̊c) ' 0, for q = 0, 1, 2, 3 (by (3–16)).
(3–19)

Thus, (3–19) shows that, with the exception of the third homology group,

all of the (co)homology groups of Ω̊c are torsion-free. The image of Ω under

stereographic projection can be contained in a neighborhood of Ω̊c of which Ω̊c
is a deformation retract, so one may substitute Ω for Ω̊c in (3–19), obtaining

(3–20)
Tq(Ω) ' 0 for q = 0, 1, 2,

T q(Ω) ' 0 for q = 0, 1, 2, 3.

Now suppose that Ω is a compact manifold with boundary embedded in R3,
and let Ω be the union of disjoint connected submanifolds Ωi. On each Ωi there
is a volume form which is inherited from R3. For each i this volume form can be
multiplied by a scalar function which is positive on the interior of Ωi and zero
on ∂Ωi to give a cohomology class in H3(Ωi, ∂Ωi; R). Since Ωi is connected, we
have

H3(Ωi, ∂Ωi; Z) ' Z.
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This ensures the existence of an orientation class in integer homology for each
Ωi which means that the Lefschetz duality theorem [Mas80] applies for each
connected component of Ω and hence for Ω as a whole. Thus:

Hq(Ω,Z) ' H3−q(Ω, ∂Ω; Z) for q = 0, 1, 2, 3,

H3−q(Ω; Z) ' Hq(Ω, ∂Ω; Z) for q = 0, 1, 2, 3.

Breaking these groups into direct sums of free and torsion subgroups, we see that
the torsion subgroups satisfy

(3–21)
T q(Ω) ' T3−q(Ω, ∂Ω) for q = 0, 1, 2, 3,

Tq(Ω) ' T 3−q(Ω, ∂Ω) for q = 0, 1, 2, 3;

hence, since T 0(Ω, ∂Ω) is always zero, (3–21) tells us that

(3–22) T3(Ω) ' 0 ' T 0(Ω, ∂Ω).

Substituting (3–20) into (3–21) gives

Tq(Ω) ' 0 ' T 3−q(Ω, ∂Ω) for q = 0, 1, 2,

T q(Ω) ' 0 ' T 3−q(Ω, ∂Ω) for q = 0, 1, 2, 3,
(3–23)

and combining (3–22) and (3–23) we have proved the following lemma:

Lemma. If Ω is a compact three dimensional manifold with boundary, em-
bedded in R3, then for q = 0, 1, 2, 3

0 ' T q(Ω) ' Tq(Ω) ' T q(Ω, ∂Ω) ' Tq(Ω, ∂Ω).

Since (co)homology computed with coefficients in R yields vector spaces whose
dimension is equal to the rank of the corresponding (co)homology group com-
puted with integer coefficients, we have the immediate useful corollary:

Corollary. Let Ω be a compact three dimensional manifold with bound-
ary embedded in R3. For q = 0, 1, 2, 3, the groups Hq(Ω), Hq(Ω), Hq(Ω, ∂Ω),
Hq(Ω, ∂Ω) with coefficients in Z are free groups whose rank equals the dimension
of the corresponding vector space if the coefficient group is R.

This corollary tells us that there is no loss or gain of information in the
transition to and from integer coefficients.





4
The Finite Element Method and Data Structures

This chapter serves two purposes. The first is to point to some applied math-
ematics, in particular the finite element method and corresponding numerical
linear algebra, which belong in a book oriented towards computation. The sec-
ond purpose is to point out the role of topology, namely simplicial homology of
triangulated manifolds, in various aspects of the numerical techniques.

The chapter begins simply enough with an introduction to the finite element
method for Laplace’s equation in three dimensions, going from the continuum
problem to the discrete problem, describing the method in its most basic terms
with some indication of its practice. This leads naturally to numerical linear
algebra for solving sparse positive-definite matrices which arise from the finite
element method. The tie to previous chapters is that we would like to compute
scalar potentials for electro- and magnetostatics. At a deeper level, there is a
connection to a homology theory for the (finite element) discretized domain, so
that useful tools such as exact homology sequences survive the discretization.
We will see that in addition to everything discussed in the first chapters, the
Euler characteristic and the long exact homology sequence are useful tools for
analyzing algorithms, counting numbers of nonzero entries in the finite element
matrix, and for constructing the most natural data structures.

The purpose here is to draw out some connections between the finite element
method and the relevant homological tools. The reader interested in more on
the finite element method is referred to [SF73]. In addition [SF90] is a good
introduction to the finite element method in electrical engineering while [Bos98]
provides a more current and advanced view on finite elements for magnetostatics
and eddy current problems.
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4A. The Finite Element Method for Laplace’s Equation

We commence with the continuum problem. The one which is central in this
book is quite straightforward: the field quantity of interest is described by a
scalar potential, say E = gradu, and u satisfies Laplace’s equation, ∇2u = 0, in
a bounded three-dimensional domain Ω. The boundary consists of two parts S1

and S2,

∂Ω = S1 ∪ S2,

such that S1 ∩ S2 has no area. There is a prescribed constant potential on
each connected component of S1 (Dirichlet boundary condition), and on S2 the
normal derivative

gradu · n = 0

(Neumann condition). The second boundary condition typically arises when
symmetry in the geometry of the original problem domain can be exploited in
order to reduce to a new domain with reduced geometry. When using cuts to
compute a magnetic scalar potential there are some additional conditions across
cuts in the interior of the domain, but the essence of the problem is as stated
above. The special conditions related to cuts will be fully treated later.

The Ritz method starts from a minimum principle which requires that the
potential distribution in Ω be such that the energy of the field associated with
the potential be minimized. This minimum principle is the requirement that the
functional

(4–1) P (u) =
1

2

∫

Ω

|gradu|2 dV

be minimized over all functions which satisfy the boundary conditions. It turns
out that the variational problem of minimizing this functional is equivalent to
Laplace’s equation.

By assuming that u can be expressed in terms of a set of piecewise polyno-
mials over Ω, it is possible to construct an approximate expression for P (u).
Minimization of the approximate expression for P (u) determines the coefficients
of the polynomials and will approximate the potential. This is the approach
behind the finite element method and will be described in more detail.

First we begin by arguing that the function u which satisfies Laplace’s equa-
tion also minimizes energy. Suppose u satisfies ∇2u = 0 in Ω. Let h be a (once)
differentiable function in Ω, h ∈ L2(Ω) which satisfies h = 0 on S1. When P (h) is
finite, the function h is called an admissible function. Let θ ∈ R be a parameter.
To u we add θh, so that the energy is

P (u+ θh) = P (u) + 1
2θ

2

∫

Ω

|gradh|2 dV + θ

∫

Ω

gradu · gradh dV.

The last term can be rewritten using integration by parts, so that

P (u+ θh) = P (u) + θ2P (h) + θ

∫

∂Ω

h gradu · n dS − θ
∫

Ω

grad2 u dV.

The third term is always zero since h vanishes on S1 and gradφ · n vanishes on
S2. The fourth term is zero since u satisfies Laplace’s equation. The second term
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is positive, so P (u) is the minimum reached when θ = 0 and h is an admissible
function.

The error in the energy depends on θ2. If θ is small, the error in energy can be
small even while the error in the potential is relatively large. This is a practical
advantage since quantities of interest such as capacitance and inductance which
are related to energy can be accurately estimated even while the estimate for
the potential has considerable error.

The Ritz Method. The continuum problem we have discussed so far is infinite-
dimensional (in the space of admissible functions). The Ritz method builds a
finite-dimensional discrete problem for the minimum principle. By choosing a
finite number of “trial” functions from a narrow class of admissible functions, it
is possible to compute an approximation to the potential. This makes the Ritz
method invaluable for practical computational methods.

Particular instances of trial functions will be briefly addressed in 4A, but first
we will see how the Ritz method leads to a matrix equation. We begin with a
set of trial functions Ti(x1, x2, x3), for 1 ≤ i ≤ n. The approximation is a linear
combination of trial functions

U =

n∑

i=1

UiTi,

where the coefficients Ui must be determined. In the finite element method
the trial functions will be functions (polynomials) on each element of the mesh.
Using (4–1), we can write a new energy functional restricted to n degrees of
freedom in the basis functions:

P (U) =
1

2

∫

Ω

3∑

j=1

( n∑

i=1

Ui
∂Ti
∂xj

)2

.

Collecting terms in this quadratic form, the coefficients of UiUj are

(4–2) Kkl =
1

2

∫

Ω

3∑

j=1

∂Tk
∂xj

∂Tl
∂xj

.

This matrix, usually called the element stiffness matrix, is symmetric.
The minimization problem has been reduced to finding the minimum with

respect to the parameters Ui of the quadratic form P (U) = 1
2U

TKU . The
minimum is at KU = 0 when boundary conditions are not prescribed. When
boundary conditions are given, some of the variables are prescribed, there are
fewer equations resulting from the minimization process, and the remaining vari-
ables are nontrivial since the linear system of equations has a nonzero right hand
side.

Basis Functions and the Finite Element Method. Now we put the Ritz
method to work by choosing trial functions. We will look at what is perhaps
the simplest case: polynomials on triangulations of Ω. However the simple case
goes quite far and has the clearest ties to simplicial homology theory which we
address in the second half of the chapter.
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The chief difference between the Ritz method and the finite element method
has to do with practical issues in choosing trial functions. A closely related
question is how the trial functions are matched to or imposed on the problem
domain. As a practical matter, the trial functions should be such that the entries
of the stiffness matrix Kij in (4–2) are relatively easy to compute and that K
should be sparse and well-conditioned.

In summary, the approach is as follows:

(1) Begin with a triangulation of Ω, meaning that the 3-dimensional region is
approximated by a set of tetrahedra (3-simplexes) joined together along faces
under the same requirements imposed for a simplicial complex. In other
words, we begin with the triangulation of a manifold. We will have more to
say about simplicial complexes and homology in subsequent sections, but will
altogether sidestep computational geometry and the process of triangulation.

(2) Choose a set of trial functions by defining a set of polynomials on each tetra-
hedron. The case considered here is the linear form Uk = a+bx1 +cx2 +dx3

on the kth tetrahedron. The potential is approximated element by element in
a piecewise linear manner. The main point to note is that the coefficients of
the polynomial are determined entirely by the values of the potential at the
vertices of the tetrahedron, independent of the choice of coordinate system.
This will allow us to pick any convenient coordinate system which provides
for other criteria such as sparsity and efficient computation of K. Note also
that continuity of the potential between the tetrahedra occurs naturally.

(3) Construct a global stiffness matrix K for the entire finite element mesh based
on the preceding steps, and solve the resulting matrix equation for U . Con-
struction of the global stiffness matrix involves computing a stiffness matrix
for each element and using the incidence matrix which describes how ele-
ments in the mesh are connected to assemble a stiffness matrix for the entire
mesh.

Simplexes and Barycentric Coordinates. It is convenient to use coordinates
independent of mesh orientation, structure, or rotation of coordinate system for
the trial functions. For this, we introduce barycentric coordinates.

Let {v0, . . . , vp} be an affine independent set of points in Rn with coordinates
vi = (xi1, . . . , x

i
n). Affine independence means that v1−v0, . . . , vp−v0 are linearly

independent in sense of linear algebra (thus 0 ≤ p ≤ n). Let λ0, . . . , λp be real
scalars. A p-simplex with vertices vi, denoted by 〈v0, . . . , vp〉 is defined as the
subset of points of Rn given by

〈v0, . . . , vp〉 =
{ p∑

i=0

λivi

∣∣∣∣
p∑

i=0

λi = 1, λi ≥ 0

}
.

A 0-simplex is a point 〈v0〉, a 1-simplex is a line segment 〈v0, v1〉, a 2-simplex
is a triangle 〈v0, v1, v2〉, a 3-simplex is a tetrahedron 〈v0, v1, v2, v3〉, etc. Indeed,
the p-simplex is the most elementary convex set, namely the convex set spanned
by v0, · · · , vp. If s = 〈v0, . . . , vp〉 is a p-simplex, then every subset 〈vi0 , . . . , viq 〉
of s is a q-simplex called a q-face of s. The fact that any q-face can be referred
to simply by a subset of vertices of s allows for a very clean way to develop chain
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and homology groups in the context of complexes where p-simplexes are attached
to each other along (p−1)-faces. We take simplexes to be the elements of the
finite element method. If the elements are not simplexes, their generalization as
convex cells still give analogous tools. In any case, the definition of simplexes
gives a geometric footing for our present discussion, and will re-emerge later for
the algebraic and topological discussion.

Under the constraints imposed on the scalars λi, each point in the subset
can be written uniquely so that (λ0, · · · , λp) are coordinates, called barycentric
coordinates, determined by the vertices. The following is an explicit construction
of barycentric coordinates.

Consider an n-simplex s = 〈v0, . . . , vn〉 in Rn. In practice, barycentric coor-
dinates are calculated by recognizing that they are related to the n-dimensional
volume of s, given by the determinant

(4–3) γ(s) =
1

n!

∣∣∣∣∣∣∣∣∣

1 x0
1 x0

2 · · · x0
n

1 x1
1 x1

2 · · · x1
n

...
1 xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣
.

Consider a point v = (x1, . . . , xn) in s, and regard it as a new vertex so that s
is subdivided into n+ 1 new n-simplexes sk = 〈v0, . . . , vk−1, v, vk+1, . . . , vn〉 for
0 ≤ k ≤ n. Then

γ(s) =
n∑

k=0

γ(sk).

The barycentric coordinates corresponding to v are defined by

λk =
γ(sk)

γ(s)

and from the expression above it follows that
n∑

k=0

λk = 1 and

n∑

k=0

gradλk = 0.

Barycentric coordinates can be written somewhat more explicitly as

λi(s) =
1

γ(s)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x0
1 x0

2 · · · x0
n

...

1 xi−1
1 xi−1

2 · · · xi−1
n

1 x1 x2 · · · xn
1 xi+1

1 xi+1
2 · · · xi+1

n
...

1 xn1 xn2 · · · xnn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= ai0 +

n∑

j=1

aijxj ,

where the determinant is expanded about the ith row and real coefficients ajk are
cofactors of the determinant. Note that ai0 = n!γ(si) and aij can be interpreted
as areas of projections of si onto the coordinate planes. For a 2-simplex λi can
be interpreted, by definition, as the ratio of the height of si to the height of
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s. Equipotential surfaces of λi are parallel to the face which si and s have in
common, and ∇λi is normal to that face.

Approximation functions. The basis functions are polynomials, and these are
defined on each tetrahedron of the triangulation. There is a choice between
describing each basis function Ti and describing U as a polynomial on each
tetrahedron. The choices are equivalent, but the latter involves less work. How-
ever, to make part of the connection between trial functions and finite element
approximation functions in the simple case of linear interpolation, we begin with
trial functions on tetrahedral elements. Even this is already more than the Ritz
method since the Ritz method says nothing about the discretization of the prob-
lem domain.

The simplest trial functions which can satisfy the boundary conditions are
linear functions between vertices and satisfy

Ti(vj) = δij , 1 ≤ i, j ≤ 4,

where vj is the jth vertex. This has the advantage that when U is written as the
linear combination U =

∑
UiTi, the coefficients Ui are simply the values of U

at each vertex. For readers familiar with finite difference methods, the resulting
matrix equation will look like it came from a finite difference equation.

The main point is that the linear combination of these trial functions is a
linear function Uk = a0 + a1x1 + a2x2 + a3x3 which must satisfy




U0

U1

U2

U3


 =




1 x0
1 x0

2 x0
3

1 x1
1 x1

2 x1
3

1 x2
1 x2

2 x2
3

1 x3
1 x3

2 x3
3







a0

a1

a2

a3


 .

The role of barycentric coordinates is now beginning to emerge. They permit
us to rewrite the linear form as U =

∑
λiui. In fact, in some sense, we could

simply regard barycentric coordinates as the trial functions.
Uk is determined by its values on the vertices of the kth tetrahedron, but we

have to ensure that U is continuous across element interfaces. Note that three
vertices of the tetrahedron are vertices of the interface shared by two simplexes.
U is linear on the interface, so it is determined by the values of U at the three
vertices. Therefore, U must be the same linear function when the interface is
approached from the neighboring tetrahedron.

There is a great deal to say about interpolation beyond linear functions on
tetrahedra. The functions vary according to application and questions of numer-
ical analysis. The following examples merely scratch the surface.

Example 4.1 Quadratic interpolation on 2-simplexes. Consider, for a
2-dimensional triangulation, a triangle with vertices ((0, 0), (0, 1), (1, 0)) in the
xy-plane. For quadratic interpolation, U is cast as

U = a+ bx+ cy + dx2 + exy + fy2.

The trial function associated with the first vertex is

T = (1− x− y)(1− 2x− 2y).
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Note that this trial function has zeros at the midpoints of the 1-faces of the
2-simplex. These zeros are additional “nodes of interpolation” for the function,
corresponding to the coefficients in the interpolation function. ˜

Example 4.2 Lagrange polynomials on p-simplexes. Lagrange polynomi-
als are also a popular source of interpolation functions. In this case we start with
a family of associated Lagrange polynomials Ri of degree i with a parameter n
in terms of barycentric coordinates:

R0(n, λ) = 1, Rm(n, λ) =
1

m!

m−1∏

j=0

(nλ− j) for m > 0.

Note that Rm has zeroes at λ = 0, 1
n , . . . ,

m−1
n , and that Rm(n,m/n) = 1. The

interpolation function for a p-simplex is defined by a product of these polynomi-
als:

α(λ0, . . . , λp) = Ri0(n, λ0) · · ·Rip(n, λp)

where the order of α is n =
∑
ij . As in the previous example, these polynomials

provide for interpolation points in addition to the vertices. The locations of the
interpolation nodes are given by the zeroes of the polynomial. In practice, a
numbering scheme must be implemented for interpolation node accounting. ˜

These examples point to the possibility of raising accuracy in the solution by
increasing polynomial order, though the computational cost of amount of accu-
racy may not be worthwhile. Interpolation on linear functions may be inadequate
in most applications, however for topological questions the extra interpolation
nodes required for higher-order polynomials somewhat obscure the picture. In
any case, whatever polynomials one uses, once they are defined in terms of
barycentric coordinates, an analysis can be made for a “standard” simplex, and
the procedure of computing the stiffness matrix can be easily automated.

Assembly of the stiffness matrix. Assembly of the global stiffness matrix is
a final unique aspect of the finite element method which merits discussion. As
mentioned previously, assembly refers to the process of computing stiffness ma-
trices for each 3-simplex and using the matrix which describes how 3-simplexes
are connected to their neighbors (via 0-simplexes) to construct a stiffness matrix
for the entire simplicial mesh which represents the computational domain. This
will lead to the quadratic matrix form mentioned earlier which is minimized
at the solution for U . The present purpose is to elaborate on the connection
between simplicial complexes, topology, and the data structures of the finite ele-
ment mesh. Assembly of the stiffness matrix is discussed at length in Sections 5E
(starting on page 153) and 6D.

The procedure can be formulated generally for interpolation in n dimensions,
however we will write everything for n = 3 and linear interpolation.

4B. Finite Element Data Structures

In many algorithms for finite element applications there are computations
which do not depend on the metric of the space. In these cases, once the vertex
coordinates are used to ascribe an orientation (±1) to each element of the mesh
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by taking the sign of (4–3), it is only the finite element connection matrix which is
left to play a purely integer combinatorial role in the computation which handles
the topological business of the algorithm. The connection matrix alone contains
a wealth of topological information about the discretized region, realizing its
simplicial or cellular complex [Mun84].

The complex is an old idea in algebraic topology and electrical circuit theory
[Kro59], but has not attracted much attention in 3-dimensional finite elements
theory. Moreover, it is intimately connected to homology and cohomology the-
ories which are an algebraic expression of how the topology of a region is tied
to fields in the region and is the formalism which links fields in the continuum
to lumped circuit parameters [Kot84]. Nevertheless, the profound consequences
of this algebraic structure can be seen in the computation of cuts for magnetic
scalar potentials [GK01b, Bro84], discretization of the magnetic helicity func-
tional [CK96], and Whitney forms for finite elements [Mül78, Dod76, Bos98].
More generally, the same data structures are related to presentations of the
fundamental group of the triangulated region, sparse matrix techniques for 3-d
finite elements, and, when the metric of the space is introduced, general 3-d finite
element computations.

We will consider finite element data structures which incarnate the simplicial
chain and cochain complexes and point out a duality theorem which is a useful
tool in algorithm development. In fact, the data structures are not new – some
likeness of the structures described here is often found in computer graphics
[Bri93] – however we are attempting to give the motivation for their existence
and a connection to the relevant physics. Furthermore, while the structures are
primarily described in the context of tetrahedral discretizations, they extend
to cellular discretizations (e.g. hexahedral meshes) at slightly higher time and
storage complexity. The discussion here emphasizes only “first-order” elements
since we want to see the underlying connections through the simplest and most
elegant data structure. The entire discussion can be repeated for higher-order
elements.

The Complex Encoded in the Connection Data. This section begins with
some definitions needed for the algebraic framework, leading to the simplicial
chain complex. Since there are many good references [Cro78, Mun84, Rot88],
we do not elaborate on the technical details. Following the definitions, we show
that bases for the chain groups of the complex can be constructed in a simple
hierarchy of data extracted from the finite element connection matrix.

Background and definitions. In section 4A, a p-simplex

σp = 〈v0, . . . , vp〉

was defined as the convex set spanned by vertices {v0, . . . , vp}. The represen-
tation is unique up to a sign which can be assigned to the permutations of the
vertex indices. As illustrated in Figure 4.1, a tetrahedron is a 3-simplex, and its
faces, edges, and nodes are 2-, 1-, and 0-simplexes, respectively.

Formally, a simplex 〈v0, . . . , vq〉 spanned by a proper subset of q + 1 vertices
of σp is called a q-face of σp. A formal linear combination of p-simplexes is
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Figure 4.1.

called a p-chain. A simplex can be assigned an orientation which is induced by
the permutation of vertex order in 〈v0, . . . , vp〉, odd permutation giving negative
orientation and even permutation giving positive orientation. The boundary of
a p-simplex is the (p−1)-chain which is the following alternating sum of (p−1)-
faces:

∂pσp = ∂(〈v0, . . . , vp〉) =

p∑

i=0

(−1)i〈v0, . . . , vi−1, vi+1, . . . , vp〉.

Note that 〈v0, . . . , vi−1, vi+1, . . . , vp〉 is the p-face opposite vertex vi. This defi-
nition can be used to find the boundary of a p-chain. From the expression above
and direct calculation one can verify that in general ∂p−1∂p(·) = 0, that is the
boundary of the boundary of any chain is zero. The operator ∂p determines a
matrix of incidence of (p−1)-simplexes with p-simplexes; we will have more to
say about this when discussing the coboundary operator in section 4B.

A simplicial complex K is a collection of simplexes such that every face of
a simplex of K is in K and the intersection of two simplexes in K is a face of
each of the simplexes. For each p ≥ 0, the structure formed by taking p-chains
with integer coefficients in a complex K is a finitely generated free abelian group
Cp(K; Z) with basis all the p-simplexes in K. This is called the p-chain group
of K.

The connection between Cp(K) and Cp−1(K) is via the boundary map. Defin-
ing the boundary map on a basis of Cp(K), the map extends by linearity to a
map

(4–4) ∂p : Cp(K)→ Cp−1(K)

so that it is a homomorphism between the chain groups. Thus, on a complex of
dimension n the collection of abelian groups Ci(K; Z) and boundary homomor-
phisms give the sequence

(4–5) 0 −→ Cn(K)
∂n−→ · · · ∂p−→ Cp−1(K)

∂p−1−→ · · · −→ C1(K)
∂1−→ C0(K)→ 0.

Since im ∂p+1 ⊆ ker ∂p (because ∂p∂p+1( · ) = 0), (4–5) defines the chain complex
of K, denoted by (C∗(K), ∂) or simply C∗(K).

As described below, the finite element connection matrix contains this basic
algebraic structure. It is of interest because while im ∂p+1 ⊆ ker ∂p, in general
im ∂p+1 6= ker ∂p and the part of ker ∂p not in the inclusion contains useful
information formulated concisely via homology groups and the exact homology
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sequence. However, the chain complex fits between the data which is readily
available from the finite element mesh and “higher” topological structures such
as the homology groups and the fundamental group of K.

From connection data to chain groups. For the immediate purpose, the prime
example of the simplicial complex K is a tetrahedral finite element mesh, a tetra-
hedral discretization of a manifold R in R3 with boundary. Below we show that
bases of the chain groups Ci(K) related to a tetrahedral mesh can be computed
from the connection matrix by “following the boundary homomorphism down
the chain complex”.

Consider an n-dimensional simplicial complex K with mn n-simplexes and
m0 vertices or 0-simplexes. There is a total ordering of the vertices on the index
set {0, . . . ,m0−1} called the global vertex ordering. There is a partial ordering
of vertices such that vertices of a p-simplex are ordered on the set {0, . . . , n}.
The connection matrix is the following mn ×m0 matrix defined in terms of the
global and local orderings:
(4–6)

Cin,j,k =

{
1 if global vertex k is the jth local vertex of the ith n-simplex,
0 otherwise.

For a 3-d finite element mesh, C i3,j,k is simply the connection matrix which is

typically the output of a mesh generator. C i3,j,k is an m3 × m0 matrix, and
typically m3 = km0 where k is approximately 5 to 6. Also note that since
a tetrahedron has four vertices, the connection matrix C i

3,j,k has 4m3 nonzero
entries so that the matrix is sparse.

In general, (4–6) also describes the connection for lower-dimensional subcom-
plexes or p-skeletons of a mesh where 0 ≤ p ≤ n. Because this matrix is sparse,
only the nonzero entries of matrix C ip,j,k are stored in an mp× (p+1) array such

that the ith row of the array gives the (global) indices of the vertices σ0,k which
define the ith p-simplex:

Cip,k = {σ0,k0 , . . . , σ0,kp
},

where 0 ≤ i ≤ mp − 1 and mp is the number of p-simplexes in the mesh. This is
an efficient way of storing (4–6), and in this form C ip,j,k also resembles a basis for

the chain group Cp(K) (the notation intentionally takes them to be the same).
It must be emphasized that referring to the nonzero entries of the matrix in a
table of pointers to the global vertex ordering gives computational efficiency and
a direct link to the maps and definitions of Section 4B.

Consider the following map, which extracts the jth p-face of the kth (p+ 1)-
simplex:

(4–7) fj(σp+1,k) = 〈σ0,0, . . . , σ̂0,j , . . . , σ0,p+1〉,
where 1 ≤ i ≤ mp, 1 ≤ k ≤ mp+1, 0 ≤ j ≤ p + 1, and σ̂0,j denotes that vertex
σ0,j is omitted. Note that j and k do not uniquely specify the p-simplex since
〈σ0,0, . . . , σ̂0,j , . . . , σ0,p+1〉 may be a p-face in more than one (p+1)-simplex. The
representation of the p-simplex by vertex ordering is unique up to orientation,
but the orientation induced from the (p + 1)-simplex can always be adopted in
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order to maintain consistency. In any case, the map gives the p-faces of the
(p+1)-simplex when used for 0 ≤ j ≤ p+ 1.

To build Cp, Equation (4–7) can be used p + 2 times on each (p+1)-simplex
in Cp+1 (effectively taking the boundary of each (p+1)-simplex in Cp+1). In
each instance this requires that an algorithm which extracts the p-simplexes
determine from the existing data for Cp whether the result of applying (4–7) is a
new p-simplex or one that has already been extracted. Thus, starting with Cn,
it is possible to go down the complex (4–5) and extract all the tables Cp.

Algorithm 4.1. Extraction of Cp from Cp+1

Set Cp to be empty.
for each σp+1 ∈ Cp+1

for each p-face of σp+1

if p-face is not in Cp then add p-face to Cp.

The decision at the inner loop requires a search through Cp but if implemented
in an efficient data structure such as a linked list, the search is bounded by the
number of times any vertex of the p-face is a vertex in a p-simplex.

Considerations for cellular meshes. While we focus primarily on simplicial
complexes, all of the algebraic structure described is consistent for cellular com-
plexes (e.g., hexahedral meshes). In practice, the data structures are somewhat
more complicated because the vertices, while ordered on a cell, are not generally
permutable. This affects the definition of (4–7) so that some additional informa-
tion about the ordering of vertices may have to be preserved at every step of the
algorithm. This also influences the way in which the algorithms are implemented
– in particular, depending on application, it is most efficient to extract the 1- and
2-subcomplexes simultaneously, 3-cell by 3-cell, in order to avoid storing extra
information about vertex ordering.

The Cochain Complex. In de Rham theory, integration on manifolds in Rn

is formulated as an algebraic structure which pairs p-chains with differential
p-forms. The algebras of differential p-forms are related in a (de Rham) com-
plex, and the related (co)homology groups are the link between lumped field
parameters and topological invariants of the manifold in question [Kot84]. In
the discrete setting (e.g., triangulated manifolds), cochains play a role analogous
to differential forms and since simplicial (co)homology satisfies the same axioms
as the de Rham cohomology, the theories are equivalent [ES52]. In this section
we define cochains and their algebraic structure. The algebra is dual to the
chain complex. Then we see how this structure also comes out of the connection
matrix.

Simplicial cochain groups and the coboundary operator. Formally, the simpli-
cial p-cochain group Cp(X; Z) is the group of homomorphisms from p-chains to
(for the present purpose) the integers:

Cp(X; Z) = hom(Cp,Z).

Cp(X; Z) is not a vector space, but one can regard the homomorphisms as func-
tionals on chains and denote the operation of a cochain cp ∈ Cp(X; Z) on a chain
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cp ∈ Cp(X; Z), by functional notation:

(4–8) cp(cp) = 〈cp, cp〉.
The p-coboundary operator dp is the adjoint of theboundary operator. It is

defined by

(4–9) 〈dpcp, cp+1〉 = 〈cp, ∂p+1cp+1〉,
so that

dp = (∂p+1)
T : Cp(X; Z) −→ Cp+1(X; Z).

From this point the p-coboundary operator is always written explicitly as the
adjoint operator ∂Tp+1. Equation (4–9) is simply a discrete rendition of Stokes
theorem on manifolds: ∫

Ω

dω =

∫

∂Ω

ω,

where ω is a differential p-form, dω is a (p+1)-form, Ω is a (p+1)-chain, and ∂Ω is
its boundary. This “generalized Stokes theorem” can be called the fundamental
theorem of multivariable calculus. Since ∂2 = 0, ∂Tp+1∂

T
p (·) = 0, and there is a

cochain complex:

0←−Cn(K)
∂T

n←− · · · ∂
T
p←− Cp−1(K)

∂T
p−1←− · · · ←− C1(K)

∂T
1←− C0(K)←− 0.

Coboundary data structures. Since the coboundary operator is the adjoint
of the boundary operator, it can be formulated in terms of pairs of simplexes
(σp, σp−1) and their “incidence numbers”. Consider a p-simplex σp = 〈vo, . . . , vp〉
and a (p−1)-face of σp, σp−1 = 〈v0, . . . , v̂j , . . . , vp〉. Let π be a permutation
function on {0, . . . , p}, then

(signπ)σp = 〈vπ0, . . . , vπp〉 = 〈vj , v0, . . . , vj−1, vj+1, . . . , vp〉,
where signπ = ±1 depending on the parity of π. When σp−1,j is a face of σp,i,
signπij is a nonzero entry in a p-simplex–(p−1)-simplex incidence matrix.

The coboundary operator ∂Tp can be represented by storing only the nonzero

entries of ∂Tp , nz(∂Tp ), and referencing each (p−1)-simplex to the p-simplexes in
which the (p−1)-simplex is a face in sets of pairs

(4–10) nz(∂Tp (σp−1,j)) = {(σp,i, signπij)|σp ∈ Cp(K)},
where σp,j need only be referenced by its global number j. Since a p-simplex
has p + 1 (p−1)-faces, every p-simplex is found in p + 1 of the sets described
in (4–10). This is equivalent to saying that there are p + 1 nonzero entries per
column in ∂Tp .

In general (4–10) can be implemented efficiently in a linked list so that ∂Tp
becomes a list of linked lists. In the codimension 1 case (∂Tn ), an (n−1)-simplex is
shared by at most two n-simplexes and there is no need to store signπij explicitly
since the data can be indexed by the incidence number as follows:

(4–11) nz(∂Tn (σn−1,j)) = {(σn,i|signπij = 1), (σn,l|signπlj = −1)}.
We will simply denote the data structure which contains (4–10) for all (p−1)-

simplexes as ∂Tp and generate it by the following algorithm:
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Algorithm 4.2. Construction of ∂Tp

Set ∂Tp to be empty.
for each σp−1 ∈ Cp−1 (mp−1 (p−1)-simplexes)

for each σp such that signπij 6= 0
augment list for σp−1 with (σp, signπ).

At first sight, the inner loop of algorithm 4.2 seems to require a search through
all of the Cp data structure for each case where σp−1 is a (p−1)-face. In practice
the searching can be avoided by performing the augmentation procedure each
time the (p−1)-simplex is encountered in the inner loop of algorithm 4.1. With
an efficient data structure implementation, reaching the point where the ∂Tp list
is augmented is bounded by the number of times σp is a p-face.

Applications: Simplicial (Co)Homology and Cuts for Scalar Poten-
tials. So far we have spelled the simplicial consequences of the finite element
connection matrix. In this section we look at two applications of simplicial
(co)chain complexes and Poincaré duality to see how they beneficial in 3-d finite
element computation.

Simplicial homology and cohomology. The chain complex is readily available
from the connection matrix, but for many purposes it is merely the starting
point. In this section we consider how homology groups follow from the chain
complex and see how they algebraically expose the lumped parameters of electri-
cal engineering (e.g., current, voltage, flux) which come about from integration
on p-chains.

For the boundary homomorphism ∂p in Equation (4–4), we call ker ∂p =
Zp(K) the p-cycles in K and im ∂p+1 = Bp(K) the p-boundaries in K. Both
Zp(K) and Bp(K) are subgroups of Cp(K), and furthermore, Bp(K) ⊆ Zp(K) ⊂
Cp(K). This is true since if β ∈ Bp(K) then β = ∂p+1α, for some α ∈ Cp+1(K),
but ∂p∂p+1α = 0 says that β ∈ ker ∂p, i.e., β ∈ Bp(K).

In general it is interesting to ask when is a p-cycle not a p-boundary. This
information is summarized in the pth simplicial homology group of K, p ≥ 0,
defined as the quotient group

Hp(K) =
Zp(K)

Bp(K)
=

ker ∂p
im ∂p+1

.

This quotient group consists of equivalence classes of cycles c such that ∂c = 0
but c is not a boundary. Two p-cycles a and b are in the same equivalence class
if they satisfy the equivalence relation

[a] ∼ [b] ⇐⇒ a− b = ∂cp+1,

where c is (p+1)-chain and [a] denotes the homology class of a. The rank of
Hp(K) is the number of independent equivalence classes in the group and is
known as the pth Betti number ofK, denoted by βp(K); intuitively, β0(K) counts
the number of connected components of K, and β1(K) counts the “number of
holes in K” [Max91, GK95, GK01b].
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Electrostatics Magnetostatics

Parameter voltage, V flux, φ

Rel. cohomology group H1(Ω, ∂Ω) H2(Ω, ∂Ω)

Parameter charge, Q current, I

Abs. cohomology group H2(Ω) H1(Ω)

Entries of an energy
quadratic form

normalized to charges
or currents

C−1
ij =

V

Q
=

∫
cj

Ei · dl∮
Si

Di · ds
[Si] ∈ H2(Ω)

[cj ] ∈ H1(Ω, ∂Ω)

Lij =
φ

I
=

∫
Si

Bj · ds∮
cj

Hj · dl
[Si] ∈ H2(Ω, ∂Ω)

[cj ] ∈ H1(Ω)

Table 4.1. Summary of relation between lumped parameters and cohomology.

Calling Zp(X; Z) = ker ∂Tp the group of p-cocycles, and Bp(X; Z) = im ∂Tp−1

the group of p-coboundaries, the pth cohomology group is:

Hp(X; Z) =
Zp(X; Z)

Bp(X; Z)
=

ker ∂Tp+1

im ∂Tp
.

To make the connection with lumped parameters, we also need to introduce
relative homology groups. Let L be a subcomplex of K, that is a simplicial
complex contained in K. Then the pth relative simplicial homology group of K
“modulo” L is

Hp(K,L; Z) = Hp(C∗(K)/C∗(L); Z),

that is, the homology of the quotient of the two complexes. In particular, if
L = ∂K, two p-cycles from an equivalence class in Hp(K, ∂K) form a p-boundary
in K when taken in combination with a p-chain in ∂K. Relative cochains (with
integer coefficients) are defined by

Cp(K,L; Z) = hom(Cp(K,L),Z),

so that the pth relative cohomology group is

Hp(K,L; Z) =
ker ∂Tp
im ∂Tp+1

,

where ∂Tp : Cp(K,L; Z)→ Cp+1(K,L; Z).
Table 4.1 outlines the relation of these (co)homology groups to “lumped pa-

rameters” in electro- and magnetostatics. For electrostatics, Ω is the charge-free
region and for magnetostatics, Ω is the region free of conduction currents.

Finally, we note that Poincaré–Lefschetz duality on chains “descends” to the
(co)homology groups. This happens through the dual complex to K which will
be introduced shortly.
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Cuts for magnetic scalar potentials. In “magnetoquasistatics”, displacement
current is ignored in Ampère’s law, and the magnetic field is described by

curlH = J .

In nonconducting regions J = 0 and one may ask if H = − gradψ where ψ is a
single-valued scalar potential defined in the nonconducting region. In general ψ
is multivalued since Ampère’s law shows that

I =

∮

ci

gradψ · dl 6= 0

if I 6= 0 and ci is a closed path linking the current I. For reasons of computational
cost and numerical analysis, it is still worthwhile to pursue the scalar potential
in 3-d if one can introduce cut surfaces and impose a discontinuity across the
cuts in order to make the potential single-valued. Informally, cuts are orientable
surfaces embedded in the current-free region such that when integrating H · dl
around a closed path which links current, the path must pass through the cuts.
Cuts coincide with the flux measurement surfaces Si in the right column of
Table 4.1 [GK01b].

The existence of cuts as compact, embedded, orientable manifolds in R can be
formulated via a constructive proof which gives an algorithm for computing them
on finite element meshes which are triangulations of the nonconducting region
[Kot89a]. There are many facets to the algorithm which are discussed in Chap-
ter 6, but here we touch on only one aspect. The first step to computing a set of
cuts for a mesh is to compute a set of topological constraints which represent a
set of generators for classes in H2(K, ∂K) [GK01b]. Poincaré–Lefschetz duality
provides for rephrasing this problem in terms of finding a basis for cohomology
classes of a dual complex of K and reduces to finding a basis of the nullspace of
∂T2 , or a set of vectors {ζ1, . . . ζβ1

} satisfying

∂T2 ζi = 0,

subject to im ∂̆T0 = 0 [GK01b]. The problem is motivated strictly by topological
considerations based on the dual complex and Poincaré duality relation which
will be considered shortly. In addition the computational formulation requires
the data structures C3, C2, ∂

T
3 , ∂T2 , ∂T1 .

Whitney forms. In recent years, there has been growing interest in so-called
Whitney 1-forms or edge elements for a variety of finite element computations.
The general idea comes from Whitney [Whi57, Whi50] and was developed in
[Dod76, Mül78] to which we refer for proofs. It starts with a linear Whitney
map that makes piecewise linear differential q-forms from simplicial q-cochains:

(4–12) W : Cq(K)→ L2Λq(X),

X being a compact oriented C∞ Riemannian manifold of dimension n, L2Λq(X)
the space of square-integrable de Rham C∞ differential q-forms on X, and K a
simplicial triangulation of X. Let λi be barycentric coordinates corresponding to
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vertices vi in K. The basic form Wσ ∈ L2Λq(X) on a q-simplex σ, is defined by

Wσ = q!

q∑

k=0

(−1)kλik dλi0 ∧ · · · ∧ d̂λik ∧ · · · ∧ dλiq if q > 0,

W (vi) = λi if q = 0,

where ∧ denotes the wedge product for differential forms and, as in Section 4B,
·̂ denotes that the differential is excluded. Note that the construction of this
q-form corresponds neatly to the process of extracting (q−1)-simplexes from q-
simplexes in algorithm 4.1. We mention two properties of the Whitney map:

(1) W∂T c = dWc for c ∈ Cq(K) where ∂T c ∈ Cq+1(K) is the simplicial
coboundary of c. The exterior derivative d : Λq → Λq+1 applied to Wc
is well-defined in this case.

(2) Let 〈 · , · 〉 denote the pairing of Cq(K) and Cq(K) as in (4–8). Then
∫

cq

Wcq = 〈cq, cq〉

for every cochain cq ∈ Cq and chain cq ∈ Cq(K).

The first property is significant because it implies that the simplicial cohomology
groups of K and the de Rham cohomology group of X are isomorphic.

In addition to the Whitney map (4–12), there is a de Rham map

R : L2Λq(X)→ Cq(K),

which is defined on a basis of chains by
∫

cq

ω = 〈cq, cq〉,

and the second property of the Whitney map ensures that

RW = I,

where I is the identity map. The convergence WR→ I as a mesh is refined is a
special case of both finite element theory and Whitney’s program, but this obvi-
ous connection does not seem to exist outside of computational electromagnetics
and the work of Dodziuk [Dod74, Dod76] and Müller [Mül78].

For c, c′ ∈ Cq(K), an inner product can be defined:

(c, c′) =

∫

X

Wc ∧ ∗Wc′ = (Wc,Wc′).

This is nondegenerate by the property of the de Rham map. Although there is no
obvious metric inherent to the simplicial complex K, this inner product inherits
a metric from X through the Whitney map. As a mesh is refined, the inherited
metric in the inner product converges to the (Riemannian) metric on X.

Example 4.3 Whitney form interpolation of the helicity functional.
For finite element computations of magnetic fields, a Whitney 1-form can be
used to discretize the magnetic field intensity. Namely,

ω = H · dr.
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Then, on a 1-simplex,

hij =

∫ vj

vi

ω

define the variables of a 1-cochain for ω. In this formulation, it is interesting to
note that the contribution of the so-called helicity density ω ∧ dω to the finite
element stiffness matrix is independent of metric and constitutive laws [Kot89b].
In particular, the contribution of the helicity on a tetrahedron to the stiffness
matrix is

1

2

∫

σ3

ω ∧ dω = 1
6 (h01h23 − h02h13 + h03h12).

The right-hand side is a quadratic form which remains invariant by the action
of the Lie group SL(4,R) associated with piecewise linear volume-preserving
diffeomorphisms. ˜

The Dual Complex and Discrete Poincaré Duality For Chains and
Cochains. One reason for developing the coboundary data structures is to
make use of a duality relation which relates cochains of the simplicial complex
K to chains on the dual complex of K. A thorough development of the dual
chain complex of K (as in [Mun84]) usually starts with the first barycentric
subdivision of K and construction of “blocks” in the subdivision which are dual
to the p-simplexes of K, where the dual blocks are unions of certain sets of open
simplexes in the subdivision.

Although the definition of the dual complex [Mun84] relies on some geometry,
the incidence data for the dual complex can be recovered from the coboundary
data structures of the simplicial complex [Whi37], so we will formally define the
dual chain complex DK with the following construction. The dual complex of a
simplicial complex K, is a cell complex DK obtained by identifying p-simplexes
on K with (n − p)-cells. In general DK is not a simplicial complex, so it is
necessary to use the terminology of cells. However it is possible to formulate a
complex C∗(DK) as previously done for K in (4–5).

In explicit terms, we identify 3-simplexes with 0-cells (vertices of DK), 2-
simplexes with 1-cells (edges), 1-simplexes with 2-cells (faces) and 0-simplexes
with 3-cells. Since the coboundary data structures already contain the incidence
of p-simplexes in (p+1)-simplexes, these can be reinterpreted on the dual complex
as the boundaries of (n−p)-cells. For example, the entries of (4–11) can be
regarded as the 0-cells incident to a 1-cell in DK which passes “through” the
barycenter of σ2,j . Equation (4–10) is interpreted as the boundaries of 2- and
3-cells (∂T1 and ∂T2 respectively) in DK associated with (3 − 2)- and (3 − 3)-
simplexes, respectively, in K.

A useful form of Poincaré duality formalizes the connection between ∂Tp and
boundaries of (n − p)-cells in DK seen in the data structures. It establishes a
duality between cochains in K and chains in DK. While the complexes Cp(K)
and Cp(K) are duals by definition, there exists a nondegenerate bilinear inter-
section pairing. Comparison of the chain complexes C∗(K) and C∗(DK) in light
of this duality says that boundary and coboundary operators can be identified:

∂Tp+1 = ∂̆n−p,
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where ∂̆ denotes the boundary operator on DK. The same identification is seen
in the data structures. Hence, for the price of extracting the cochain complex
from the connection matrix, we have learned everything about the dual chain
complex.

Once a tetrahedral finite element mesh is identified as the triangulation of a
3-manifold with boundary, simplicial complexes give a systematic and general
way for creating and organizing finite element data structures. The simplicial
chain and cochain complexes are the bridge between the topology of the man-
ifold, vector fields in the region, and structures from algebraic topology which
are useful for finite element computation. The data structures are the most nat-
ural for using Whitney elements, in particular Whitney edge elements. Helicity
functionals and cuts for magnetic scalar potentials are good examples of applica-
tions where the metric of the space and the topology can be separated. In these
contexts, the data structures provide a high degree of computational efficiency.

In Chapter 7 we formulate a paradigm variational problem in terms of differ-
ential forms. It has the virtue that it includes all of the variational principles
considered so far. Furthermore, its finite element discretization by means of
Whitney forms preserves all of the topological, homological, and circuit theo-
retic features emphasized so far in this book. See Bossavit [Bos98] for an engi-
neer’s take on the history of the subject, and Hiptmair [Hip02] for some recent
developments.

4C. The Euler Characteristic and the Long Exact Homology
Sequence

The Euler characteristic is best known in the context of the topology of poly-
hedra [Arm83] and in electrical circuit theory. In a more general form it is useful
for analyzing numerical algorithms for finite element matrices [Kot91]. Here we
discuss how the Euler characteristic can be used to count the number of nonzero
entries in the global finite element stiffness matrix. Since the amount of com-
putation required for one iteration of the conjugate gradient (CG) algorithm
can be expressed in terms of the number of nonzero entries of the matrix, the
topological counting discussed below leads to good a priori estimates of compu-
tational complexity per iteration. A proof and further discussion of the Euler
characteristic theorem can be found in [Mun84].

Let mi denote the number of i-simplexes in a tetrahedral finite element mesh
K. The Euler characteristic χ(K) is defined as

χ(K) =

3∑

i=0

(−1)imi.

The Euler characteristic is related to the ranks βi(K) of the homology groups of
the simplicial complex of K as follows.

Theorem.

χ(K) =

3∑

i=0

(−1)iβi(K).
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The definition and theorem are the same for a cellular complex where mi

denotes the number of i-cells in the complex, and while the statements above
are given for a 3-complex, the definition and theorem are the same for an n-
complex.

We will see how the Euler characteristic can be used in the analysis of al-
gorithms. Consider the long exact sequence of the pair (M,∂M) developed in
Section 1H. It can be thought of as a complex with trivial homology and hence,
by the theorem above, trivial Euler characteristic. Examining the columns of
the long exact sequence, we see that the terms in the Euler characteristic of the
long exact sequence are just the alternating sum of the Euler characteristics of
∂M , M , and the pair (M,∂M). Hence

(4–13) χ(∂M) = χ(M)− χ(M,∂M).

Furthermore, ifM is a compact orientable manifold with boundary, the Lefschetz
duality theorem implies that

(4–14) χ(M) = (−1)nχ(M,∂M).

Combining Equations (4–13) and (4–14) we get

χ(∂M) = (1− (−1)n)χ(M) =

{
2χ(M) if n is odd,
0 if n is even.

So, if M is three-dimensional,

(4–15) χ(∂M) = 2χ(M).

Let us now consider how Equation (4–15) is used in the analysis of algorithms
by considering the conjugate gradient iteration used for solving linear systems
of equations.

A CG iteration involves one matrix-vector multiplication, two inner products
and three vector updates. For a given interpolation scheme on a finite element
mesh, the number of floating point operations (FLOPS) per CG iteration is
[Kot91]

F = 5D +X,

where D is the number of degrees of freedom and X is the number of nonzero
entries in the stiffness matrix. For the scalar Laplace equation, one can write:

(4–16) F s0 = 5Ds
0 +Xs

0 ,

where

(4–17) Ds
0 = m0, Xs

0 = m0 + 2m1,

and mi, for 0 ≤ i ≤ 3, is the number of i-simplexes in the mesh. Similarly,
let ni be the number of i-simplexes in the boundary of the mesh. For a three
dimensional simplicial mesh which is the triangulation of a manifold M , we have
the following two linear equations

4m3 = 2m2 − n2,

3n2 = 2n1.
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The Euler characteristic applied to M and ∂M provides two additional linear
relations. Equation (4–15) above enables us to express χ(∂M) in terms of χ(M).
So, the four linear relations can be used to express the four variables m1, m2,
n1, and n2 in terms of the remaining four: m0, m3, n0, and χ(M). Hence

(4–18)
m1 =m0 +m3 + n0 − 3χ(R),

m2 =2m3 + n0 − 2χ(R),

and Equation (4–16) can be rewritten as

(4–19) F s0 = 8m0 + 2m3 + 2n0 − 6χ(R).

For nodal interpolation of three-component vectors,

(4–20) F0 = 5D0 +X0,

where

(4–21) D0 = 3Ds
0, X0 = 3(3Xs

0).

Using Equations (4–18) and (4–17), Equation (4–21) can be substituted into
(4–20) to yield

(4–22) F0 = 42m0 + 18m3 + 18n0 − 54χ(R).

Similarly [Kot91], for edge interpolation of vectors, we can write

F1 = 5D1 +X1,

where, by [Kot91] D1 = m1 and

(4–23) X1 = m1 + 2(3m2) + 6m3.

Then, via (4–18), we have

(4–24) F1 = 6m0 + 24m3 + 12n0 − 30χ(R).

Assuming that hexahedral meshes have, on average, as many nodes as elements, a
useful heuristic is m3 = km0 where k = 5 or 6 (depending on whether hexahedra
are divided into 5 or 6 tetrahedra). So, comparing (4–22) and (4–24) to (4–19),
one finds that in the limit, as the mesh is refined (m0 →∞),

F0

F s0
=

{
7.5 if k = 6,
7.6 if k = 5,

and
F1

F s0
=

{
10.7 if k = 6,
9.7 if k = 5.

This analysis is used for the comparison presented in Table 6.1. See also [Sai94]
for related numerical results.



It could be said if all the text that concerned the application of boundary
conditions in electromagnetic problems, and all the topological arguments,
were removed from this book, there would be little left. To some extent both
topics could be said to be more of an art than a science.

E. R. Laithwaite, Induction Machines for Special Purposes, 1966

5
Computing Eddy Currents on Thin Conductors

with Scalar Potentials

5A. Introduction

In this chapter we consider a formulation for computing eddy currents on thin
conducting sheets. The problem is unique in that it can be formulated entirely by
scalar functions—a magnetic scalar potential in the nonconducting region and
a stream function which describes the eddy currents in the conducting sheets —
once cuts for the magnetic scalar potential have been made in the nonconducting
region. The goal of the present formulation is an approach via the finite elements
to discretization of the equations which come about from the construction of the
scalar potentials. Although a clear understanding of cuts for stream functions on
orientable surfaces has been with us for over a century [Kle63] there are several
open questions which are of interest to numerical analysts:

(1) Can one make cuts for stream functions on nonorientable surfaces?
(2) Can one systematically relate the discontinuities in the magnetic scalar po-

tential to discontinuities in stream functions by a suitable choice of cuts?
(3) Given a set of cuts for the stream function, can one find a set of cuts for the

magnetic scalar potential whose boundaries are the given cuts?

In preceding chapters we have alluded to the existence of cuts, though we have
not yet dealt with the details of an algorithm for computing cuts. The algo-
rithm for cuts will wait for Chapter 6, but it is possible to answer the questions
above. Section 5B gives affirmative answers to the first two questions by us-
ing the existence of cuts for the magnetic scalar potential to show that cuts for
stream functions can be chosen to be the boundaries of the cuts for magnetic
scalar potentials. Although this need not be the case, this approach enables the
computation of cuts for stream functions to be a by-product of the computation

141
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of cuts for magnetic scalar potentials. This is an important point since investi-
gations of cuts in three dimensions indicate that the third question cannot be
resolved with a polynomial time algorithm.

Problems of eddy current analysis and nondestructive testing do not gener-
ally lead to boundary value problems in the usual sense because the excitations
are not prescribed current distributions or boundary values but rather lumped
parameter “total currents”. As noted throughout (as in Example 1.9), jumps in
the magnetic scalar potential across cuts relate to these “total currents” in the
current-carrying region. Dually, the same cuts are orientable surfaces used for
calculating time rates of change of flux linkage which correspond to electromotive
forces around closed nonbounding curves in the current-carrying region. With
regard to the duality of lumped parameters it is natural to ask whether the topo-
logical formalism enables one to relate lumped-parameter currents to statements
about voltages and fluxes. This question is considered in section 5B where an
intersection matrix (a nondegenerate bilinear pairing between homology groups)
is introduced to articulate current constraints and in section 5D where the inter-
section matrix relates free currents to dual conditions involving voltages. Section
5E considers the discretized finite element problem for computing eddy currents
with cuts. The result of this chapter is an outline of how a computer can solve an
eddy current problem given only information about circuit parameters (current
and voltage) and cuts for the magnetic scalar potential.

5B. Potentials as a Consequence of Ampère’s Law

We begin by stating the eddy current problem for thin conductors. Consider
R̃, a three-dimensional manifold with boundary which is a subset of R3. S is
a conducting surface embedded in R̃ which may have more than one connected
component. Let R be the complement of S relative to R̃, R = R̃∩Sc and β1(R)
its first Betti number. Then R is the current-free or nonconducting region and
in Maxwell’s terminology [Max91], β1(R) is the cyclomatic number.

The current sources are taken to be lumped-parameter currents

Ii, 1 ≤ i ≤ nc ≤ β1(R)

confined to the region R̃c, the complement of R̃ relative to R3, where nc is the
number of prescribed currents. There may also be inhomogeneous boundary
conditions. The driving sources lie in the exterior of R̃. We assume that the
excitations are such that the resulting magnetic field in R is quasistatic so that
displacement currents can be neglected.

If the boundary conditions are homogeneous, there are two types of global
topological conditions which can be prescribed. The first type of condition is

(5–1)

∮

ci

H · dl = Ii, 1 ≤ i ≤ nc,

where ci are generators of classes in the homology groups H1(R; Z). The second
type of condition is∫ ∫

Sj

B · dS = −dVj
dt

, nc + 1 < j ≤ nc + nv,
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where Sj are generators of classes in the homology groups H2(R, ∂R; Z) and nv
is the number of voltages prescribed for the problem. As brought forth in the
first chapter these conditions can contribute nontrivial solutions of the boundary
value problem.

As outlined in Chapter 2, the integral form of Ampère’s law implies that

curlH = 0 in R,(5–2)

n× (Ha −Hb) = K on S,(5–3)

divS K = 0 on S,(5–4)

where n is the normal to surface S and K describes current flowing on S. The
surface current density vector K is defined as

K = −D n× (n× Jav) on S,

where D is the local sheet thickness or skin depth, J av is an average current
density in the effective depth of the current sheet, and divS refers to the diver-
gence operator in surface S. Since S may be nonorientable, K is defined locally
on S, and subscripts a and b can only be defined locally on S.

Equations (5–2)–(5–4) give the local consequences of Ampère’s law. Equa-
tion (5–2) suggests using a magnetic scalar potential to describe H in R and
Equation (5–4) suggests using a stream function to describe K on S. The in-
troduction of these potentials has topological consequences which cannot be de-
duced from Equations (5–2)–(5–4) but rather from the integral form of Ampère’s
law and the systematic use of (co)homology groups. In order to globally define
a single-valued magnetic scalar potential we need the framework established in
earlier chapters and summarized below:

(1) the cohomology group H1(R; R): equivalence classes of irrotational vector
fields (with equivalence defined in the sense that the fields in a class differ
by the gradient of a single-valued function);

(2) the homology group H1(R; Z), associated with equivalence classes of closed
curves in R which “link” current paths;

(3) the relative homology group H2(R̃, S ∪ ∂R̃; Z), associated with equivalence
classes of cuts which enable one to use a single-valued scalar potential.

The relation between each of the two homology groups to the cohomology group
is clear, however for geometric modeling and for the visualization of cuts, it is
useful to introduce an intersection matrix as a way of seeing the relationship
between the two homology groups. Assuming for the moment that cuts can
be represented by embedded, orientable submanifolds, let {Si} be a set of cuts

whose homology classes are a basis of H2(R̃, S∪∂R̃; Z) and {cj} be a set of closed
curves whose homology classes are a basis for H1(R; Z) where 1 ≤ (i, j) ≤ β1.
Si and cj intersect at a finite number of points, and the kth intersection point
is denoted by pkij . Furthermore, suppose that at pkij , Si has normal vector n

k
ij ,

cj has tangent vector t
k
ij , and that Si or cj have been perturbed locally so that

n
k
ij · tkij 6= 0. The intersection matrix I is defined by letting its ijth entry be the
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oriented intersection number of Si and cj . That is

(5–5) (I)ij = Int (Si, cj)
4
=
∑

k

sign (nkij · tkij).

It can be shown that this integer-valued matrix I is defined independent of how
the cuts {Si} and curves {cj} are chosen to represent their homology classes.
Furthermore, since the homology groups involved are torsion-free one can choose
the cuts and curves so that I is unimodular (det I = 1) and this in turn indicates
that cuts and curves can be chosen so that I is the identity matrix. However, it
is not clear that there is an algorithm which can make this choice.

Having defined the curves {cj}, the cuts {Si} and the intersection matrix I
we can proceed to the magnetic scalar potential. First note that

(5–6)

∮

ci

H · dl = Ii,

where the {Ii} are currents flowing outside R. In the nonconducting region
exclusive of the cuts, the magnetic field can be expressed in terms of a scalar
potential:

(5–7) H = − gradψ in R ∩ ⋂j Scj ,

where ψ is single-valued. This scalar potential has jumps [ψ]Sj
across Sj which

can be determined from the linear system

(5–8) Ii =

β1∑

j=1

[ψ]Sj
(I)ji, 1 ≤ i ≤ β1(R).

This matrix equation involving the intersection matrix arises from the application
of Ampère’s law:

Ii =

∮

ci

H · dl =

∫

ci∩
T

j
Sc

j

H · dl by (5–6)

= −
∫

ci∩
T

j
Sc

j

gradψ · dl by (5–7)

= −ψ|∂(ci∩
T

j
Sc

j
) by Stokes’ theorem

=

β1∑

j=1

[ψ]Sj

∑

pk
ij
∈Sj∩ci

sign (nkij · tkij) by the definition of pkij and [ψ]Sj

=

β1∑

j=1

[ψ]Sj
(I)ji by (5–5).

Having described a potential for the magnetic field H we turn our attention to
the stream function describing the surface current density K. For the purposes
of formulating a boundary value problem in R, it is sufficient to assume that the
currents are confined to S and the boundary of R̃. That is, the support of K is
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∂R̃ ∪ S. Equation (5–4) ensures the existence (locally) of a stream function χ
which, for flat surfaces, is related to K by

(5–9) K = −n× gradχ.

It is easy to verify that Equation (5–9) is consistent with Equations (5–2)–(5–4)
and (5–7). For curved surfaces there are two difficulties with this approach.
First, a considerable investment in differential geometry is required in order to
have an expression which is coordinate-free. In the notation of Nedelec [Ned78]
this is handled by writing

(5–10) K = − curlχ

where curl is the formal adjoint to the curl operator in the surface. That is,

(5–11)

∫

S

χ · curlF · ndS =

∮

∂S

χF · dl −
∫

S

F · curlχdS

for any admissible χ and F . The second problem is that for nonorientable
surfaces the normal vector in (5–9) and the integration by parts formula (5–11)
leading to (5–10) are not well-defined. Hence the problem of defining χ on a
nonorientable surface and the problem of making cuts for χ on orientable and
nonorientable surfaces must be resolved.

A systematic way out of these difficulties begins with observing that every-
thing that everything developed so far is a consequence of Ampère’s law and
not of Maxwell’s remaining equations nor of metric notions such as constitutive
relations. If the metric-free formalism of differential forms is used, it becomes
clear that generalizing Equation (5–9) to the case at hand is tedious and it is
more fruitful to work with Ampère’s law and first principles. The argument is
summarized in ordinary vector notation as follows. Let S ′ be that part of the
boundary of R̃ and the current sheets which does not touch the boundaries of
the cuts for the magnetic scalar potential. That is,

S′ = (S ∪ ∂R̃) ∩
( β1⋃

j=1

Sj

)c
.

Proposition. There is a single-valued stream function defined on each con-
nected component of S′. In particular, each connected component of S ′ is ori-
entable.

To see why this is so, consider a connected component S ′
c of S′ and a point po ⊂

S′
c. In a sufficiently small neighborhood N of po one can define an orientation (a

consistent choice of normal vector). Next, recall from (5–7) that the magnetic

scalar potential is single-valued in R ∩
(⋃β1

j=1 Sj
)c

. Hence on the set N one can
define a single-valued stream function

(5–12) χ = ψa − ψb = [ψ]S′

c
,

where ψa is taken to be zero on ∂R̃. (∂R̃ is always orientable; see [GH81].)
This definition is consistent with Ampère’s law, equations (5–2)–(5–4), and

(5–8), (5–9), and (5–10). The physical interpretation of differences in a single-
valued stream function is that of net current flowing across a curve between
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two points. Next, note that ψa − ψb is well-defined (single-valued) on all of S ′
c.

Furthermore since this result is valid for any solenoidal distribution of current
on S ∪∂R̃, by Equation (5–12) there is a well-defined χ on all of S ′

c. This proves
the proposition.

So far we have succeeded in breaking S ∪ ∂R̃ into orientable patches whose
union is the set-theoretic complement of a set of curves which are the boundaries
of cuts for the magnetic scalar potential. On each of these patches we have an
orientation and a stream function related to the magnetic scalar potential by
Equation (5–12). From this we conclude that the cuts for the stream function
are the curves ∂Si whose orientation is induced from Si. This is clear because,
as sets,

(5–13) S ∪
β1⋃

i=1

∂Si = (S ∪ ∂R̃) ∩
β1⋃

j=1

Sj .

Here S is where
⋃β1

j=1 Sj “passes through” S rather than just meeting it, and
the term on the right-hand side is where χ is discontinuous. Note that we can
always cut the Sj along S and perturb them so that there is no loss of generality
in assuming that S consists of isolated points. To find the constraints which
must be imposed on χ at ∂Sj , consider Sj meeting S or ∂R̃. Recall that Sj is
orientable and call the normal vector nj . This induces an orientation (tangent
vector tj) on ∂Sj . Let nck be the normal vector to S ′

ck where S′
ck is the kth

connected component of S ′. Locally, on either side of the cut the following
quantity is well-defined:

(5–14) εjk|∂S′

ck
∩∂Sj

= sign det(tj ,nj ,nck).

Note that εjn + εjm = 0 if the orientation of S changed when the cut is crossed.
Equation (5–14) is defined locally and can do unexpected things as one moves
along ∂Sj (consider a Möbius band where S ′

cn = S′
c = S′

cm, εjn + εjm = 0,
and where ∂Sj necessarily touches the edge of the band). Given the preceding
notation, by Equations (5–13) and (5–14) we have:

0 = lim
length c→0

∮

c

H · dl = εjn[ψ]S′

cn
− [ψ]Sj

− εjm[ψ]S′

cm
,

so that by (5–12) we have

(5–15) [ψ]Sj
= εjnχ|S′

cn
− εjmχ|S′

cm
along each ∂Sj , for 1 ≤ j ≤ β1.

Expression (5–15) is the constraint on the stream function at a cut. In conclusion,
(5–7) and (5–12) define the potentials while (5–15) gives a topological consistency
condition. External “forcing currents” can be imposed in terms of the magnetic
scalar potential through use of (5–8) or in terms of the stream function by using
(5–15) to eliminate [ψ]Sj

in (5–8).
An elegant development of the above can be obtained by working “dually” in

terms of the cohomology and “twisted differential forms”. Since no Poincaré-like
duality theorem on S is ever used, this approach is equivalent to the one taken
above because the (co)homology groups of R are torsion-free as discussed in 3D.
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5C. Governing Equations as a Consequence of Faraday’s Law

In this section we derive the equations satisfied by the potentials. These
are the equations which we expect would be the Euler–Lagrange equations if a
variational principle exists. We introduce constitutive relations

B = µ
(
|H|2

)
H in R(5–16)

and

ES =
1

σD
K on S.(5–17)

Here ES is the projection of the electric field onto the surface S. For simplicity,
the magnetic constitutive relation is assumed to be nonhysteretic, isotropic, and
monotonic. This explicit dependence of µ on H will be assumed in the follow-
ing. These constitutive relations and the differential version of Faraday’s lawfor
stationary media can be used to express the vectors B and ES in terms of ψ and
χ as follows. Defining a dummy index 1 ≤ j ≤ β1(R), the equations describing
the magnetoquasistatic field are

(5–18)





div
∂

∂t
(µ gradψ) = 0 in R ∩

( β1⋃
j=1

Sj

)c
,

d

dt

(
µa
∂ψa

∂n
− µb ∂ψ

b

∂n

)
= 0 on each S′

cn and Sj ,

curl
( 1

σD
curlχ

)
= −µ ∂

∂t

∂ψ

∂n
on each S′

cn.

These equations, being in some sense dual to Equations (5–2)–(5–4), are incom-
plete since the differential laws lack the information encoded in integral laws
by cohomology considerations. The missing information pertaining to voltage
drops around “closed circuits” is dual to Equations (5–8) and (5–15) and is a
consequence of the integral form of Faraday’s law:

(5–19)

∫

∂Si

1

σD
curlχ · dl = − d

dt

∫

Si

µ
∂ψ

∂n
dS, 1 ≤ i ≤ β1.

The dual role played by the homology group H2(R̃, S ∪ ∂R̃; Z) is made clear in
the preceding expression. Expressions (5–18), (5–19), (5–12), and (5–15) form a
complete set of equations which describe the problem. Note that this “boundary
value problem” has no volume sources or prescribed boundary conditions. The
“excitations” which give nontrivial solutions are given by prescribing currents
via (5–8).

5D. Solution of Governing Equations by Projective Methods

For a numerical solution it is best to develop an energy or power dissipation
functional which can be used in conjunction with Galerkin’s method to solve
Equations (5–18) and (5–19). Although there is a variational principle involv-
ing complex-valued functionals for linear time-harmonic problems, there is no
energy-based variational principle for the problem at hand since the equations
have first order derivatives in time. We will consider a projective method based
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on the magnetoquasistatic version of Poynting’s theorem. Although this ap-
proach is not new, we examine it here because global cohomological (lumped
parameter) aspects have never been systematically formulated. The magneto-
quasistatic form of the Poynting energy theorem is

0 =

∫

S∪∂R̃

ES ·KdS +

∫

R

H · ∂B

∂t
dV.

The starting point for a projective solution is the equation

(5–20) 0 =

∫

S∪∂R̃

Es(K) · δK dS +

∫

R

δH · ∂
∂t

B(H) dV for all δH, δK,

where H and K are subject to Equations (5–7), (5–8), (5–10), (5–12), and
(5–15), while δH and δK are test functions which satisfy analogous equations:

(5–21)
δH = − grad δψ in R ∩ (

⋃
j Sj)

c,

δK = − curl δχ on S′,

(5–22)

δχ = δψa − δψb on S′,

δψa = 0 on ∂R̃,

[δψ]Sj
= εjnδχ|S′

cn
− εjmδχ|S′

cm
along each ∂Sj ,

and

(5–23) δIi =

β1∑

j=1

[δψ]Sj
Iji,

where δIi = 0 if Ii is prescribed. Using the constitutive laws (5–16) and (5–17),
Equation (5–20) can be rewritten in terms of potentials:

(5–24) 0 =

∫

S′

1

σD
curlχ · curl δχ dS +

∫

R∩(
S

j
Sj)c

grad δψ · d
dt

(µ gradψ) dV

for all δψ and δχ satisfying Equations (5–21) and (5–22). Here ψ and χ satisfy
Equations (5–12) and (5–15). Excitations are prescribed through (5–8). For
numerical computations one minimizes the number of “degrees” of freedom re-
quired to describe H and K. This is accomplished by Equations (5–12), (5–15),
and (5–22) to eliminate χ and δχ from the above equation to obtain

(5–25) 0 =

∫

S′

1

σD
curl(ψa − ψb) · curl(δψa − δψb) dS

+

∫

R∩(
S

j
Sj)c

grad δψ · d
dt

(µ gradψ) dV

for all eligible δψ where ψ and δψ are continuous except on S∪ ⋃j Sj . For each j,

[ψ]Sj
is a constant which satisfies (5–8) when current excitations are prescribed

and [δψ]Sj
is a constant which satisfies (5–23).

It remains to show that the proposed formulation does indeed yield Faraday’s
law.That is, we must show that Equations (5–18) and (5–19) follow from (5–25).
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This is most easily accomplished by using (5–11) on S ′ and the divergence the-
orem in R ∩ (

⋃
j Sj)

c to integrate both terms in (5–24) by parts, so that

(5–26) 0 = −
∫

S′

δχ curl
( 1

σD
curlχ

)
dS +

∮

∂S′

δχ

σD
curlχ · dl

−
∫

S′∪(
S

j Sj)

(
δψb

d

dt

(
µb gradψb

)
− δψa d

dt
(µa gradψa)

)
· n dS

−
∫

R∩(
S

j
Sc

j
)

δψ div

(
d

dt
µ gradψ

)
dV.

Equation (5–22) can be used to eliminate δψb on S′ and δχ on ∂S′ (that is, ∂Sj),
so that (5–26) is rewritten

(5–27) 0 =

∫

R∩ (
S

j
Sj)c

δψ

(
div

d

dt
(µ gradψ)

)
dV −

∫

S′∪
S

j
Sj

δψa
d

dt

(
µa
∂ψa

∂n
− µb ∂ψ

b

∂n

)
dS

−
∫

S′

δχ

(
curl

(
1

σD
curlχ

)
+

d

dt

(
µb
∂ψb

∂n

))
dS

+

β1∑

j=1

[δψ]Sj

(∫

∂Sj

1

σD
curlχ · dl +

d

dt

∫

Sj

µb
∂ψb

∂n
dS

)
.

Ignoring issues of functional analysis, it is clear that Equations (5–18) are
recovered from (5–27) by the projection method. What is less clear is the sense
in which Equation (5–19) is recovered. For nontrivial solutions to exist some
currents must be prescribed via (5–8). Equation (5–23) then shows that the
independent variations are not the [δψ]Sj

but rather the nonzero δIi. Expressing
[δψ]Sj

in terms of the δIi we have

[δψ]Sj
=

β1∑

l=1

δIl(I−1)lj .

Hence, if Il is not prescribed then δIl is nonzero and from (5–27),

(5–28)

β1∑

j=1

(I−1)lj

(∫

∂Sj

1

σD
curlχ · dl +

d

dt

∫

Sj

µb
∂ψb

∂n
dS

)
= 0.

Equation (5–28) is reinforced by the intuition, from electrical network theory,
that Kirchhoff’s voltage law, applied to a loop containing a branch with a current
source does not yield an independent network equation. A more formal analogy
comes from considering the interplay between principal and natural conditions
in the calculus of variations. It is clear that prescribing r total currents via
(5–8), 0 ≤ r ≤ β1, is analogous to prescribing “principal conditions”. Equation
(5–28) then gives β1 − r “natural conditions”. This makes sense since there is a
total of β1 topological degrees of freedom. Thus we see that a systematic use of
algebraic topology shows that Equation (5–19) is a consequence of the projection
method only in trivial cases and that the correct expression (5–28) necessarily
involves the intersection matrix. The results of this formal approach are quite
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intuitive only in the case of orientable current carrying surfaces where one can
resort to the Poincaré duality theorem or methods of Riemann surface theory
[Kle63, Spr57].

Finally, in order to have a unique solution for the magnetic field, one must
specify a periodicity constraint or the magnetic field at an initial time. In either
case, the topological view remains unchanged.

5E. Weak Form and Discretization

Before proceeding to development of the discretized equations, we review the
formulation to this point. For the moment we are assuming that cuts which make
the magnetic scalar potential single-valued in multiply connected regions exist
and there is an algorithm for computing them. Namely, there is an algorithm
to compute a set of compact, orientable surfaces Sj , 1 ≤ j ≤ β1(R) embedded
in R which are a basis for homology classes which generate H2(R, ∂R; Z), the
second relative homology group of R modulo ∂R. These surfaces comprise a
sufficient set of cuts for the region R so that H can be expressed in terms of a
single-valued scalar potential ψ,

(5–29) H = − gradψ in R−
β1(R)⋃

i=1

Si.

The scalar potential has discontinuities equal to the lumped parameter currents
in R̃c,

(5–30) [ψ]Si
= Ii,

imposed across each cut Si corresponding to a lumped-parameter current Ii.
Thus, ψ is single-valued on that part of R which is complementary to the cuts.

Furthermore, the boundaries of the cuts, ∂Sj , are generators of homology

classes in the group H1(∂R̃ ∪ S) and form a set of (one-dimensional) cuts for a
single-valued stream function

(5–31) χ = ψ+ − ψ− in S′ = (∂R̃ ∪ S) ∩
( β1⋃

i=1

Si

)c
.

Here ψ+ and ψ− are the boundary values of ψ on the + and − sides of the
orientable surface S with respect to a normal defined on S. The stream function
is single-valued on S′ which is that part of the boundary of R̃ and the current
sheet(s) which does not include the boundaries of the cuts for the magnetic scalar
potential. Thus, cuts for this stream function are a byproduct of the choice of
cuts for the magnetic scalar potential and discontinuities in the two functions
can be related in a systematic fashion.

If σ is the conductivity of the surface S and D is the local thickness or skin
depth of S, then the surface current in S is related to the electric field ES in the
conducting surface by the constitutive law

(5–32) DσES = K = − curlχ on S′,
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where, for admissible χ and F, curl is the formal adjoint to the curl operator in
the surface S and is defined by

∫

S

χ curlF · n dS +

∫

S

F · curlχ dS =

∮

∂S

χF · dl.

For the magnetic field, the constitutive law is taken to be

(5–33) B = µ(|H|2)H in R,

and this relation is assumed to be nonhysteretic, isotropic, and monotonic. For
simplicity of exposition we assume that it suffices to deal with the linear case
and use Newton’s method otherwise. The formulation is general in the sense
that cuts for stream functions can be made on nonorientable surfaces.

Substitution of the above representation of the magnetic fields and currents
into the magnetoquasistatic form of Poynting’s energy theorem yields a weak
Galerkin form which is amenable to direct variational methods. Next we de-
velop a finite element discretization of interelement continuity constraints which
incorporates (5–1) and (5–30) and yields a finite element matrix equation which
naturally partitions into 36 blocks. We discuss the matrix equation and define
each piece of the equation in terms of the finite element assembly procedure.

Formulation. The equations which describe the problem are given by Faraday’s
law subject to (5–29) and constitutive relations (5–32) and (5–33):

div
∂

∂t
(µ gradψ) = 0 in R−

β1(R)⋃
i=1

Si,

d

dt

(
µ+ ∂ψ

+

∂n
− µ− ∂ψ

−

∂n

)
= 0 on Sj and S,

curl
( 1

σD
curlχ

)
= −µ ∂

∂t

∂ψ

∂n
on S.

This is the starting point for construction of the weak Galerkin form and dis-
cretization.

For the region R, the weak form based on Poynting’s theorem for magneto-
quasistatics describes the magnetic energy in R and power dissipation in the
conducting surface S by

(5–34) 0 =

∫

∂R̃∪S

ES · δK dS +

∫

R

δH · ∂B

∂t
dV.

The approach in [Kot89c] is to take variations δH and δK subject to Equa-
tions (5–29), (5–31), and (5–30), integrate by parts, and show that the resulting
equation satisfies Faraday’s lawwith the given constitutive relations. Discretiza-
tion of the problem begins with

(5–35) 0 =
δPJ
δu

+
d

dt

δEM
δu

,

where PJ is current power dissipation, EM is magnetic energy, and variations
are taken with respect to test functions u for potentials ψ, χ, and currents I.
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Discretization and Data Structures. Now we develop the linear equations
describing the system above on a finite element mesh K̃ with boundary ∂K̃ which
is a discretization of R̃. In particular, the finite element connection matrix is
defined as follows. Consider an n-dimensional simplicial finite element mesh
with mn n-simplices and m0 vertices. There is a total ordering of the vertices
on {1, . . . ,m0} called the global node ordering. The vertices of an n-simplex
are locally ordered on {1, . . . , n+ 1}. The connection or assembly matrix is the
following mn ×m0 matrix, originally defined in Equation (4–6):

Cin,jk =

{
1 if global node k is the jth local node of the ith n-simplex,
0 otherwise.

The definition is also valid for lower dimensional submeshes or p-skeleta (0 ≤
p < n) of the n-dimensional mesh and subsets of these. This makes it possible

to use the same terminology to refer to the discretizations of K̃, S, Si, and ∂Si
where the “meshes” of the surfaces are embedded in K̃. In particular, 3-, 2-,
and 1-simplices or “tetrahedra”, “triangles”, and “edges”, are used throughout.
In practice, the connection matrices of p-dimensional submeshes, p < n, are
stored as (p+1)–p-incidence matrices so that all the data is referenced to C3 and
information of the embedding of the submesh in C3 is not lost.

Since there are discontinuities in ψ and χ across their respective cuts, the
standard finite element connection process must be modified to handle the dis-
continuities. This is achieved via global and local variables on vertices or nodes
of the mesh as follows:

Definition 1. A nodal variable uc is taken to be a global variable when it is
indexed on the global indices {1, . . . ,m0}. A local variable ud is a nodal variable
on an n-simplex, indexed on the local indices 1 ≤ j ≤ n+ 1 such that

uid,j =

m0∑

k=1

Cip,jku
i
c,k.

One may say that a local variable is assembled from the connection matrix
and corresponding global variable(s) through a relation taking the form of the
expression above.When p = 3, this expression corresponds to the typical finite
element assembly process for a 3-dimensional mesh, but now the process will be
altered to accommodate cuts and coupling to the stream function.

Discontinuities in ψ and χ due to cuts are handled by writing each local
potential as a sum of the corresponding global potential, contributions from
cuts, and coupling to another potential. For ψd this means discontinuities in
ψ across cuts from (5–30) and a contribution due to eddy currents on S which
comes through χ in (5–31):

(5–36) ψd = CEψ ψc + CEχ χc + CEI I,

where I is a vector of lumped parameter currents and each CE denotes, for its
corresponding variable, the connection matrix used for the magnetic energy term
of Poynting’s theorem in R. In particular:

CEψ is the connection matrix for K̃;



5E. WEAK FORM AND DISCRETIZATION 153

CEχ is the connection matrix for conducting surface S, taken as a submesh of K̃;

CEI is the connection matrix for the cuts, taken as a submesh of K̃.

The numbers of nonzero entries in CEχ and CEI are on the order of the number
of nodes on the surfaces Sj and S embedded in K, the number of nonzeros in
CEψ is 4m3.

The connection matrices are sparse, so they are never stored as defined. In
practice, only the nonzero entries are stored in arrays of pointers. For CE

ψ , this
can mean using a 4 × m3 array where the ith row contains the global node
numbers of 4 vertices of the ith tetrahedron. CEχ and CEI can be stored as 4-

column arrays with rows referenced to rows in CEχ and the jth column entry
indicating if the jth face of the ith tetrahedron comprises a face of the surface
in question. By referencing the data to K̃, the embedding of the surface in K̃ is
implicit.

The assembly of χd takes into account discontinuities in χ across cuts S:

(5–37) χd = CPχ χc + CPI I,

where

CPχ is the connection matrix for surfaces ∂K̃ ∪ S (same as CEχ );

CPI is the connection matrix for the (1-d) cuts for χ on ∂K̃ ∪ S.

The previous description regarding data structures is relevant here as well.

The Finite Element Equations. We will build up the finite element equations
for the eddy current problem in two stages. In order to tie this section more
closely to material in Chapter 4 we first look at a formulation which incorporates
cuts into the computation for a magnetic scalar potential. This basic technique
is subsequently used in the approach which uses cuts for the full eddy currents
computation.

Given cuts, the computation of magnetic scalar potentials in multiply con-
nected regions can be viewed as follows. For a real-valued potential ψ there is a
functional

(5–38) F (ψ) =
1

2

∫

R

µ gradψ · gradψ dV.

Given that cuts are orientable surfaces [Kot87] and thus have a well-defined
surface normal, let ψ+(ψ−) be the value of the potential on the positive side of a
cut, denoted by S+

i and the negative side, denoted by S−
i , both with respect to a

normal defined on the cut surface. Let ψB denote the potential on the boundary
of the region. Then (5–38) is subject to

(5–39) ψ+ − ψ− = Ii on Si, ψ = ψB given on ∂R.

Here the Si, for 1 ≤ i ≤ β1(R), generate H2(R, ∂R), each Si is built out of faces
of tetrahedra which comprise the finite element mesh, and the jumps Ii are
determined by Ampère’s Law. Using barycentric coordinates {λi}, 1 ≤ i ≤ 4,
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and interpolating ψ linearly on the vertices of the kth tetrahedron,

ψk =

4∑

n=1

λnψ
k
n,

where ψkn represents the discretization of ψ. Then the assembled finite element
problem is

(5–40) F (ψ) =
1

2

m3∑

l=1

4∑

m=1

4∑

n=1

ψlmKlmnψln,

where the element stiffness matrix is now weighted by the element permeability
µ. Define β1(R) indicator functions {Ip}, 1 ≤ p ≤ β1(R), as follows:

Ip(m, l) =

{
1 if mth node of lth tetrahedron ∈ S+

p ,
0 otherwise.

Connecting the solution across tetrahedra and allowing for jumps in the scalar
potential across cuts,

(5–41) ψln =

m0∑

i=1

Clniui +

β1(R)∑

p=1

IpIp(n, l).

In (5–41) interelement jumps in the potential occur across cuts. Putting (5–41)
into (5–40), we get

(5–42) F (ui, Ik) =

1

2

m3∑

l=1

4∑

m=1

4∑

n=1

( m0∑

i=1

Clmiui +

β1∑

p=1

IpIp(m, l)
)
Klmn

( m0∑

j=1

Clnjuj +

β1∑

q=1

IqIq(n, l)
)
.

Now write the global finite element stiffness matrix as

Kij =

( m3∑

l=1

4∑

m=1

4∑

n=1

ClnjKlmnClmi
)
.

Then separating constant, linear, and quadratic terms in ui, and using the ex-
pression for the stiffness matrix, (5–42) is re-expressed as

F (ui, Ik) =
1

2

m0∑

i=1

m0∑

j=1

uiujKij +

m0∑

i=1

ui

( β1∑

p=1

Ipfpi

)
+ constants,

where

fpi =

m3∑

l=1

4∑

m=1

4∑

n=1

ClmiKlmnIp(n, l).

The discretized Euler–Lagrange equation for the functional (5–38) subject to
(5–39) is

Ku = −
β1∑

p=1

Ipfp,
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where the elements of Kij are now weighted by µ, and fp is the vector with
entries {fpi}.

The preceding formulation outlines how cuts are incorporated into the formu-
lation of the finite element equations. We now proceed with the eddy current
problem and analyze in more detail block partitions of the matrices which come
into this problem. With expressions (5–36) and (5–37) in hand, we use the
Poynting form (5–34) to get the finite element equations. The two terms of the
discretized Poynting form are magnetic energy and eddy current power dissipa-
tion:

EM = 1
2ψ

T
d S

E
d ψd,(5–43)

PJ = χTd S
P
d χd,(5–44)

where SEd and SPd are “unassembled finite element stiffness matrices” (see Chap-

ter 4) for K̃ and ∂K̃ ∪ S, respectively. The magnetic permeability µ for each
element is included in SEd and SPd includes the element permittivity. Putting the
expressions for ψd and χd into EM and PJ assembles the stiffness matrices, so
that

(5–45) EM = 1
2 (ψc χc I)T SEc (ψc χc I)

and

(5–46) PJ = (χc I)T SPc (χc I),

where the stiffness matrices are

SEc = (CEψ CEχ CEI )T SEd (CEψ CEχ CEI )

and

SPc = (CPχ CPI )T SPd (CPχ CPI ).

By this formulation, SEc and SPc partition into blocks as follows:

(5–47) SEc =



Eψψ Eψχ EψI
Eχψ Eχχ EχI
EIψ EIχ EII


 ,

SPc =

(
Pχχ PχI
PIχ PII

)
.

The variables ψ, χ, and I are subject to boundary conditions or are prescribed,
so that the connected variables partition into free and prescribed components:

(5–48) ψc =

(
ψf
ψp

)
, χc =

(
χf
χp

)
, I =

(
If
Ip

)
.
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Thus there is a further partition of the stiffness matrices where each block in
(5–47) divides into 2× 2 subblocks:

(5–49) SEc =




Eψfψf
Eψfψp

Eψfχf
Eψfχp

Eψf If
Eψf Ip

Eψpψf
Eψpψp

Eψpχf
Eψpχp

EψpIf
EψpIp

Eχfψf
Eχfψp

Eχfχf
Eχfχp

Eχf If
Eχf Ip

Eχpψf
Eχpψp

Eχpχf
Eχpχp

EχpIf
EχpIp

EIfψf
EIfψp

EIfχf
EIfχp

EIf If
EIf Ip

EIpψf
EIpψp

EIpχf
EIpχp

EIpIf
EIpIp



,

(5–50) SPc =




Pχfχf
Pχfχp

PχfIf
Pχf Ip

Pχpχf
Pχpχp

PχpIf
PχpIp

PIfχf
PIfχp

PIf If
PIf Ip

PIpχf
PIpχp

PIpIf
PIpIp


 .

Since variations in the connected variables of (5–48) are only in the free por-
tions, variations in the prescribed variables are zero, that is, δup = 0. The
discretized equations for the problem come out of (5–35) which is rewritten be-
low in terms of the free variables:

0 =
d

dt

(
δEM
δψf

+
δEM
δχf

+
δEM
δIf

)
+
δPJ
δχf

+
δPJ
δIf

.

Putting (5–45), (5–46), (5–49), and (5–50) into the equation above, taking vari-
ations in the free variables, and separating free and prescribed variables gives a
matrix equation of the form

(Eff 2Pff )

(
duf/dt
uf

)
= − (Efp 2Pfp)

(
dup/dt
up

)

where

ux =



ψx
χx
Ix


 .

In particular, the finite element matrix equation is


Eψfψf

Eψfχf
Eψf If

Eχfψf
Eχfχf

Eχf If

EIfψf
EIfχf

EIf If





dψf/dt
dχf/dt
dIf/dt


+ 2

(
Pχfχf

Pχf If

PIfχf
PIf If

)(
χf
If

)

= −



Eψfψp

Eψfχp
Eψf Ip

Eχfψp
Eχfχp

Eχf Ip

EIfψp
EIfχp

EIf Ip





dψp/dt
dχp/dt
dIp/dt


− 2

(
Pχfχp

Pχf Ip

PIfχp
PIf Ip

)(
χp
Ip

)
.

In this form, the equation can be handled by the combination of a time integra-
tion algorithm and a matrix equation solver. For nonlinear magnetic constitutive
relations, Newton’s method can be used at each time step of the time integration
algorithm.

In summary, once cuts are computed a compact, orientable, embedded man-
ifolds in the nonconducting region, a magnetic scalar potential is well-defined
(single-valued) on the current-free region. Furthermore, the boundaries of the
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cuts are a set of cuts for a stream function describing eddy currents on current-
carrying sheets or on the boundary of the nonconducting region. Here we have
used these facts and a weak Galerkin form based on Poynting’s theorem to give
the discretized linear equations for computing fields and currents entirely by
scalar potentials. The required input data are the finite element connection ma-
trices of the mesh of the region with the current-carrying sheet(s), the submesh
representing the sheet itself, the submeshes which represent cuts, and coordinates
of mesh nodes. When these are specified as surfaces embedded in the region,
the assembly process for the finite element equations is essentially the same as
the assembly for Laplace’s equation on the mesh, subject to the modifications
required and described here.





Topology has the peculiarity that questions belonging to its domain may
under certain circumstances be decidable even though the continua to which
they are addressed may not be given exactly, but only vaguely, as is always
the case in reality.

H. Weyl, Philosophy of Mathematics and Natural Science, 1949

6
An Algorithm to Make Cuts for Magnetic Scalar

Potentials

6A. Introduction and Outline

In this chapter we consider a general finite element-based algorithm to make
cuts for magnetic scalar potentials and investigate how the topological complex-
ity of the three-dimensional region, which constitutes the domain of computa-
tion, affects the computational complexity of the algorithm. The algorithm is
based on standard finite element theory with an added computation required to
deal with topological constraints brought on by a scalar potential in a multiply
connected region. The process of assembling the finite element matrices is also
modified in the sense described at length in the previous chapter.

Regardless of the topology of the region, an algorithm can be implemented
with O(m3

0) time complexity and O(m2
0) storage where m0 denotes the number

of vertices in the finite element discretization. However, in practice this is not
useful since for large meshes the cost of finding cuts would become the dominant
factor in the magnetic field computation. In order to make cuts worthwhile for
problems such as nonlinear or time-varying magnetostatics, or in cases of com-
plicated topology such as braided, knotted, or linked conductor configurations,
an implementation of O(m2

0) time complexity and O(m0) storage is regarded as
ideal. The obstruction to ideal complexity is related to the structure of the fun-
damental group This chapter describes an algorithm that can be implemented

with O(m2
0) time complexity and O(m

4/3
0 ) storage complexity given no more

topological data than that contained in the finite element connection matrix.

Electromagnetic Context and Numerical Motivation. The proper con-
text for the algorithm of this chapter is in variational principles, the finite element

159
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method, and their connection to the topology of the domain of computation. Be-
fore seeing how topology enters the picture when considering a scalar potential,
recall that magnetoquasisatics refers to the class of electromagnetics problems
where the magnetic field is described by the following limiting case of Maxwell’s
equations: ∫

∂V

B · dS = 0,

∫

∂S

H · dl =

∫

S

J · n ds,

∫

∂S′

E · dl = − d

dt

∫

S′

B · n ds.

Here ∂V refers to the boundary of a region V and ∂S is the boundary of a
surface S. The displacement current ∂D/∂t in Ampère’s law is neglected and
the current density vector J is assumed to be solenoidal. The magnetic flux
density vector B is related to the magnetic field intensity H by B = B(H),
or for linear isotropic media, B = µH. The current density J in conductors
is related to the electric field intensity vector E by Ohm’s law: J = σE. Let
R denote a region which is the intersection of the region where it is desired to
compute the magnetic field and where the current density J is zero. In R,

curlH = 0,

so that in terms of a scalar potential ψ,

(6–1) H = gradψ

in any contractible subset of R but in general ψ is globally multivalued as seen
via Ampère’s Law. This was illustrated in Figure 1.8 for a current-carrying
trefoil knot c with current I and cut S. In that case, if H = gradψ, Ampère’s
Law implies that a scalar potential ψ is multivalued as illustrated with loop c1
where

∮
c1

H · dl = I implies that ψ is multivalued when there is no cut. On

the other hand,
∮
c2

H · dl = I − I = 0, even though c2 is not contractible to a

point implying that c2 gives no information about ψ. With the cut in place as
shown in the figure and a discontinuity I imposed on ψ from one side of the cut
to the other, ψ is made to be single-valued on the cut complement. Note that
Ampère’s law does not require that c2 intersect the cut.

It is common practice to sidestep the multivalued scalar potential by express-
ing the magnetic field as H = Hp + grad ψ̃, where Hp is a particular solution
for the field obtained, say, from the Biot–Savart Law. However, in this case, if
B = µH and µ→∞, then H → 0 so that Hp = − grad ψ̃, leading to significant
cancellation error for computation in regions where H ' 0 while a “total” scalar
potential as in (6–1) does not suffer from cancellation error. In addition, integra-
tion of the Biot–Savart integral destroys the sparsity of any discretization. The
particular solution, Hp, can be set to zero in a multiply connected region when
the notion of a cut which makes the scalar potential single-valued is introduce.
In practice use of cuts is viable if the software to generate cuts does not require
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input from the user. These reasons are an incentive to developing an algorithm
for automatic computation of cuts.

Outline. With the preceding motivation in mind, we outline the main sections
of this chapter. Section 6B introduces the essential pieces of (co)homology theory
and differential forms required for defining the notion of cuts and for finding
an algorithm to compute them. Section 6C presents a variational formulation
which can be used in the context of the finite element method Section 6E fills
in the piece missing from Section 6D, describing an algorithm for finding the
topological constraints on the variational problem, and gives an analysis of the
computational complexity of finding cuts. The overall process of computing cuts
is summarized in algorithm 6.1 and the algorithm of Section 6E is summarized
in algorithm 6.2. Two example problems are considered in order to illustrate the
obstruction to O(n) complexity. Section 6F concludes with a summary of the
main results, a review of geometric insights used to reduce the complexity of the
algorithm, and suggestions for future work.

6B. Topological and Variational Context

Preceding chapters have generously set the context for the algebraic structures
and duality theorems needed in order to establish a general cuts algorithm.
However, the following points regarding the relevance of these tools add further
motivation to the purpose of this chapter. One advantage of formulating cuts in
terms of cohomology groups is that when a constructive proof of the existence of
cuts is phrased in terms of the formalism of a certain homology theory, the proof
gives way to a variational formulation for a cuts algorithm. The proof is sketched
here while some more details are given in Section MA-I. Another advantage is
that various homology theories give several ways to view cuts. In particular,
when a finite element mesh is viewed as a simplicial complex as in Chapter 4,
simplicial homology theory provides a framework for implementing an algorithm
to make cuts and determines appropriate data structures. Finally, since the
homology groups can be computed with coefficients in Z an implementation of the
algorithm uses only integer arithmetic, thus avoiding introduction of rounding
errors associated with real arithmetic. This implies that rounding error analysis
is required only for the well-understood parts of the algorithm which depend on
standard finite element theory.

Before considering the algorithm, we summarize the relevant groups from
earlier chapters. Let R be the nonconducting region with boundary ∂R. The
complement of R relative to R3, denoted by Rc, is the union of the problem
“exterior” and the conducting region. Recall that Ampère’s law is a statement
about closed loops in R which link nonzero current. In terms of homology,
H1(R; Z) can be viewed as the group of equivalence classes of closed loops in R
which link closed paths in Rc which may be current paths. Two closed loops
in R lie in the same equivalence class if together they comprise the boundary
of a surface in R. As noted, the Z in H1(R; Z) expresses the fact that in this
case there is no loss of information if one builds H1 by taking only integer linear
combinations of closed loops. As discussed in Section 3D, the homology groups
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for R are torsion-free so that integer coefficients are sufficient. The rank of
H1(R), denoted by β1(R), is a characteristic parameter of R, significant because
it describes the number of independent closed loops in R which link nonzero
current. As such it will characterize the number of variational problems to be
solved in the cuts algorithm.

The first cohomology group of R, denoted by H1(R; Z) can be regarded as the
group of curl-free vector fields in R modulo vector fields which are the gradient
of some function. As in the case of H1, it is enough to take “forms with integer
periods” meaning that integrating the field about a generator of H1 gives an
integer. The rank of H1(R; Z) is also β1(R). In three dimensions, H1(R) and
H1(R) formalize Ampère’s law in the sense that, respectively, they are algebraic
structures describing linking of current and irrotational fields in R due to currents
in Rc.

The second relative homology group H2(R, ∂R; Z), is the group of equiva-
lence classes of surfaces in R with boundary in ∂R. Classes in H2(R, ∂R; Z)
are surfaces with boundary in ∂R but which are not themselves boundaries of a
volume in R. Its rank is the second Betti number, β2(R, ∂R). H2(R, ∂R; Z) is
the quotient space of surfaces which are 2-cycles up to boundary in ∂R modulo
surfaces which are boundaries (Figure 6.1). In three dimensions these turn out
to be surfaces used for flux linkage calculations. This will be shown precisely,
but we need to start with a definition to get to the algorithm.

S

∂S

R

Figure 6.1. S is a surface in R with ∂S ∈ ∂R, but S is not the boundary of a
volume in R. Also see Figure 1.8.

The reader should note that an essential requirement for a cut is that it
must be a barrier to every loop which links a current in the sense of Ampère’s
law. For this to occur, the boundaries of the cuts must be on the boundary
∂R of the region in question. Thus we expect to have at least β1(R) cuts,
one cut corresponding to each independent current. In fact there are β1(R)
families of cuts where each family is an equivalence class of cuts associated with
each current. This is a geometric and intuitive way of understanding what cuts
are, but does not establish their existence or give a way of computing them.
The duality theorems considered in Chapter 3 and the isomorphism described
below provide the formalism required for showing existence and constructing an
algorithm.

The Isomorphism H1(R; Z) ' [R,S1]. The isomorphism discussed here allows
us to restrict our attention to cuts which are embedded manifolds in R, and at
the same time gives a way of computing these cuts through a variational problem.
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The isomorphism establishes a relationship between H1(R; Z) and maps from R
to the circle S1, where S1 is regarded as the unit circle in the complex plane.
Let [R,S1] denote the space of maps f : R → S1 up to the equivalence relation
given by homotopy. It is the case that

(6–2) H1(R; Z) ' [R,S1],

which says that the group of cohomology classes of R with integer periods is
isomorphic to the group of homotopy classes of maps from R to S1 [Kot87].
The reason for introducing (6–2) is twofold: First, there is no guarantee that
homology classes can be represented by manifolds (surfaces). As discussed be-
low, Equation (6–2) provides this guarantee. Second, since it associates each
class in H1 to a class of maps from R to S1, a suitable choice of energy func-
tional on [R,S1] will give a variational problem and an algorithm for computing
cuts. Hence, this isomorphism and Poincaré–Lefschetz duality give way to an
algorithm for cuts.

Concretely, choosing µ = dθ/2π, a closed, nonexact 1-form on S1, then f∗(µ)
is the “pullback” of µ via f so that one can regard f ∗(µ) as monitoring the
change in θ as one covers a family of cuts in R. Poincaré–Lefschetz duality and
the preimage theorem [GP74] say that for a regular point p of f on S1,

(6–3)

∫

R

ω ∧ f∗
(
dθ

2π

)
=

∫

f−1(p)

ω

for any closed 2-form ω. Thus, given f : R→ S1 where f winds around S1, the
pullback f∗(µ) is the Poincaré–Lefschetz dual to f−1(p) [Kot87].

In terms of vector calculus, given a map f : R → S1, Equation (6–3) can be
re-written as

(6–4)
1

2πi

∫

R

G · grad(ln f) dV =

∫

f−1(p)

G · n dS

for any G ∈ G. When G = µH and H = 1/(2πi) grad(ln f), each side of
Equation (6–4) can be regarded as an expression for the energy of a system of
(unit) currents in R3 − R. In particular, note that the right hand side is the
integral over a cut of the magnetic flux due to a unit current.

Variational Aspects of an Algorithm for Cuts. This section considers a
variational formulation for a cuts algorithm, the associated the Euler–Lagrange
equation, and discusses the exact solutions of this variational problem while
hinting at its topological flavor. Though not necessary for continuity to following
sections, we employ the framework described above to find an explicit solution
to the nonconvex variational problem and verify that the resulting function is
single-valued.

The cuts algorithm consists of finding a solution to the variational problem
of minimizing

(6–5) F (f) =

∫

V

grad f̄ · grad f dV,
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subject to

(6–6) f̄f = 1 in V ,

and for 1 ≤ j ≤ β1(V ), the jth cut requires

(6–7)
1

2πi

∮

ck

grad(ln f) · dl = δjk

for 1 ≤ k ≤ β1(V ). Here f is a map from V to C, and the cl, for 1 ≤ l ≤ β1(V ),
are curves representing a basis for H1(V ; Z). Equation (6–6) shows that the
solution to the above problem defines a map to the unit circle in the complex
plane

(6–8) f : V −→ S1.

Taking the inverse image of a regular value on S1 (i.e., a point p on S1 such that
the gradient of f is nonzero at every point in the preimage), we end up with
a surface whose boundary lies in ∂V . This “cut surface” represents a relative
homology class in H2(V, ∂V ; Z) which is dual to the constraint represented by
(6–7). This comes about because S1 is an Eilenberg–MacLane space K(Z, 1) as
discussed in detail in Section MA-I.

Our immediate objective is to make a distinction between how the variational
problem (6–5)–(6–7) is handled numerically and analytically. First we note that
one can handle the constraint set forth in (6–6) by letting

(6–9) f = e2πiψ

where ψ is a real differentiable function which, by (6–7), must be multivalued.
Substituting (6–9) into (6–5) gives

(6–10) F (e2πiψ) = 4π2

∫

V

gradψ · gradψ dV.

The starting point for an algorithm is the observation that the Euler–Lagrange
equation corresponding to (6–10) is just Laplace’s equation. Hence, in principle,
an algorithm to find cuts is easily implemented once one can modify existing
finite element code for solving Laplace’s equation. Two subtleties which must be
addressed are, first, interelement continuity conditions must be modified in order
to respect (6–7) and second, from Equation (6–8), the inverse image of f can
be obtained by considering the equipotentials of ψ modulo integers. Addressing
these two subtleties, an algorithm to find cuts in any region can be implemented
provided a “reasonable” finite element mesh exists, that is, a mesh on which
Laplace’s equation can be solved.

For a deeper understanding of situations where a complete set of cuts {Si},
1 ≤ i ≤ β1(V ), enable one to use a single-valued scalar potential in

Ṽ = V −
β1(V )⋃

i=1

Si,

but Ṽ is not simply connected, we need a better understanding of the solution
of the variational problem (6–5)–(6–7). To this end, we will now handle the
constraint (6–6) by a Lagrange multiplier which can be eliminated to obtain a
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“harmonic map equation” for f . When confronted with this nonlinear partial
differential equation we will use what we have established regarding magnetic
scalar potentials, the Biot–Savart law, and linking numbers, to produce an ex-
plicit solution.

If we append to the functional (6–5) a Lagrange multiplier term corresponding
to the constraint (6–6), we end up with a variational problem for the functional

(6–11) F̃ (f, λ) =

∫

V

grad f̄ · grad f + λ(f̄f − 1) dV,

subject to the constraint (6–7). When the first variation of this functional with
respect to f is set to zero we obtain the weak Galerkin form

0 =

∫

V

(
(grad δf) · (grad f̄) + (grad δf̄) · (grad f) + λ(f δf̄ + f̄ δf)

)
dV.

If we eliminate the derivatives of the variation of f through integration by parts,
we obtain

0 =∫

V

(
δf(−div grad f̄ + f̄)+ δf̄(−div grad f +λf)

)
dV +

∫

∂V

(
δf

∂f̄

∂n
+ δf̄

∂f

∂n

)
dS.

Writing f = fr + ifi where fr and fi are real functions that can be varied inde-
pendently, one finds that the vanishing of the above expression for all admissible
δf implies

(6–12)
div grad f = λf in V ,

∂f

∂n
= 0 on ∂V .

When the variation of the functional (6–11) with respect to λ is set to zero,
we recover the constraint (6–6). We begin to eliminate the Lagrange multiplier
from Equation (6–12) by first taking the Laplacian of the constraint (6–6) to
obtain

0 = div grad(f̄f) = (div grad f̄)f + 2 grad f̄ · grad f + f̄ div grad f

or

(6–13) <(f̄ div grad f) = −| grad f |2,
where <(·) denotes the real part of (·). Multiplying Equation (6–12) by f̄ and
using Equations (6–6) and (6–13) we can solve for λ:

−| grad f |2 = <(f̄ div grad f) = λf̄f = λ

, and rephrase (6–12) as

(6–14)
div grad f = −| grad f |2f in V ,

∂f

∂n
= 0 on ∂V .

Equations (6–14) and (6–7) provide a set of equations for the single-valued func-
tion defined in the discussion leading to Equation (6–8). At first sight, the
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solution to these equations in the exterior of current carrying wires is not obvi-
ous. If we perform the substitution given by Equation (6–9) then (6–14) reduces
to a boundary value problem involving Laplace’s equation and a multivalued
function. In the algorithm for computing cuts it was necessary to deal with this
multivaluedness in the context of interelement constraints —appealing to phys-
ical intuition would have lead to a circular argument where the magnetic scalar
potential would be needed to define the cuts for the magnetic scalar potential!
In the present case we want to develop our intuition about cuts and seek explicit
expressions for the cuts. Hence we are free to use the equipotentials of the mul-
tivalued scalar potential tied to any easy-to-use constitutive law as equivalent
cuts.

In order to find the function f satisfying (6–6) and (6–14) we first find a set of
integer-valued currents in the exterior of V which insure that the corresponding
scalar potential satisfies (6–7). Suppose this is accomplished by imposing β1(V )
integer valued currents {ni} on β1(V ) closed curves {c′i} in the exterior of V .
The scalar potential is given by the line integral of the magnetic field found
through the use of the Biot–Savart Law:

(6–15) ψ(p)− ψ(p0) =
1

4π

∫ p

p0

β1(V )∑

i=1

ni

∮

c′
i

[(r − r0)× dr] · dr0

|r − r
0|3 .

Note that we can modify this ψ so that it satisfies a Neumann boundary condition
on ∂V by adding a single valued harmonic function which vanishes at p0. From
Equation (6–9), the desired f is easily seen to be

(6–16) f(r) = f0 exp

(
i

2

∫ p

p0

β1(V )∑

l=1

nl

∮

c′
l

(
(r − r0)× dr

)
· dr0

|r − r
0|3

)
,

where the multiplicative factor

(6–17) f0 = e2πi ψ(p0)

is an arbitrary complex number of unit length. If we go from p0 to p0 along
a closed loop c the expression for the linking number (3–13) shows us that the
expression for f changes by

exp

(
2πi

β1(V )∑

l=1

nl Link(c, c′l)

)
,

which is equal to 1. This shows that a concrete understanding of the linking
number makes the single-valuedness of f manifest and finally, up to boundary
conditions, Equation (6–16) is indeed the solution to the variational problem
defined by (6–5)–(6–7) and the boundary value problem defined by (6–14) and
(6–7). Lefschetz duality and the theory underlying the algorithm ensure that
cuts take care of current linkage, but nowhere has anything been done to make
V −⋃Si simply connected.
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Node (X0 & F0) Edge (X1 & F1)

X/Xs
0 9 7.5

F/F s0 7.5–7.6 9.7–10.7

Table 6.1. Relative number (X) of nonzero entries in the stiffness matrix and number
of floating point operations (F ) per CG iteration for node- and edge-based vector
interpolation compared to scalar potential (Xs

0 and F s
0 ) on large tetrahedral meshes.

Computational Overhead Required for Cuts. In order to evaluate the
utility of having cuts, one must also compare computational overhead with the
expected acceleration in solution time. Given a finite element mesh it is possible
to compare the solution time complexities of the associated finite element ma-
trix equations for scalar potential and vector methods. Since semidirect matrix
solvers are commonly used for large problems, we argue in terms of a conjugate
gradient (CG) solver iteration for the finite element matrix equations. Let F s

0

denote the number of floating point operations (FLOPs) per conjugate gradi-
ent solver iteration for nodal interpolation of a scalar potential on a tetrahedral
mesh. Similarly, let F0 and F1 respectively denote the number of FLOPs per
CG iteration for node- and edge-based vector interpolation [Kot91]. Finally, let
Xs

0 , X0, and X1 denote the number of nonzero entries in the stiffness matrix
for nodal interpolation of a scalar potential, and node- and edge-based vector
interpolation, respectively. Assuming similar distributions of eigenvalues in the
matrices, the convergence of CG for each matrix is the same and the ratio of the
complexity of the CG iterations is a reflection of the ratio of computer run times.
Table 6.1 summarizes how vector formulations compare to a scalar potential for-
mulation based on analysis of simplices in a mesh discussed in Section 4C. The
top line of the table is derived from Equations (4–17), (4–21), and (4–23), then
using (4–18), forming ratios, and letting m0 →∞ in the ratios.

If a scalar potential can be computed, it provides a substantial speed-up, but
the overhead is that of computing cuts. Hence, cuts may be most useful in the
context of time-varying or nonlinear problems where cuts are computed only
once but iterative solutions are required for the field.

Algorithm design must begin with the choice of an algebraic framework for the
computation, and for reasons of computability, this is the most critical choice.
The often-made assumption that cuts must render the region simply connected
forces one to work with a structure called the first homotopy group for which
basic questions related to this group are not known to be algorithmically de-
cidable. In practical terms, homotopy-based algorithms are limited to problems
reducible to a planar problem. Thus, their success depends on the fact that 2-d
surfaces are completely classified (up to homeomorphism) by their Euler charac-
teristic and numbers of connected components and boundary components. The
(co)homology arguments presented here lead to a general definition of cuts and
an algorithm for computing them by linear algebra techniques, but when using
sparsity of the matrices to make the computation efficient, homotopy emerges
as an important and useful tool.
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6C. Variational Formulation of the Cuts Problem

On the basis of the tools introduced above, the computation of cuts can be
formulated as a novel use of finite elements subject to two constraints imposed
by the topology of R. The idea is to come up with a variational problem for
finding minimum energy maps f from classes in [R,S1]. Hence, a principle
for finding cuts is to compute a collection of maps, fq : R → S1, 1 ≤ q ≤
β1(R) which correspond to a basis of the first cohomology group with integer
coefficients H1(R; Z) and by duality, to a basis for H2(R, ∂R; Z). Any map in
the homotopy class can be used, but picking harmonic maps reduces the problem
to quadratic functionals tractable by the finite element method. Furthermore,
the level surfaces of these maps are nicer than in the generic case.

As a variational problem, finding cuts can be rephrased in the following man-
ner. “Computing maps” means finding the minima to β1(R) “energy” functionals

(6–18) F (fq) =

∫

R

grad f̄q · grad fq dR, 1 ≤ q ≤ β1(R),

subject to two constraints:

(6–19) f̄qfq = 1 in R

and, for the jth cut, 1 ≤ j ≤ β1(R),

(6–20)
1

2πi

∮

zk

grad(ln fj) · dl = Pjk,

where {zq}, 1 ≤ q ≤ β1(R), defines a set of generators of H1(R) and Pjk is the
period of the jth 1-form on zk is an entry of a nonsingular period matrix P .
Intuitively, one might require the period matrix to be the identity matrix, but
this is overly restrictive for a practical implementation of the algorithm. In fact,
as discussed in Section 6E, direct computation of a basis for H1(R) is impractical
but an equivalent criterion can be used to satisfy the constraint imposed by
H1(R).

The solution to each map in the variational problem is unique since the “angle”
of each fq is a (multivalued) harmonic function which is uniquely specified by
Equation (6–20) [GK95]. When the functionals are minimized, a set of cuts is
computed by the formula

(6–21) Sq = f−1
q (pq),

where pq is any regular value of fq, 1 ≤ q ≤ β1(R). Note that Sq is the Poincaré–
Lefschetz dual to d(ln f/2πi), as seen in equation 6–3 [Kot87].

On any contractible subset of R, constraint (6–19) is satisfied by letting

(6–22) fq = exp(2πiϕ), 1 ≤ q ≤ β1,

where ϕ is some real, locally single-valued, but globally multivalued, differen-
tiable function. Choosing fq this way, the Euler–Lagrange equation of (6–18) is
Laplace’s equation [GK95].

Equation (6–22) is satisfied on open, contractible subsets Ui and their in-
tersections. When the Ui form a cover of R, the global problem is assembled
by considering the combinatorics of intersections

⋂
Ui as noted in [BT82, §13]
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and also described in [GR65] in the context of the Cousin problem in complex
analysis. For a computer implementation using standard data structures, it
is sufficient to take a (tetrahedral) discretization of R and consider what hap-
pens across faces of the tetrahedral elements. Using the normalized angle of fq
[Kot89a],

(6–23) θq = (ln fq/2πi) mod 1,

on an element and interpolating θq linearly over each element, we must consider
that (6–20) prevents θq from being globally well-defined.

Section 6E addresses how constraints (6–20) are handled without making ex-
plicit reference to a set of curves representing a basis for H1(R). However, we
begin by considering constraint (6–19) and the finite element-based part of the
algorithm in the next section. Since each of the β1 problems is treated in the
same way, in the next section we drop the subscript denoting the qth variational
problem in order to simplify notation.

6D. The Connection Between Finite Elements and Cuts

Here we consider the variational problems for (any) one of the β1(R) maps fi
representing a class in H2(R, ∂R) (by duality) and how the variational problem
is handled via the finite element method. While the principles behind computing
cuts are not dependent on the type of discretization used, this section is set in
the context of first-order nodal variables on a tetrahedral finite element mesh as
the data structures are simple.

The Role of Finite Elements in a Cuts Algorithm. Consider a tetrahedral
discretization of R, denoted by K, with m3 elements, m0 nodes. The ith tetra-
hedron in K is denoted by σ3

i . Recalling Equations (6–22) and (6–23), let θ be
discretized on each element by the set θij , 1 ≤ i ≤ m3, 1 ≤ j ≤ 4 for each one of
the β1(R) variational problems. Here the subscript refers to the jth node of the
ith tetrahedron and the θij on individual elements are defined modulo integers
since we seek a map into the circle. Furthermore, constraints (6–20) require that
there be discontinuities in θij between pairs of adjacent elements. This is not a
problem since the finite element connection process is modified accordingly as
described below. To make a bridge to the finite element method, we also let uk,
1 ≤ k ≤ m0 denote a potential discretized on nodes of the mesh [Kot89a].

The usual finite element connection matrix is defined as

Cijk =

{
1 if global node k is the jth local node in σ3

i ,
0 otherwise.

The modified connection process is the marriage, via the finite element connec-
tion matrix, of variables defined locally on the nodes of individual elements (θij)
to variables defined on the global node set of the mesh (uk). Consequently, vari-
ables defined element-by-element are said to be on the unassembled mesh while
those defined on the global nodes are on the assembled mesh.

The global constraints (6–20) are handled via nodal discontinuities on the
unassembled mesh, J ij , 1 ≤ i ≤ m3, 1 ≤ j ≤ 4 (Figure 6.2). The jumps are
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ζlij

a a

b b

c

σ3
i

σ3
j

Figure 6.2. Jump ζ
lij

k is imposed across face shared by elements i and j and

J i
a − J j

a = ζlij .

specified so that for a given global node, J ij is an integer-valued jump relative to

a J kl which is set to zero. From the perspective of a global node, there is a set
of J ij associated with the global node (one J ij per element in which the global

node is a local node), and one J ij per set can be set to zero. Then θij , which is
defined on the unassembled mesh, is written

(6–24) θij =

m0∑

k=1

Cijkuk + J ij , 1 ≤ i ≤ m3, 1 ≤ j ≤ 4.

For each of the β1(R) variational problems, there is one set of variables J ij .
To finish specifying θij , the relationship between sets J ij and the homology

class of the corresponding cut is needed. Recall that the sets of local nodal jumps
J ij are defined on the unassembled finite elements problem. Since the disconti-
nuity in θ must be consistent across the face of a tetrahedron, we introduce a set
of discontinuities across faces, ζ l, 1 ≤ l ≤ m2 where m2 is the number of faces
in the mesh. These are illustrated in Figure 6.2. Since there are β1 variational
problems there is a set {ζ l1, . . . , ζ lβ1

}, and for the kth cut, given ζ ik, the remaining

J ij can be found by the back substitution

(6–25) J im − J jn = ζ
lij

k ,

when elements i and j share face lij . The “topological computation” relating face
jumps ζk to the relative homology class of the kth cut is discussed in Section 6E.
At this point, if one is interested in using a scalar potential, but not in making
the cuts visible to the user as a diagnostic tool, the set of face jumps {ζ1, . . . , ζβ1

}
is a set of cuts. However, note that these cuts are not embedded manifolds, but
nonetheless represent a basis for H2(R, ∂R; Z). We will see in Section 6E that
the face jumps can be identified with a class in the simplicial homology group
related to H2(R, ∂R).

On the basis of the variational problem defined in equations (6–18)–(6–20),
“finite element analysis” can be used to solve for each of β1(R) potentials, uk.
On each connected component of R, begin by setting one (arbitrary) variable
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in uk to zero. Then define barycentric coordinates λli, 1 ≤ i ≤ 4, on the lth
tetrahedron, σ3

l , and build the element stiffness matrix Klmn:

Klmn =

∫

σ3
l

gradλlm · gradλln dV.

Discretizing the normalized angle θ (6–23) on σ3
l by

(6–26) θl =

4∑

i=1

λliθ
l
i

and substituting into the functional (6–18) gives

(6–27) F (θ) = 4π2
m3∑

l=1

4∑

m=1

4∑

n=1

θlmθ
l
nKlmn.

Using Equation (6–24) to “assemble the mesh” gives a quadratic form in uk.
The minimum of the quadratic form is obtained by differentiating with respect
to the uk, resulting in the matrix equation

(6–28)

m0∑

i=1

Kijui = −fj .

Here {Kij} forms the usual stiffness matrix,

(6–29) Kij =

( m3∑

l=1

4∑

m=1

4∑

n=1

ClnjKlmnClmi
)
,

and, by Equation (6–25), the source term

(6–30) fj =

( m3∑

l=1

4∑

m=1

4∑

n=1

J lnKlmnClmj
)

is related to the homology class of a relative cycle inH2(R, ∂R) by means of {ζ ij}.
Thus, with the exception of computing {ζ ij} and forming source term (6–30), the
algorithm is readily implemented in any finite element analysis program. This
gives the maps from R to S1. To find the cut, recall Poincaré—Lefschetz duality
and Equation (6–21). For each connected component of R,

(6–31) (θ′)ij = Cijk(uk + c) mod 1,

where c is a constant so that θ′ = 0 is a regular value of f . After solving
β1(R) variational problems, we proceed element by element to find and plot
f−1
q (θ′ = 0), 1 ≤ q ≤ β1(R), to obtain a set of cuts. This is done in an

unambiguous way if the mesh is fine enough to ensure that, over an element, θij
does not go more than one third of the way around the circle.

In order to use the cut for a scalar potential computation, the cut must be
specified in terms of internal faces of the mesh, much as sets ζi are defined.
For this we define β1 sets Si of faces obtained by perturbing a level set of the
harmonic map onto internal faces of the finite element mesh. On a tetrahedral
mesh this is done by simply choosing the element face which is on the side of the
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level set indicated by the normal (gradient direction) when the level set passes
through the element. This is illustrated in Figure 6.3.

level set u = s

Figure 6.3. Level set of harmonic map is perturbed in gradient direction onto a face
of the tetrahedral element. The face is selected merely by virtue of the fact that
the potentials u(vi ≥ s) where vi is the ith vertex. In other words, the direction
of grad u defines a normal to the cut, but it is unnecessary to actually compute
the gradient. Cases in which the level set is perturbed onto an edge or vertex of
the tetrahedron can be ignored since the level set will perturb onto the face of a
neighboring tetrahedron.

Besides computing the {ζ1, . . . , ζβ1
} and incorporating the Sq as subcomplexes

of the mesh, the computation of cuts makes use of standard software found in fi-
nite element software packages. Although the sign of a floating point calculation
is required at one step, the “topological” part of the code is otherwise imple-
mented with integer arithmetic and is therefore immune to rounding errors.

The following “algorithm” shows how cuts software fits into the typical finite
element analysis process. The second and third steps are not “standard” finite
element software, but are implemented with integer arithmetic and thus avoid
introducing rounding error.

Algorithm 6.1. Finite elements and cuts

(1) Tetrahedral mesh generation and refinement
(2) Extraction of simplicial complex: Employ the data structures from

Chapter 4 and generate the data needed for computing interelement con-
straints ζi.

(3) Topological processing: Compute interelement constraints {ζ1, . . . , ζβ1
}

defined in Equation (6–25) and described in section 6E and algorithm 6.2.
(4) Finite element solution: Use (6–29) and (6–30) to form (6–28) for each

of β1 variational problems, and solve them by the finite element method.
(5) Obtain cuts: Level sets of the harmonic maps computed in the last step are

cuts. When perturbed onto the 2-skeleton of the mesh to define β1 surfaces
Si, they are the data needed to do a magnetic scalar potential calculation.

6E. Computation of 1-Cocycle Basis

Now we consider the computation of the interelement constraints which come
about as a result of constraint (6–20) on the variational problem and were defined
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in Equation (6–25). The computation must be in terms of the finite element
discretization K, and as indicated at the beginning of Section 6B, simplicial
(co)homology is the algebraic framework. Here we use the results of companion
chapter [GK01a] which describes the simplicial complex, and how it generates
the finite element data structures required for computing cuts when taking the
view that K and its simplicial complex are the same thing.

Chapter 4 discusses the duality between the boundary homomorphism on a
simplicial complex K and its dual complex DK and shows that the duality ap-
pears naturally in the data structures describing K. This duality is a discrete
version of Poincaré–Lefschetz duality introduced in Chapter 3, but stated at the
level of the simplicial chain complex (the algebraic structure which is most suited
to describing finite element meshes). The dual complex is also the most appro-
priate structure for describing the computation of the topological constraints for
the variational problem. Below we give the basic definitions needed to formulate
the computation of the topological constraints.

Definitions. For a tetrahedral mesh K, denote the nodes, edges, faces, and
tetrahedra as 0-, 1-, 2-, and 3-simplexes, respectively, though in general it is pos-
sible to have an n-dimensional simplicial mesh. The total number of p-simplexes
in a mesh is denoted by mp. Each set of p-simplexes forms a linear space with
(for the present purpose) coefficients in Z, Cp(K; Z), called the p-chain group.
There is a boundary homomorphism ∂p : Cp(K; Z) → Cp−1(K; Z) which takes
p-simplexes to (p−1)-simplexes such that the composition of two successive trans-
formations is zero:

(6–32) ∂i∂i+1 = 0, 1 ≤ i ≤ n.

In other words, im ∂i+1 ⊆ ker ∂i, and the sequences in (6–32) are summarized in
the simplicial chain complex:

(6–33) 0−→Cn(K)
∂n−→ · · · ∂p−→ Cp−1(K)

∂p−1−→ · · · −→ C1(K)
∂1−→ C0(K) −→ 0.

As in the continuum case, this allows us to define homology (and cohomology)
groups.

The adjoint operator of the boundary homomorphism is the coboundary op-
erator ∂Tp+1 : Cp(K; Z) → Cp+1(K; Z) where Cp(K; Z) is the simplicial cochain
group of functionals on p-chains; formally, Cp(K; Z) = hom(Cp(K),Z). The
cochain cp ∈ Cp satisfies the relation

(6–34) 〈cp, ∂p+1cp+1〉 = 〈∂Tp+1c
p, cp+1〉

for any cp+1 ∈ Cp+1. This is a discrete version of Stokes’ theorem (compare
Equations (3–2) and (3–3)) and serves as a definition of ∂Tp+1. ∂Ti ∂

T
i+1 = 0 so

that there is a cochain complex:

0←−Cn(K)
∂T

n←− · · · ∂
T
p←− Cp−1(K)

∂T
p−1←− · · · ←− C1(K)

∂T
1←− C0(K)←− 0.

Simplicial homology groups are quotient groups Hp(K) = ker ∂p/ im ∂p+1 and
the pth Betti number βp is the rank of Hp; the simplicial cohomology groups are
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defined by Hp(K) = ker ∂Tp+1/ im ∂Tp . An element of Hp(K) is the coset

(6–35) ζ +Bp,

where Bp(K) = im ∂Tp is the p-coboundary subgroup of Cp(K) and ζ ∈ ker ∂Tp+1

is a p-cocycle. The ranks of the homology and cohomology groups are related:
Rank(Hp) = Rank(Hp).

By identifying nonboundary p-simplexes in K with (n−p)-cells (so that when
n = 3, 3-simplexes become nodes, 2-simplexes become edges, etc.), a formal dual
of K, called the dual complex DK, can be formed directly from the connection
matrix describing K. (The boundary is excluded since there are no 3-simplexes
in ∂K.) The dual DK is not simplicial but cellular, and the number of p-cells of
DK is denoted by m̆p. DK is a cellular complex in the sense of (6–33). Poincaré
duality amounts to saying that the coboundary operators of the simplicial com-
plex are dual to the boundary homomorphisms of the cellular complex, denoted

by ∂̆p in the sense that

(6–36) ∂Tp+1 = ∂̆n−p

[GK01a]. Thus, for a 3-dimensional complex,

(6–37) 0−→C3(DK)
∂̆3=∂

T
1−→ C2(DK)

∂̆2=∂
T
2−→ C1(DK)

∂̆1=∂
T
3−→ C0(DK) −→ 0

and

(6–38) 0←−C3(DK)
∂̆T
3←− C2(DK)

∂̆T
2←− C1(DK)

∂̆T
1←− C0(DK)←− 0.

The (co)homology of DK is isomorphic to the (co)homology of K in complemen-
tary dimensions. In other words, Poincaré duality on the (co)chain level gives
us the Poincaré duality of Section 6B.

Formulation of a 1-cocycle generator set. The duality between boundary and
coboundary operators as set forth above is useful for formulating the outstand-
ing problem of computing {ζ1, . . . , ζβ1

} introduced in equation (6–25). These
variables were introduced in order to handle interelement topological contraints
(6–20) of the variational problem, but Equation (6–20) cannot be applied directly
since a set of generators for H1(R) is generally not known beforehand and is hard
to compute. On the other hand, (6–20) simply gives the periods of 1-cocycles
integrated on a homology basis, so that it is enough to know a basis for the
nontrivial (i.e. noncoboundary) 1-cocyles. Here, the ζi are described by β1(R)
1-cocycles which are generators for classes in H1(DK; Z), and by duality rep-
resent sets of faces having nonzero jumps in backsubstitution Equation (6–25).
The advantage of formulating the problem in terms of H1(DK; Z) is that it im-
mediately yields a matrix equation, and the 1-cocycles form β1(R) source terms
for the right-hand side of Equation (6–28).

In general, equivalence classes in H1(DK; Z), the first cohomology group of
the dual complex with integer coefficients, can be represented by integer-valued
1-forms which are functionals on 1-cells of the dual mesh. However, it is only
possible (and necessary) to compute, for each equivalence class, a generating
1-cocycle defined by two properties described below.
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First, to obtain a basis for noncobounding 1-cocycles a basis for the 1-coboun-
dary subgroup B1(DK; Z) must be fixed by constructing the image of a 0-

coboundary map ∂̆T1 : C0 → C1. This not only fixes how B1(DK; Z) is repre-
sented, but allows the computation of 1-cocycles which represent closed, nonex-
act 1-forms.

Second, by definition, the 1-cocycle must also satisfy the condition that on

the boundary of each 2-cell in DK, ∂̆2(2-cell) = ε1e1 + ε2e2 + · · ·+ εnen,

(6–39) 〈ζj , ∂̆2(2-cell)〉 =
n∑

i=1

εiζ
i
j(ei) = 0,

where εi = ±1 denotes the orientation of the ith 1-cell on the boundary of the 2-
cell (Figure 6.4). The condition must be satisfied on any simply connected subset
of the mesh, but the data readily available from the finite element connection
matrix relates to 2-cells. Since Poincaré duality for complexes K and DK (6–36)

says that ∂̆2 and ∂T2 are identified, the coboundary operator ∂T2 is the incidence
matrix of 2- and 1-cells in DK and contains the data for the 1-cocycle conditions
over all of DK. Equations (6–34) and (6–39) together say that, for any 1-
cocycle ζ,

(6–40) ∂T2 ζ = 0

(on DK). Once a basis for the 1-coboundary subgroup has been fixed, a set
of nontrivial 1-cocycles is found by computing a basis of the nullspace of the
operator ∂T2 . Equation (6–40) is an exceedingly underdetermined system, but as
shown below, fixing a basis for B1 induces a block partition of the matrix, and
reduces the computation to a block whose nullspace rank is precisely β1(R).

Figure 6.4. 1-cells on maximal spanning tree (solid) and 2-cells in DK. On the right,
the 2-cell cocycle condition has four free variables (those not on the tree) while on
the left, the condition can be satisfied (trivially) in terms of variables on the tree.

In summary there are two conditions which must be satisfied in order to find
a set of 1-cocycles which are not coboundaries:

(1) A basis for B1 must be fixed by considering the image of a map

∂̆T1 : C0 −→ C1.
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(2) The 1-cocycles must independently satisfy the 1-cocycle condition on each
2-cell of the mesh.

Structure of the Matrix Equation for Computing the 1-Cocycle Gen-

erators. The strategy outlined above amounts to constructing bases for im ∂̆T1
and ker ∂̆T2 (subject to im ∂̆T1 = 0) in the complex (6–38). When im ∂̆T1 is annihi-

lated, the surviving piece of ker ∂̆T2 gives a basis for 1-cohomology generators. In
this section we give a method for constructing the required bases while retaining
the sparsity of ∂T2 and show how the construction yields a natural block partition
of the matrix.

The arguments of this section have the same motivation as techniques of
electrical circuit analysis. The rank argument of this section is a formalization of
a familiar equation which relates the number of free variables nfree to the numbers
of Kirchhoff current law (node) and Kirchhoff voltage law (loop) equations (nKCL

and nKVL):

nKCL + nKVL − β0 = nfree,

where β0 = Rank(H0) is the number of connected components of the mesh or
circuit.

To fix B1(DK), we construct a map ∂̆T1 satisfying the Stokes Equation (6–34),

which for this case says 〈c0, ∂e〉 = 〈∂̆T c0, e〉, where e ∈ C1(DK), c0 ∈ C0(DK).
Defining c0 on vertices of DK and building a maximal tree on the 1-skeleton of

DK fixes a basis for B1 = im(∂̆T1 ) up to a constant on a single vertex on each
connected component ofDK by associating each vertex (functional) with an edge
(functional) on the 1-skeleton. There are m0 − β0 1-cells on the maximal tree,

the same as the rank of im ∂̆T1 . Since the coboundary subgroup is annihilated
in the equivalence relation for cohomology, the variables of ζi corresponding to
edges on the maximal tree can be set to zero. Below we see that this reduces the
number of free variables enough to permit computation of an appropriate set of
independent nullvectors of ∂T2 .

The reduction of free variables for each 1-cocycle solution ζi obtained by the
maximal tree induces the following partition on ∂T2 :

(6–41) ∂T2 ζi =
(

T︸︷︷︸
m̆0−β0

| U︸︷︷︸
m̆1−m̆0+β0

)(0T
ζU

)
= 0,

where columns of block U correspond to 1-cells not on the tree while columns
of block T correspond to 1-cells on the tree. Variables in ζi which correspond
to 1-cells on the tree are zero, so that there are m̆1 − m̆0 + β0(DK) free vari-
ables remaining for any nontrivial 1-cocycle (or nullspace) solution to the matrix
equation. The following shows that the dimension of the nullspace of block U is
β1(R).

The rank of ∂T2 can be found by a standard argument which considers the
ranks of the kernel and image of the boundary homomorphism in the cellular

complex (6–37) and ranks of the corresponding homology groups. Since ∂̆2 is a
linear map,

(6–42) dim im ∂̆2 = dimC2 − dim ker ∂̆2 = m̆2 − dim ker ∂̆2.
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In terms of the rank of the second homology group,

(6–43) dim ker ∂̆2 = β2 + dim im ∂̆3 = β2 + m̆3 − β3,

where dim ∂̆3 = m̆3 − β3 follows from (6–37). In this case, since K is the trian-
gulation of a connected 3-manifold with boundary, β3 = 0. In any case, (6–43)
and (6–42) give the rank of ∂T2 :

dim im ∂̆2 = m̆2 − m̆3 − β2 + β3.

In terms of cocycle conditions, this result can be interpreted as counting the

number of linearly independent cocycle conditions in rows of ∂̆2. Considering
the set of cocycle conditions on a 3-cell, there is one linearly dependent cocycle
condition, giving m̆3 − β3 extra cocycle conditions in ∂T2 . There is one linearly
dependent equation among each set of cocycle conditions describing “cavities”
of the region, giving another β2 linearly dependent equations.

Consequently, the dimension of the nullspace of block U , N (U), in the parti-
tion of Equation (6–41) is

dimN (U) = (m̆1 − m̆0 + β0)− (m̆2 − m̆3 − β2 + β3)

= −χ(DK) + β2 + β0 − β3 = β1,

since the Euler characteristic satisfies

χ(DK) =

n∑

i=0

(−1)iβi =

n∑

i=0

(−1)im̆i.

Accounting for m̆3 +β2−β3 linearly dependent cocycle conditions, the follow-
ing partition of U into blocks of linearly independent (Ui) and linearly dependent
(Ud) equations is a useful picture to keep in mind for the rank argument:

U =




Ui

Ud




}
m̆2 − m̆3 − β2 + β3

}
m̆3 + β2 − β3

.

In practice, the linear dependence of rows in U can be exploited when finding a
diagonalization of U so that the nullspace basis {ζ1, . . . , ζβ1

} is relatively sparse.
Sparsity of ∂T2 and U . Recall that nonboundary 2-simplexes in K are mapped

to 1-cells in DK and nonboundary 1-simplexes in K are mapped to 2-cells in
DK. In K, the boundary of every 2-simplex has three 1-simplexes so that in DK
each 1-cell is in at most three 2-cells. The inequality comes about because ∂K
does not enter into the contruction of DK; in particular, a 2-simplex with some
of its boundary in ∂K corresponds to a 1-cell which is an edge in fewer than
three 2-cells. Consequently, columns of ∂T2 have at most three nonzero entries,
or 3m̆1 is an upper bound on the number of nonzero entries in ∂T2 .

A lower (upper) bound on the difference between 3m̆1 and the number of
nonzero entries is given by (b − 2)n1 where n1 is the number of 1-simplexes in
∂K and b is an upper (lower) bound on the number of 2-simplexes which meet
at a boundary 1-simplex. In the estimate we take two less than b since the two
faces meeting at a boundary edge do not have entries in U .
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Block Partition and Sparsity of the Matrix Equation. At this point
we are free to choose any method for finding a basis for the nullspace of U .
Typical methods for matrices with integer coefficients are the Smith and Hermite
normal form algorithms [Coh93]. Since ∂T2 is an incidence matrix with nonzero
entries ±1, problems such as pivot selection can be avoided, but they also destroy
the sparsity of ∂T2 and their time complexity is O(m̆3

0). This indicates that
the combinatorial structure of the matrix is more important than its numerical
structure. The literature on computing sparse nullspace bases of real matrices is
applicable here [CEG86, PF90].
U can be block partitioned into a form which preserves most of its sparsity.

The partition is based on the observation that a 2-cell Equation (6–39) which

has only one free variable after fixing im ∂̆T1 is satisfied trivially—variables for
such 1-cells do not contribute to the 1-cocycles and can be set to zero in ζi.
In terms of the maximal tree, this case corresponds to Figure 6.4. In matrix
∂T2 , this elimination amounts to forward substitution of variables on the tree,
forming a lower triangular block in U and eliminating variables which are not
essential to the description of the null basis while avoiding zero fill-in. When
the process of forward substitution halts (as it must if the null space basis we
seek is nontrivial), the remaining free variables and cocycle conditions contain a
full description of the complex on a substantially smaller set of generators and
relations. This results in the following block partition of the matrix equation,
where U11 is the lower triangular block resulting from the forward substitution:

∂T2 =




U11 0
T

U21 U22


 .

Block T corresponds to a maximal tree on the 1-cells of DK and, variables asso-
ciated with T are zero in the nullspace basis. Forward substitution of nullspace
basis variables on T gives the lower triangular block U11 so that the nullspace
basis vectors have the form

ζi =




0T
0U11

ζU22,i


 .

As with ∂T2 , block U22 has at most three nonzero entries per column since no
operations involve zero fill-in. Figure 6.6 shows examples of U22 for two inter-
esting cases. The first example is the Borromean rings and the second example
is the trefoil knot, both shown in Figure 6.5.

At this point it is best to admit that there are two ideas from topology which
have strong ties to the present construction. One of them is Poincaré’s algorithm
for computing the generators and relations of the fundamental group of a complex
[Sti93]. This construction is similar with the added constraint of preserving
sparsity of the equations and reduction of the Poincaré data into block U22 of
∂T2 . Another relevant notion is that of the spine of a manifold [Thu97].

Algorithm 6.2. Algorithm for 1-cocycle generator set

(1) Initialize: Set {ζ1, . . . , ζβ1
} to be zero.
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Figure 6.5. Borromean rings and trefoil knot. The Borromean rings are three rings
which pairwise have zero linking number but are inseparable.

(2) Maximal Tree: Construct maximal spanning tree T on 1-skeleton of DK.
(3) Partition: Set ζi|T = 0 and partition ∂T2 as in (6–41).
(4) Forward Substitution: Forward substitute variables ζi|T (for all ζi these

are the same variables) through U iteratively until the process halts.
(5) U22 Nullbasis: Compute nullspace basis of U22 by a sparse null basis tech-

nique or by computing the Smith normal form.

The size of U22. The process of partitioning ∂T2 effectively retracts all the
information about the topology of the mesh onto a 2-subcomplex of the mesh.
The tree gives a retraction onto the 2-skeleton of K − ∂K, and the reduction by
forward substitution is a retraction onto a 2-subcomplex K̃ represented by U22.
In the dual mesh, the retraction, DK̃, has the same “homotopy type” as DK and
hence the same (co)homology groups. For a sufficiently good maximal spanning
tree (one that is, in some sense, short and fat), the number of 1-cells in U22 is the
number of faces (of K) on S ′ a set of cuts plus additional surfaces which make
any noncontractible loop on a cut contractible. Let N be some measure of the
number of degrees of freedom per unit length in DK so that m0 is O(N3). Note
that m̆1 is linearly related to m0. Let k be the number of 1-cells in U22, namely
the number of free variables remaining in the reduced matrix. As the mesh is
refined, k is on the order of the area of S ′, that is O(N2) or O(m

2/3
0 ). The

complexity of an algorithm to compute the nullspace basis is O(m2
0) +O(k3) in

time and O(m0)+O(k2) in storage, where k is O(m
2/3
0 ), so the time complexity

becomes O(m2
0) and space complexity is O(m

4/3
0 ). The overall time requirement

for computing cuts is that of finding {ζ1, . . . , ζβ1
} for each cut and β1 solutions

of Laplace’s equation to find the nodal potential described in Section 6C.
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a. Borromean Rings b. Trefoil Knot

β0(R) 1 1
β1(R) 3 1
m0 9665 3933

m3(= m̆0) 48463 19929
m̆1(= m2 − n2) 93877 38667
m̆2(= m1 − n1) 52029 21479
m̆3(= m0 − n0) 6614 2740

U22 4008× 2888 1393× 1007
nz(U22) 8156 2839
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Figure 6.6. U22 for two cases of interesting topology: (a) complement of Borromean
rings (three unlinked but inseparable rings) and (b) complement of a trefoil knot.

6F. Summary and Conclusions

While Ampère’s law gives intuition about the role and nature of cuts, it sheds
no light on their construction and computation. On the other hand, the algebraic
structures of (co)homology theory are adequate for formulation of an algorithm
for finding cuts on finite element meshes which are orientable, embedded sub-
manifolds of the nonconducting region. The algorithm fits naturally into finite
element theory.
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Starting with the connection matrix, cuts can always be found in O(m3
0)

time and O(m2
0) storage. However, complexity can be improved to O(m2

0) time
and O(m

4/3
0 ) storage by the algorithm outlined above. Moreover, the algorithm

discussed in Section 6E preserves sparsity in the finite element matrices and
thus does not adversely affect complexity in subsequent computation of a scalar
potential with cuts. The speed of the algorithm can be further improved if one
starts with a coarse mesh or information about the fundamental group π1 and its
commutators [Sti93]. It is clear that in the context of adaptive mesh refinement,
cuts should be computed on a coarse mesh and then refined with the mesh
since even the most coarse mesh contains all the information required for the
topological computation. On the other hand, since the topological computation
involves only integer arithmetic, computation on a fine mesh does not introduce
rounding error.

The program itself is the only complete description of what the program
will do.

P. J. Davis





Do you know of Grassman’s Ausdehnungslehre? Spottiswood spoke of it in
Dublin as something above and beyond quaternions. I have not seen it, but
Sir William Hamilton of Edinburgh used to say that the greater the
extension the smaller the intention.

James Clerk Maxwell, in a letter to P. G. Tait.

7
A Paradigm Problem

7A. The Paradigm Problem

The purpose of this chapter is to show how the formalism of differential forms
reduces a broad class of problems in computational electromagnetics to a com-
mon form. For this class of problems, the differential complexes and orthogonal
decompositions associated with differential forms make questions of existence and
uniqueness of solution simple to answer in a complete way which exposes the role
played by relative homology groups. When this class of problems is formulated
variationally, the orthogonal decomposition theorem developed in Section MA-M
generalizes certain well known interrelationships between gauge transformations
and conservation laws (see [Ton68]) to include global conditions between dual
cohomology groups. The orthogonal decomposition theorem can then be used to
construct an alternate variational principle whose unique extremal always exists
and can be used to obtain a posteriori measures of problem solvability, that is
to verify if any conservation law was violated in the statement of the problem.
A diagrammatic representation of the problem along the lines of [Ton72b] will
be given and the role of homology groups will be reconsidered in this context.
This of course will be of interest to people working in the area complementary
variational principles.

In addition to the usual literature cited in the bibliography, the work of Tonti
[Ton68, Ton69, Ton72b, Ton72a, Ton77], Sibner and Sibner [SS70, SS79, SS81]
and [Kot82] have been particularly useful in developing the ideas presented in
this chapter. From the view of computational electromagnetics, the beauty of
formulating a paradigm variational problem in terms of differential forms is that
the finite element method and Whitney form interpolation yield a discretization
which faithfully reproduces all the essential features of the continuum problem.
Although this point of view was advocated two decades ago [Kot84], general

183
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acceptance by the engineering community has come as a result of a lot of hard
work [Bos98]. See Hiptmair [Hip02] for a recent survey of interpolation for
electromagnetic field problems based on differential forms.

The notation used in this chapter is quite distinct from notation used in
previous chapters. Readers not familiar with Hodge theory on manifolds with
boundary can consult Section MA-J (page 243) and subsequent ones, where the
notation in developed.

The paradigm problem of this chapter will now be considered. Let M be a
compact orientable n-dimensional Riemannian manifold with boundary. In the
paradigm problem to be considered, the field is described by two differential
forms

β ∈ Cp(M), η ∈ Cn−p(M),

which are related to another differential form

λ ∈ Cn−p+1(M),

which describes the sources in the problem. These differential forms are required
to satisfy the following key pair of equations:

∫

∂cp+1

β = 0

∫

∂cn−p+1

η =

∫

cn−p+1

λ

for all cp+1 ∈ Cp+1(M) and cn−p+1 ∈ Cn−p+1(M). If S is a set of n − 1-
dimensional interface surfaces where β may be discontinuous, the first integral
equation implies that

dβ = 0 on M − S.
Also one can define an orientation on S so that there is a plus side and a minus
side and

tβ+ = tβ− as S is traversed.

Here t is the pullback i∗ of a differential form by the inclusion map

i : S →M.

The + and − superscripts denote limiting values as the orientable codimension-
one surface S is approached from within M .

It is natural to inquire whether there exists a potential

α ∈ Cp−1(M)

such that

β = dα.

In other words, the first integral equation shows that β is a closed form and one
would like to know whether it is exact. The answer, of course, is given by the de
Rham isomorphism, that is, β is exact if all of its periods vanish on a basis of
the homology group Hp(M). In addition to the structure above , the paradigm
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problem to be considered has a constitutive relation relating β and η. Further
consideration will not be given to this constitutive relation until the next section.

Although various boundary conditions can be imposed on β and η so that a
boundary value problem can be defined, to simplify the presentation it is assumed
in accordance with the general philosophy adopted here that

∂M = S1 ∪ S2, tβ = 0 on S1, tη = 0 on S2,

where S1 ∩ S2 is an (n−2)-dimensional manifold whose connected components
represent intersections between symmetry planes and connected components of
the boundary of an original problem where symmetries were not exploited.

It is important, before going on, to list the specific problems that occur as
special cases of this general problem. They are:

(1) Electrodynamics in four dimensions.
(2) Electrostatics in three dimensions.
(3) Magnetostatics in three dimensions.
(4) Currents in three-dimensional conducting bodies where displacement cur-

rents are neglected.
(5) Low frequency steady or eddy current problems where currents are confined

to surfaces that are modeled as two-dimensional manifolds. In this case,
the local sources or “excitation” is the time variation of the magnetic field
transverse to the surface.

(6) Magnetostatics problems that are two-dimensional in nature because of ro-
tational or translational symmetry in a given three-dimensional problem.

(7) Electrostatics problems that are two-dimensional in nature because of rota-
tional or translational symmetry in a given three-dimensional problem.

Note that the last two problems have not been discussed so far because of their
“topologically uninteresting” properties. They are included here for complete-
ness, and a word of caution is in order. For two-dimensional problems which
arise from axially symmetric three-dimensional problems it is important to re-
member that the metric tensor on M is not the one inherited from R3 but rather
is a function of the distance from the axis of symmetry.

Tables 7.1 and 7.2 summarize the correspondence between the paradigm prob-
lem defined in terms of differential forms and the various cases listed above. Ta-
ble 7.2 lists examples considered so far which are useful for sorting out topological
or other details.

7B. The Constitutive Relation and Variational Formulation

In order to define a constitutive relation between β and η, consider a mapping

C : Cpc (M)→ Cpc (M)

that, when restricted to a point of M , becomes a transformation mapping one
differential form into another. In addition, given arbitrary ω, ω1, ω2 ∈ Cpc (M)
and a positive definite Riemannian structure on M that induces a positive def-
inite inner product 〈 · , · 〉p on Cpc (M), the following two properties are required
of the mapping C:
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Inst. n, p α β η λ
tβ tη

(= 0 on S1) (= 0 on S2)

1 4, 2 A, φ E, B D, H J , ρ n×E, B ·n n×H, D ·n
2 3, 1 φ E D ρ n×E D ·n
3 3, 2 A B H J B ·n n×H

4 3, 2 H J E −∂B/∂t J ·n n×E

5 2, 1 ψ n
′×J E −(∂B/∂t)·n′ Jn Et

6 2, 1 An n
′×B H J ·n′ Bn Ht

7 2, 1 φ E n
′×D ρ/length Et Dn

Table 7.1. Instances of the paradigm problem (keyed to the list on page 185). Note
that two-dimensional problems are assumed to be embedded in a three-dimensional
space, where n

′ is the unit normal to M .

Instance of
Relevant examples

paradigm problem

1 7.10
2 1.6, 1.7, 1.14, 3.2, 3.6, 7.2, 7.11, 7.13
3 1.9, 1.15, 3.3, 3.6, 3.4, 7.2, 7.11, 7.13
4 1.9, 2.3, 3.6, 7.2, 7.11, 7.13
5 1.5, 1.8, 1.13, 3.5, 3.6, 7.12, 7.14
6 1.8, 7.12, 7.14
7 1.8, 7.12, 7.14

Table 7.2. Instances of the paradigm problem cross-referenced to examples in this
book. Refer to the list of examples (page 273) for page numbers.

(1) Strict monotonicity:

〈C(ω1)− C(ω2), ω1 − ω2〉 ≥ 0,

with equality if and only if ω1 = ω2.
(2) Symmetry: defining the linear functional

fω(ω1) = 〈C(ω), ω1〉p
and denoting its Gâteaux variation by

f ′ω(ω1, ω2) = 〈C ′
ω(ω2), ω1〉p,

it is required that this function is a symmetric bilinear function of ω1 and
ω2. That is,

〈C ′
ω(ω1), ω2〉p = 〈C ′

ω(ω2), ω1〉p.
The first of these two conditions ensures the invertibility of C. When there is
a pseudo-Riemannian structure on the manifold the inner product 〈 · , · 〉p is in-
definite as is the case in four-dimensional versions of electromagnetics and the
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appropriate reformulation of condition 1 is found in [Ton72a] pp. 351–352. The
second of the two conditions above will imply that there exists a variational prin-
ciple for the problem at hand. See [Vai64] or [Ton69] for a thorough discussion.
This being said, let the constitutive relation between β and η be expressed in
terms of the Hodge star operator

η = ∗C(β).

Defining a potential. The next step in formulating the paradigm problem
variationally, is to relate β ∈ Zpc (M − S1) to a potential α. In all of the special
cases of the paradigm problem shown in Table 7.1, with the exception of the fifth
case involving current flow on sheets, the physics of the problem shows that it is
reasonable to assume that

β = dα,

since M ⊂ Rn and the preceding equation is true for Rn. In the fifth case
involving currents on sheets, one can use the techniques developed in Example 2.4
(page 85) to express the current density vector in terms of a stream function
which has jump discontinuities on a set of curves representing generators of
H1(M,S2). The values of these jump discontinuities are related to the time rate
of change of magnetic flux through “holes” and “handles” and are prescribed as
a principal condition in any variational formulation. Keeping this in mind, it is
assumed that

β = dα for some α ∈ Cp−1(M)

in the paradigm problem. The next thing to do in formulating a variational
principle, where β ∈ Zpc (M −S1) is imposed as a principal condition, is to figure
out a way of imposing the condition

tβ = 0 on S1

in terms of a vector potential α. In general, since the exterior derivative com-
mutes with pullbacks, the observation that

tα = 0 =⇒ 0 = dtα = tdα = tβ on S1

does not mean that it is advisable to make the pullback of α to S1 vanish. To
see why this is so, consider the following portion of the long exact homology
sequence for the pair (M,S1):

· · · δp+1- Hp(S1)
ı̃p- Hp(M)

̃p- Hp(M,S1) -

δp- Hp−1(S1)
ı̃p−1- Hp−1(M)

̃p−1- Hp−1(M,S1) - · · ·
The three-step procedure for finding homology generators introduced in Chap-
ter 1 (page 38) gives

Hp(M,S1) ' δ−1
p (ker(̃ıp−1))⊕ ̃p

(
Hp(M)

ı̃p (Hp(S1))

)
.

The above arguments concerning the existence of a potential α deal with the
periods of β on generators of Hp(M) and hence the generators of Hp(M,S1) cor-
responding to im(̃p). It remains to consider how the periods of β on generators
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of Hp(M,S1) corresponding to

δ−1
p (ker(̃ıp−1))

depend on the tangential components of α on S1. Let zp ∈ Zp(M,S1) represent
a nonzero homology class in

δ−1
p (ker(̃ıp−1)) ,

and consider the calculation of the period of β on this homology class:
∫

zp

β =

∫

zp

dα =

∫

∂zp

tα = 0 if tα = 0 on S1.

Hence, unless the periods of β vanish on

δ−1
p (ker(̃ıp−1)) ,

there is no hope of making the tangential components of α vanish on S1. Instead,
one must find a way of prescribing tα on S1 such that

dtα = tdα = tβ = 0 on S1

and the periods of β on generators of

δ−1
p (ker(̃ıp−1))

are prescribed. This is simple in the case where p = 1, since a scalar potential or
stream function is forced to be a constant on each connected component of S1 if
its exterior derivative vanishes there. For vector potentials (p = 2) the problem is
trickier, since the tangential components of the vector potential on S1 are related
to some scalar function which has jump discontinuities on curves representing
generators of H1(S2, ∂S2). This situation should present no difficulties since it
has been considered in examples 1.14, 1.15, and 2.3.

A First Variational Formulation. As a prelude to the variational formulation
of the paradigm problem, one has

η = ∗C(β) in M, β = dα in M, tα specified on S1.

The last two conditions are used to ensure that β ∈ Zpc (M −S1) and the periods
of β on δ−1

p (ker(̃ıp−1)) are prescribed in some definite way. One is now required
to find a variational principle which would have

dη = λ in M, tη = 0 on S2

as the Euler–Lagrange equation and natural boundary condition respectively. A
variational principle for this problem is a functional

F : Cp−1(M)→ R

which is stationary at the p − 1 form α and satisfies the requirements above.
To define a variational principle, consider a family of (p−1)-forms parametrized
differentiably by s, that is, a curve

γ : [0, 1]→ Cp−1(M),
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with γ(0) = α0 an initial state and γ(1) = α an extremal; in order to respect
the principal boundary condition on S1, we fix

tγ(s) = tα for all s ∈ [0, 1].

No other constraints are placed on γ, so that

∂γ

∂s

∣∣∣∣
s=1

= α̃,

the variation of the extremal, can be an arbitrary element of the space Cp
c (M−S1)

of admissible variations. Next, the symmetry condition that

(7–1) 〈C ′
ω(ω1), ω2〉p = 〈C ′

ω(ω2), ω1〉p
for all ω, ω1, ω2 ∈ Cp(M) ensures that the value of the functional F defined by

(7–2) F (α) = F (α0)+

∫ 1

0

(〈
C (dγ(s)) , d

∂γ(s)

∂s

〉
p
+(−1)r

〈
∗λ, ∂γ(s)

∂s

〉
p−1

)
ds,

where r = (n− p+ 1)(p − 1) + (p− 1), is independent of the path in Cp−1(M)
joining α0 and α. That is, the value of the right-hand side of the equation above
does not depend on the way in which γ(s) goes from α0 to α as s goes form
zero to one (see [Ton72a]). For a general view of this formulation of variational
functionals the reader is referred to [Ton69] and [Vai64]. The functional (7–2)
follows directly from the equations defining the paradigm problem. In Vainberg’s
picture, symmetry condition (7–1) is analogous to the vanishing of the curl in
function space, and this in turn ensures that a variational principle exists.

To verify that the extremal of the functional above has the required properties,
recall that an extremal of the functional and the variation of the extremal are
assumed to be

γ(1) = α,
∂γ(s)

∂s

∣∣∣∣
s=1

= α̃.

This implies that variations of the extremal can be considered by looking at
γ(1− ε) for ε sufficiently small, and that the condition for the functional to be
stationary at α is:

∂F

∂ε
(γ(1− ε))

∣∣∣∣
ε=0

= 0.

Using the definition of the inner product, one can rewrite the functional as

F (α) = F (α0) +

∫ 1

0

(∫

M

d
∂γ(s)

∂s
∧ ∗C(dα) + (−1)p−1

∫

M

∂γ(s)

∂s
∧ λ
)
ds.

Using this expression it is seen that the functional is stationary at α when

0 =
∂

∂ε

∫ 1−ε

0

(∫

M

d
∂γ(s)

∂s
∧ ∗C (dγ(s)) + (−1)p−1

∫

M

∂γ(s)

∂s
∧ λ
)
ds

∣∣∣∣
ε=0

= −
∫

M

d
∂γ(1)

∂s
∧ ∗C (dγ(1))− (−1)p−1

∫

M

∂γ(1)

∂s
∧ λ

= −
∫

M

dα̃ ∧ ∗C(dα)− (−1)p−1

∫

M

α̃ ∧ λ
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for all α̃ ∈ Cp−1
c (M−S1). The integration by parts formula, which was obtained

as a corollary to Stokes’ theorem, shows that:
∫

M

dα̃ ∧ ∗C(dα) =

∫

∂M

tα̃ ∧ t (∗C(dα))− (−1)p−1

∫

M

α̃ ∧ d ∗ C(dα).

Combining these two equations, we see that the functional is stationary at α if

0 = (−1)p−1

∫

M

α̃ ∧ (d ∗ C(dα)− λ)−
∫

∂M

tα̃ ∧ t (∗C(dα))

for all α̃ ∈ Cp−1
c (M − S1). This of course means that

d ∗ C(dα) = λ in M

is the Euler–Lagrange equation and

t (∗C(dα)) = 0 on ∂M − S1 = S2

the natural boundary condition. Noting that

η = ∗C(β), β = dα

the Euler–Lagrange equation and the natural boundary conditions state that the
functional is stationary when

dη = λ in M,

tη = 0 on S2.

Thus it is seen that the paradigm problem is amenable to a variational formula-
tion.

Interface conditions revisited. Before moving to the questions of existence and
uniqueness of extremal, it is useful to mention how the interface conditions as-
sociated with the two integral laws of the paradigm problem are handled in the
variational formulation, since this aspect has been ignored in the above calcula-
tions. Interface conditions are considered when the function C is discontinuous
along some (n− 1)-dimensional manifold S. In the variational formulation it is
assumed that the potential α is continuous everywhere in M and differentiable
in M − S. One can define an orientation locally on S and hence a plus side and
a minus side. In this case, if superscripts refer to a limiting value of a differential
form from a particular side of S, then

tβ+ = tβ− on S

is the interface condition associated with the integral law
∫

∂cp+1

β = 0 for all cp+1 ∈ Cp+1(M).

That this interface condition results as a consequence of the continuity require-
ments imposed on α is seen from the following argument. Since α is continuous
in M one has

tα+ = tα− on S.
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Both sides of the above equation are differentiable with respect to the directions
tangent to S because α is assumed differentiable inM−S. The exterior derivative
in C∗(S) involves only these tangential directions, so

dtα+ = dtα− on S

but

tdα+ = tdα− on S

or

tβ+ = tβ− on S,

since exterior differentiation commutes with pullbacks. Similarly, when λ has
bounded coefficients, the interface condition

tη+ = tη− on S

is associated with the integral law
∫

∂cn−p+1

η =

∫

cn−p+1

λ.

To see how this interface condition comes out of the variational formulation,
notice that

d∗C(dα)

need not exist on S. Hence, if there are interfaces, then taking the variation of
the functional one must use the integration by parts formula in M − S. When
this is done, one obtains the same answer as before plus the term

−
∫

S

tα̃ ∧ t
(
∗C(dα+)− ∗C(dα−)

)
.

The arbitrariness of tα̃ on S implies that

t ∗ C(dα+) = t ∗ C(dα−).

With the identifications

η = ∗C(β), β = dα

one has the desired result. This completes the discussion of the constitutive
relation and the variational principle.

7C. Gauge Transformations and Conservation Laws

The objective of this section is to develop a feeling for how nonunique the
solution of the paradigm problem can be and to show how this nonuniqueness
is related to the compatibility conditions which must be satisfied in order for a
solution to the paradigm problem to exist. The approach taken in this section is
basically due to [Ton68], however, it is more general than Tonti’s in that the role
of homology groups is considered. Every effort is made to avoid using the words
local and global because the mathematical usage of the words local and global
does not coincide with the meanings attributed to these words by physicists
working in field theory.
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For the paradigm problem being considered, we define a gauge transformation
as a transformation on the potential α which leaves the following quantities
untouched:

β = dα in M,

tα on S1.

The gauge transformation is assumed to have the form

α→ α+ αG in M,

where αG ∈ Zp−1
c (M − S1). It is obvious that αG cannot lie in any bigger space

since, by definition

Zp−1
c (M − S1) =

{
ω
∣∣ ω ∈ Cp−1

c (M − S1), dω = 0 in M
}
.

By the orthogonal decomposition discussed in Section MA-M, it is known that

Zp−1
c (M − S1) = Bp−1

c (M − S1)⊕Hp−1(M,S1),

where

Hp−1(M,S1) =
{
ω
∣∣ ω ∈ Zp−1

c (M − S1), nω = 0 on S2, δω = 0 in M
}

and

βp−1(M,S1) = dimHp−1(M,S1).

This orthogonal decomposition enables one to characterize the space of the gauge
transformations. In scalar potential problems, that is, cases 2, 5, 6, 7 in Table 7.1,
p is equal to 1 and αG ∈ H0(M,S1) since B0

c (M−S1) is the space containing only
the zero vector. This situation is trivial to interpret since αG is equal to some
constant in each connected component of M which does not contain a subset of
S1. In problems where p = 2, that is, cases 1, 3, 4 in Table 7.1, one has

αG ∈ B1
c (M − S1)⊕H1(M,S1).

Thus it is expected that the gauge transformation can be described by a scalar
function which vanishes on S1 and β1(M,S1) other degrees of freedom. The case
where n is equal to three is treated explicitly in [Kot82, Section 4.2.2].

Since the gauge transformation is supposed to leave the differential form β
invariant, one would hope that the gauge transformation would also leave the
stationary value of the functional invariant. To formalize this intuition, suppose
α is an extremal and let

γ : [0, 1]→ Cp−1
c (M − S1),

where

γ(s) = α+ sαG

and
∂γ(s)

∂s
= αG ∈ Zp−1

c (M − S1) for all s ∈ [0, 1].
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In this case, recalling the definition of the variational functional for the paradigm
problem, one has

F (α+ αG)− F (α)

= F (γ(1))− F (γ(0))

=

∫ 1

0

(∫

M

d

(
∂γ(s)

∂s

)
∧ ∗C (dγ(s)) + (−1)p−1

∫

M

(
∂γ(s)

∂s

)
∧ λ
)
ds

= (−1)p−1

∫ 1

0

(∫

M

αG ∧ λ
)
ds since d

(
∂γ(s)

∂s

)
= 0

= (−1)p−1

∫

M

αG ∧ λ.

Thus the gauge transformation leaves the value of the functional invariant if and
only if ∫

M

αG ∧ λ = 0 for all αG ∈ Zp−1
c (M − S1).

This condition can be rewritten as

〈αG, ∗λ〉p−1 = 0 for all αG ∈ Zp−1
c (M − S1).

However, from the orthogonal decomposition theorem developed in Section MA-
M, it is known that

(
Zp−1
c (M − S1)

)⊥
= B̃p−1(M,S2) = ∗Bn−p+1

c (M − S2);

hence ∗λ ∈ ∗Bn−p+1
c (M−S2) or λ ∈ Bn−p+1

c (M−S2). This condition is precisely
the compatibility condition that ensures that the equations

dη = λ in M,

tη = 0 on S2

are solvable for η. Thus the Euler–Lagrange equation and the natural boundary
conditions can be satisfied only when the stationary value of the functional is
invariant under any gauge transformation.

The compatibility condition on λ is not amenable to direct verification in its
present form. However, since

Zn−p+1
c (M − S2) ' Bn−p+1

c (M − S2)⊕Hn−p+1
c (M − S2),

one sees that the compatibility condition can by verified by checking

dλ = 0 in M

tλ = 0 on S2

}
⇒ λ ∈ Zn−p+1

c (M − S2)

and then verifying that the periods of λ vanish on a set of generators of

Hn−p+1(M,S2).

This, in particular confirms the results given in [Kot82] which were considered
in Example 3.4. This method of verifying the compatibility condition on λ also
shows that the duality theorem

Hp−1
c (M − S1) ' Hn−p+1

c (M − S2)
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plays a crucial role in interrelating degrees of freedom in the gauge transformation
and degrees of freedom in λ constrained by the compatibility condition. It is

F (Cp−1(M))

(Zp−1(M − S1))
⊥

Zp−1(M − S1)
Figure 7.1.

worth mentioning that

λ 6∈ Bn−p+1
c (M − S2)

implies that the value of the functional is not invariant under every gauge trans-
formation and that the Euler–Lagrange equation or the natural boundary con-
ditions cannot be satisfied. In this case the functional has no extremum and it
is useful to have a geometrical picture of the situation. Consider the diagram
given in Figure 7.1. The graph of the functional in the “plane” spanned by
F (Cp−1(M)) and (Zp−1

c (M −S1))
⊥ is upward convex whenever the Riemannian

structure on M is positive definite. This comes about as a result of the strict
monotonicity assumption on the constitutive relation which is a valid assump-
tion to make in all of the cases of the paradigm problem listed in Table 7.1
with the exception of electromagnetism in four dimensions. For simplicity, in
the remainder of this section the discussion will focus on the case of convex
functionals.

The Role of Convexity. When the functional is invariant under gauge trans-
formations, moving in the direction of Zp−1

c (M − S1) does not change the value
of the functional so that the graph looks like an infinitely long level trough
which is convex upward in the “plane” F (Cp−1(M))–(Zp−1

c (M − S1))
⊥. How-

ever, when the functional is not invariant under gauge transformations, that is,
λ 6∈ Bn−p+1

c (M − S2) the trough is tilted and the functional has no stationary
point. In this case the graph in the F (Cp−1(M))–(Zp−1

c (M − s1))
⊥ “plane”

remains the same but the slope in the Zp−1
c (M − S1) direction has a nonzero

value depending on the value of the projection
∫
M
αG ∧ λ√

〈αG, αG〉p−1

.

Thus, the interplay between gauge conditions and conservation laws arises from
the above projection and gives a geometrical picture as to what happens when
conservation laws are violated.
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It has been seen that the compatibility condition λ ∈ Bn−p+1
c (M − S2) is

necessary for the functional to have a minimum. In the case of a linear consti-
tutive relation the Euler–Lagrange equation is a linear operator equation, so if
the spaces in question are chosen so that the range of the operator is closed, the
condition

〈αG, ∗λ〉p−1 = 0 for all αG ∈ Zp−1
c (M − S1)

is sufficient to ensure the solvability of the Euler–Lagrange equation [Ton68],
since the Fredholm alternative is applicable in this case. In the case of a nonlinear
strictly monotone constitutive relation, the resulting convex functional may fail
to have an extremum even if the above orthogonality condition holds. The extra
condition which is required is

〈C(ω), ω〉p√
〈ω, ω〉p

→∞ as 〈ω, ω〉p →∞

for all ω ∈ Cpc (M). The reason why this condition is necessary is best understood
in terms of an example.

Example 7.1 A convex function without a minimum. Let

f(ξ) =
√

1 + ξ2 − lξ, l, ξ ∈ R
1.

It is readily verified that

f ′(ξ) = ξ(1 + ξ2)−1/2 − l,
f ′′(ξ) = (1 + ξ2)−3/2.

Since the second derivative is always positive, the function is convex for all values
of ξ. At a minimum value we must have

f ′(ξ) = 0 = ξ(1 + ξ2)−1/2 − l
or

ξ = l(1 + ξ2)1/2 ⇒ ξ =
l√

1− l2
.

Thus, the convex function f has no minimum if |l| > 1. To see how this example
relates to the above condition, make the identifications

f(ξ) =

∫ ξ

0

C(τ) dτ − lξ, (C(τ), τ) = τC(τ),

so that

C(ξ) = f ′(ξ) + l =
ξ√

1 + ξ2
;

in this case

lim
|ξ|→∞

C(ξ)ξ

|ξ| =
ξ2√

1 + ξ2|ξ|
=

|ξ|√
1 + ξ2

= 1 <∞,

so that the extra condition imposed on the constitutive relation is violated. ˜



196 7. A PARADIGM PROBLEM

Example 7.1 shows that in the paradigm problem being considered, if

lim√
〈ω,ω〉p→∞

〈C(ω), ω〉p√
〈ω, ω〉p

<∞

then one expects that for some λ ∈ Bn−p+1
c (M − S2) with sufficiently large

norm, the functional of the paradigm problem may fail to have a minimum. The
interpretation of this extra condition in terms of the trough picture is as follows.
Suppose λ ∈ Bn−p+1

c (M − S2) and consider the graph of the functional in the
plane defined by

F
(
(Zp−1

c (M − S1))
⊥
)

and
(
Zp−1
c (M − S1)

)⊥

as a function of the norm of λ as shown in Figure 7.2. This diagram illustrates
how the minimum value of the functional may tend to minus infinity as the norm
of λ increases and the condition

lim
‖ω‖p→∞

〈C(ω), ω〉
‖ω‖p

=∞

is violated. Thus, when thinking of the graph of F (α) as a trough, one sees
that the trough is tilted in the Zp−1

c (M − S1) direction when λ violates some
conservation law, and the trough “rolls over” when the above condition is not
satisfied and λ is chosen in a suitable way.

F (Zp−1
c (M − S1))

⊥

Zp−1
c (M − S1)

increasing λ

Figure 7.2.

For numerical work, one would like a variational principle whose extremum
always exists and is unique. The variational principle for the paradigm problem
has a unique solution if and only if the space Zp−1

c (M−S1) which is homologous
to Bp−1

c (M − S1)⊕Hp−1
c (M − S1) contains only the null vector. By the above

direct sum decomposition this happens in practical problems where p = 1 (so that
B0
c (M −S1) = 0) and there is a Dirichlet condition imposed on some part of the

boundary of each connected component of M , (so that H0
c (M −S1) = 0). When

the extremal of the functional is nonunique, the usual algorithms for minimizing
convex functionals can be generalized to the case where the extremum of the
functional is nonunique. For example, Newton’s method as described by [Lue69],
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Section 10.4 can be generalized as in [Alt55]. However, in such cases it is usually
easier to reformulate the variational principle for the paradigm problem in such
a way that there always exist a unique solution. There are two basic approaches
to this problem which will be considered next.

7D. Modified Variational Principles

The purpose of this section is to formulate variational principles for the par-
adigm problem for which the potential α is unique. Such variational principles
will have interesting consequences for conservation laws since a unique solution
for the potential α implies that there is no gauge transformation which in turn
implies that there is no conservation law which is naturally associated with the
functional.

The first approach to the problem is to note that once the principal boundary
conditions have been imposed on S1 the space of admissible variations of the
extremal is Cp−1

c (M −S1) and the space of gauge transformations is Zp−1
c (M −

S1). Hence, if the space of admissible variations of the functional and the domain
of the functional is restricted to

(
Zp−1
c (M − S1)

)⊥ ∩ Cp−1
c (M − S1),

the functional’s previous minimum can still be attained but the solution is now
unique. By the orthogonal decomposition developed in Section MA-M, one has

(Zp−1
c (M − S1))

⊥ = B̃p−1(M,S2)

hence the space of admissible variations becomes

B̃p−1(M,S2) ∩ Cp−1
c (M − S1) ={

α̃
∣∣ tα̃ = 0 on S1, α̃ = δpω in M for some ω ∈ Cpc (M) with nω = 0 on S2

}
.

This procedure raises an interesting question. By the observations of [Ton68]
one knows that the number of degrees of freedom in the gauge transformation is
equal to the number of degrees of freedom by which the source, described by λ,
is constrained by a conservation law. Hence in this case where the domain of the
functional is constrained, so that the extremal is unique, one expects that the
variational principle is completely insensitive to violations of the conservation law
λ ∈ Bn−p+1

c (M − S2). To see why this is so, consider the unique decomposition

λ = λcons + λnonc,

where

λ ∈ Cn−p+1
c (M), λcons ∈ Bn−p+1

c (M − S2), λnonc ∈ (Bn−p+1
c (M − S2))

⊥.

What is required is to show that the extremal of the functional is independent of
the way in which λnonc is prescribed. Considering the functional of the paradigm
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problem as a function of λ, when α is restricted as above, one has

Fλ(α)− Fλcons
(α) = (−1)p−1

∫

M

α ∧ λnonc

= (−1)(p−1)−(n−p+1)(p−1)

∫

M

λnonc ∧ α

= (−1)(p−1)

∫

M

λnonc ∧ ∗∗α = (−1)(p−1) 〈λnonc, ∗α〉n−p+1 .

However, while

∗α ∈ ∗
(
(Zp−1

c (M − S1))
⊥
)

= ∗B̃p−1(M,S2) = Bn−p+1
c (M − S2),

we also have

λnonc ∈
(
Bn−p+1
c (M − S2)

)⊥
,

and combining these two results, we get

〈λnonc, ∗α〉n−p+1 = 0,

so that

Fλ(α) = Fλcons
(α).

Thus, by restricting the class of admissible variations of the functional’s extremal,
one obtains a variational formulation whose unique extremal is insensitive to
violations of the compatibility condition λ ∈ Bn−p+1(M − S1). This approach
to the problem is useful in the context of direct variational methods such as the
Ritz method or the finite element method only when it is possible to find basis
functions which ensure that

α ∈
(
Zp−1
c (M − S1)

)⊥
= B̃p−1(M,S2).

The second method for obtaining a variational formulation of the paradigm
problem in which the extremal is unique is inspired by [Kot82] chapter 5. In
this method, which at first sight resembles the “penalty function method” (see
[Lue69], sect. 10.11), the domain of the functional before principal boundary
conditions are imposed is Cp−1

c (M). The method involves finding a functional
F⊥(α) whose graph looks like a trough perpendicular to the trough of F (α):

In this scheme the functional

G(α) = F (α) + F⊥(α)

has a unique minimum which lies above the (Zp−1
c (M − S1))

⊥ “axis” whenever
the trough associated with F (α) is not tilted. That is if F⊥(α) is designed so
that its minimum is the (Zp−1

c (M − S1))
⊥ “axis” then the minimum of G(α)

should lie above the (Zp−1
c (M − S1))

⊥ “axis” whenever λ ∈ Bn−p+1
c (M − S2).

It is also desired that the contrapositives of these statements are also true in
the following sense. If λ 6∈ Bn−p+1

c (M − S2) so that the trough associated with
F (α) is “tilted” then the distance of the extremum of the functional G(α) to
the G(α) − (Zp−1

c (M − S1))
⊥ plane measures, in some sense, the value of the

projection

‖αG‖−1
p−1 max

αG∈Zp−1
c (M−S1)

∫

M

αG ∧ λ.
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Value of functional

`
Zp−1

c (M − S1)
´⊥

Zp−1
c (M − S1)

Figure 7.3. The troughs associated with F (α) (on the Zp−1
c (M − S1) axis) and

F⊥(α).

Having this picture in mind, the first thing to do is construct a functional
with the properties desired of F⊥(α). To find a functional which is definite on
Zp−1
c (M − S1) and level on (Zp−1

c (M − S1))
⊥, one notes that the orthogonal

decomposition of Section MA-M gives
(
Zp−1
c (M − S1)

)⊥
= B̃p−1(M,S2), Zp−1

c (M − S1) =
(
B̃p−1(M,S2)

)⊥
.

Hence, one actually wants a functional F⊥(α) which is level on B̃p−1(M,S2) and

convex on (B̃p−1(M,S2))
⊥.

As a prelude to the construction of F⊥(α), let K be a map

K : Cp−2(M)→ Cp−2(M)

satisfying the same conditions associated with the constitutive mapping. That
is, for ω, ω1, ω2 ∈ Cp−2(M) the following three properties are assumed to hold.

(1) Strict monotonicity:

〈K(ω1)−K(ω2), ω1 − ω2〉p−2 ≥ 0,

with equality if and only if ω1 = ω2.
(2) Symmetry: defining the functional

fω(ω1) = 〈K(ω), ω1〉p−2

and denoting the Gâteaux variation of this functional by

f ′ω(ω1, ω2) = 〈K ′
ω(ω2), ω1〉p−2 ,

it is required that this function is a symmetric bilinear function of ω1 and
ω2. That is

〈K ′
ω(ω1), ω2〉p−2 = 〈K ′

ω(ω2), ω1〉p−2 .

(3) Asymptotic property:

lim
‖ω‖p−2→∞

〈K(ω), ω〉p−2

‖ω‖p−2
=∞.
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In addition to these usual properties the mapping K will also be assumed to
satisfy the condition K(0) = 0, where 0 is the differential form whose coefficients
vanish relative to any basis.

Given a mapping K which satisfies the above four conditions, consider the

functional F0 : C̃p−1(M,S2)→ R defined by

F0 (γ(1)) = F0 (γ(0)) +

∫ 1

0

〈
K (δγ(s)) ,

d

ds
(δγ(s))

〉

p−2

ds

for any γ : [0, 1] → C̃p−1(M,S2). By construction, this functional is convex in
the subspace (

Z̃p−1(M,S2)
)⊥ ∩ C̃p−1(M,S2)

and “level” in the subspace Z̃p−1(M,S2). Furthermore, F0(α) ≥ F0(0) with

equality if and only if α ∈ Z̃p−1(M,S2).
At this stage, the construction of F⊥(α) is actually simple. Considering the

orthogonal decomposition of Section MA-M, the following diagrams are readily
seen to be true:

(7–3)

Bp−1
c (M − S1) ⊂ Zp−1

c (M − S1) = Bp−1
c (M − S1) ⊕Hp−1(M,S1)

‖ ‖ ‖ ‖
(
Z̃p−1(M,S2)

)⊥
⊂
(
B̃p−1(M,S2)

)⊥
=
(
Z̃p−1(M,S2)

)⊥
⊕Hp−1(M,S1)

and
(7–4)

B̃p−1(M,S2) ⊂ Z̃p−1(M,S2) = B̃p−1(M,S2) ⊕Hp−1(M,S1)

‖ ‖ ‖ ‖
(
Zp−1
c (M − S1)

)⊥⊂
(
Bp−1
c (M − S1)

)⊥
=
(
Zp−1
c (M − S1)

)⊥⊕Hp−1(M,S1)

where

∗Hn−p+1(M,S2) = Hp−1(M,S1) = Zp−1
c (M − S1) ∩ Z̃p−1(M,S2).

Looking at these diagrams, we see that in (7–3) F⊥ is supposed to be convex
on the spaces listed in the second column while F0 is convex in the spaces listed
in the first column. Similarly, in (7–4), F⊥ is invariant with respect to varia-
tions in the spaces listed in the first column while F0 is invariant with respect
to variations in the spaces listed in the second column. Thus, observing the
direct sum decompositions in the third column of (7–3) and (7–4) it is obvious
that the functional F0 meets all of the specifications of F⊥ except on the space
Hp−1(M,S1). More specifically, the functional F⊥ is required to constrain the
periods of a p − 1 form in Hp−1(M,S1) while the functional F0 does not. To
fix this discrepancy, let zi, with 1 ≤ i ≤ βn−p+1(M,S2), be a set of generators
of Hn−p+1(M,S2), and let ki, with 1 ≤ i ≤ βn−p+1(M,S2), be a set of positive
constants. For a curve

γ : [0, 1]→ Cp−1
c (M),



7D. MODIFIED VARIATIONAL PRINCIPLES 201

the functionals
Fi : Cp−1

c (M)→ R, 1 ≤ i ≤ β1(M,S1),

defined by

Fi

(
γ(1)

)
= Fi

(
γ(0)

)
+ ki

∫ 1

0

(∫

zi

∗γ(s)
)(∫

zi

∗∂γ(s)
∂s

)
ds

= Fi

(
γ(0)

)
+
ki
2

((∫

zi

∗γ(1)

)2

−
(∫

zi

∗γ(0)

)2
)

have the property
Fi(α) ≥ Fi(0),

with equality if and only if the integral of ∗α over zi vanishes. Next, consider
the “candidate” functional

F⊥
cand(α) =

βn−p+1(M,S2)∑

i=0

Fi(α).

Immediately, from the definitions of the Fi, one has

F⊥
cand(α)− F⊥

cand(0) =

βn−p+1(M,S2)∑

i=0

(Fi(α)− Fi(0)) ≥ 0,

with equality if and only if

Fi(α) = Fi(0), 0 ≤ i ≤ βn−p+1(M,S2).

This last condition is equivalent to

α ∈ Z̃p−1(M,S2) and

∫

zi

∗α = 0 for 1 ≤ i ≤ βn−p+1(M,S2),

or

∗α∈∗Z̃p−1(M,S2)=Zn−p+1
c (M−S2),

∫

zi

∗α=0 for 1≤ i≤βn−p+1(M,S2).

By the relative de Rham isomorphism, this is equivalent to

∗α ∈ Bn−p+1
c (M − S2)

which in turn is equivalent to

α ∈ ∗Bn−p+1
c (M − S2) = B̃p−1(M,S2) =

(
Zp−1
c (M − S1)

)⊥
.

Hence, in summary,
F⊥

cand(α)− F⊥
cand(0) ≥ 0,

with equality if and only if

α ∈
(
Zp−1
c (M − S1)

)⊥
.

Furthermore, by construction, F⊥
cand is convex when its domain is restricted to

the space Zp−1
c (M − S1). Thus interpreting F⊥

cand as a trough, it is seen that it
satisfies the requirements of F⊥ and hence can be used to define F⊥. Hence, for
a curve

γ : [0, 1]→ C̃p−1(M,S2),
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one can define the functional

F⊥ : C̃p−1(M,S2)→ R

as follows:

F⊥ (γ(1))− F⊥ (γ(0)) = F⊥
cand (γ(1))− F⊥

cand (γ(0))

=

βn−p+1(M,S2)∑

i=0

(Fi (γ(1))− Fi (γ(0)))

=

∫ 1

0

〈
K (δγ(s)) , δ

(
∂γ(s)

∂s

)〉

p−2

ds

+

βn−p+1(M,S2)∑

i=1

ki

∫ 1

0

(∫

zi

∗γ(s)
)(∫

zi

∗∂γ(s)
∂s

)
ds.

Finally one can complete the quest for a variational formulation of the paradigm
problem in which the extremal of the functional is unique by letting

G(α)−G(0) = (F (α)− F (0)) +
(
F⊥(α)− F⊥(0)

)
,

while respecting the principal boundary conditions

tα prescribed on S1, nα = 0 on S2.

Explicit Variation of the Modified Variational Principle. To define G(α)
more explicitly, consider a continuous differentiable curve

γ : [0, 1]→ C̃p−1(M,S2)

with

γ(0) = α0 an initial state,

γ(1) = α1 an extremal;

and, in order to respect the principal boundary conditions,

tα0 = tα = tγ(s) on S1,

nα0 = nα = nγ(s) = 0 on S2,

for all s ∈ [0, 1]. No other constraints are placed on γ, so that

∂γ

∂s
∈ C̃p−1(M,S2) ∩ Cp−1

c (M − S1) for all s ∈ [0, 1]

and the variation of the extremal

∂γ

∂s

∣∣∣∣
s=1

= α̃

can be chosen to be any admissible variation where the space of admissible

variations is C̃p−1(M,S2)∩Cp−1
c (M−S1). Thus writing out the functional G(α)
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explicitly one has

G(α)−G(α0) = G(γ(1))−G(γ(0))

=

∫ 1

0

(〈
C(dγ(s)),

∂

∂s
dγ(s)

〉
p

+ (−1)r
〈
∗λ, ∂γ(s)

∂s

〉
p−1

+
〈
K(δγ(s)),

∂

∂s
(δγ(s))

〉
p−2

)
ds

+

βn−p+1(M,S2)∑

i=1

ki

∫ 1

0

(∫

zi

∗γ(s)
)(∫

zi

∗∂γ(s)
∂s

)
ds,

where r = (n− p+1)(p− 1) + (p− 1). To investigate the stationary point of the
functional one recalls that

α = γ(1) ∈ Cp−1
c (M − S1), α̃ =

∂γ

∂s

∣∣∣∣
s=1

∈ Cp−1
c (M − S1) ∩ C̃p−1(M,S2),

and insists that
∂

∂ε
G (γ(1− ε))

∣∣∣∣
ε=0

= 0

for all admissible α̃. Doing this shows that the following identity must be true
for all α:

(7–5) 0 =
〈
C(dα), dα̃

〉
p

+ (−1)r
〈
∗λ, α̃

〉
p−1

+
〈
K(δα), δα̃

〉
p−2

+

βn−p+1(M,S2)∑

i=1

(∫

zi

∗α
)(∫

zi

∗α̃
)
.

It is in general not possible to integrate by parts to obtain an Euler–Lagrange
equation in the usual sense because of the integral terms which constrain the
integrals of ∗α on a set of generators of Hn−p+1(M,S2). Furthermore, in the
present case it is not necessary to derive an Euler–Lagrange equation since the
functional is designed to be extremized by direct variational methods. What is
necessary to verify is the geometric picture developed when thinking about the
troughs associated with the graphs of the functionals F (α) and F⊥(α). That is,
it must be verified that when λ obeys the conservation law

λ ∈ Bn−p+1
c (M − S2)

the extremal of G(α) provides a physically meaningful solution to the paradigm
problem and the projection of the extremal into Zp−1

c (M − S1) vanishes. Alter-
natively, when the conservation law is violated one hopes that the extremal of
G(α) can be interpreted as providing a “least squares” solution to the nearest
physically meaningful problem where the conservation law is not violated and
that the projection of the extremal into Zp−1

c (M − S1) measures in some sense
the extent by which the conservation law is violated. Hence let λ be prescribed
in some way which does not necessarily respect a conservation law and consider
the orthogonal decomposition

λ = λcons + λnonc,
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where

λcons ∈ Bn−p+1
c (M − S2)

λnonc ∈
(
Bn−p+1
c (M − S2)

)⊥
= Z̃n−p+1(M,S1).

From this orthogonal decomposition, it follows immediately that

∗λ = ∗λcons + ∗λnonc,

where

∗λcons = ∗Bn−p+1
c (M − S2) = B̃p−1(M,S2),

∗λnonc = ∗Z̃n−p+1(M,S1) = Zp−1
c (M,S1).

Similarly, for α ∈ C̃p−1(M,S2) one has the orthogonal decomposition

C̃p−1(M,S2) = B̃p−1(M,S2)⊕
(
Zp−1
c (M − S1) ∩ C̃p−1 (M,S2)

)
,

and α can be expressed as

α = α0 + αG,

where

α0 ∈ B̃p−1(M,S2),

αG ∈ Zp−1
c (M − S1) ∩ C̃p−1(M,S2).

Finally, for α̃ ∈ C̃p−1(M,S2) ∩Cp−1
c (M − S1) one has the orthogonal decompo-

sition

C̃p−1(M,S2) ∩ Cp−1
c (M − S1)

=
(
B̃p−1(M,S2) ∩ Cp−1

c (M − S1)
)
⊕
(
Zp−1
c (M − S1) ∩ C̃p−1(M,S2)

)
,

and α̃ can be expressed as

α̃ = α̃0 + α̃G,

where

α̃0 ∈ B̃p−1(M,S2) ∩ Cp−1
c (M − S1),

α̃G ∈ Zp−1
c (M − S1) ∩ C̃p−1(M,S2).

Before returning to the condition that ensures that the functional G is stationary
at α, note that expressing α0 and α̃0 as

α0 = δθ, α̃0 = δθ̃

it becomes apparent that
∫

zi

∗α0 =

∫

zi

∗δθ = (−1)p
∫

zi

d ∗ θ = 0, 1 ≤ i ≤ βn−p+1(M − S2),

∫

zi

∗α̃0 =

∫

zi

∗δθ̃ = (−1)p
∫

zi

d ∗ θ̃ = 0, 1 ≤ i ≤ βn−p+1(M − S2),
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since the integral of a coboundary on a cycle vanishes. Next recall the identity

(7–5) which must be satisfied for all α̃ ∈ Cp−1
c (M − S1) ∩ C̃p−1(M,S2) in order

for the functional G to be stationary at α:

0 = 〈C(dα), dα̃〉p + 〈K(δα), δα̃〉p−2 + (−1)r 〈∗λ, α̃〉p−1

+

βn−p+1(M,S2)∑

i=1

ki

(∫

zi

∗α
)(∫

zi

∗α̃
)
.

Substituting the earlier orthogonal decompositions into this identity and recalling
the definitions of the spaces involved gives

0 = 〈C(dα0), dα̃0〉p +
〈
K(δαG), δα̃G

〉
p−2

+ (−1)r
〈
∗λcons + ∗λnonc, α̃0 + α̃G

〉
p−1

+

βn−p+1(M,S2)∑

i=1

ki

(∫

zi

∗αG
)(∫

zi

∗α̃G
)
.

Keeping in mind that the spaces Zp−1
c (M − S1) and B̃p−1(M,S2) are mutually

orthogonal, the inner product involving the source term and the variation of the
extremal can be simplified to yield

0 =
〈
C(dα0), dα̃0

〉
p

+ (−1)r
〈
∗λcons, α̃0

〉
p−1

+
〈
K(δαG), δα̃G

〉
p−2

+ (−1)r
〈
∗λnonc, α̃G

〉
p−1

+

βn−p+1(M,S2)∑

i=1

ki

(∫

zi

∗αG
)(∫

zi

∗α̃G
)
.

It is obvious by the independence of α̃0 and and α̃G that the above condition is
equivalent to the following two conditions:

(7–6) 0 = 〈C(dα0), dα̃0〉p + (−1)r 〈∗λcons, α̃0〉p−1 ,

for all α̃0 ∈ B̃p−1(M,S2) ∩ Cp−1
c (M − S1), and

(7–7) 0 = 〈K(δαG), δα̃G〉p−2 + (−1)r 〈∗λnonc, α̃G〉p−1

+

βn−p+1(M,S2)∑

i=1

(∫

zi

αG

)(∫

zi

α̃G

)
,

for all α̃ ∈ Zp−1
c (M−S1)∩C̃p−1(M,S2). To deduce the properties of the extremal

α = α0 +αG of the functional G, one can look at the consequences of the above
two identities. This can be done in two steps as follows.

Consequences of condition (7–6). Condition (7–6) is precisely the criterion for
the original functional F to be stationary at α0 ∈ (Zp−1

c (M − S1))
⊥ and where

the source is λcons. Previous calculations show that the above identity implies

d ∗ C(dα0) = λcons in M,

t ∗ C(dα0) = 0 in S2,
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so that the potential that makes G(α) stationary gives a solution to the paradigm
problem where λ is replaced by λcons. By the definition of λcons it follows that

min
ξ∈Bn−p+1

c (M−S2)
‖ λ− ξ ‖n−p+1=‖ λ− λcons ‖n−p+1 .

Hence one can say that the extremal of G provides a solution to the nearest
physically meaningful paradigm problem.

Consequences of condition (7–7). Noticing that α̃G and αG both belong to

the space Zp−1
c (M −S1)∩ C̃p−1(M,S2) and that α̃G is arbitrary, one can let α̃G

be equal to αG, so that the identity (7–7) becomes

−(−1)r 〈∗λnonc, αG〉p−1 = 〈K(δαG), δαG〉p−2 +

βn−p+1(M,S2)∑

i=1

ki

(∫

zi

∗αG
)2

≥ 0,

with equality if and only if αG ∈ B̃p−1(M,S2). Since αG is an element of
Zp−1
c (M − S1) it is seen that the expression becomes an equality if and only if

αG = 0. Thus it is apparent that

∗λnonc = 0 implies αG = 0

and that

αG 6= 0 implies ∗λnonc 6= 0.

To prove the converses of these statements it is necessary to show that it is
possible to find a α̃G such that if λnonc 6= 0 then

〈∗λnonc, α̃G〉p−1 6= 0

and that αG is such an α̃G. Unfortunately,

∗λnonc ∈ Zp−1
c (M − S1)

and

α̃G ∈ Zp−1
c (M − S1) ∩ C̃p−1(M,S2);

hence α̃G can be selected to reflect the projection of λnonc in Zp−1
c (M − S1) ∩

C̃p−1(M,S2) and nothing more. Note, however, that if one imposes with com-
plete certainty tλ = 0 on S2, then λ ∈ Cn−p+1

c (M − S2) and hence

∗λnonc ∈ ∗Z̃n−p+1(M,S1) ∩ ∗Cn−p+1
c (M − S2) = Zp−1

c (M − S1) ∩ C̃p−1(M,S2).

In this case αG, α̃G and ∗λnonc all belong to the space

Zp−1
c (M − S1) ∩ C̃p−1(M,S2)

and it is always possible to find an α̃G such that ∗λnonc 6= 0 implies

〈∗λnonc, α̃G〉p−1 6= 0.

However, by Equation (7–7) this implies that αG 6= 0 and since Equation (7–7)
is valid for all possible α̃G, one can set α̃G equal to αG to obtain

−(−1)r〈∗λnonc, αG〉p−1 = 〈K(δαG), δαG〉p−2 +

βn−p+1(M,S2)∑

i=1

ki

(∫

zi

∗αG
)2

> 0.
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Hence λnonc 6= 0 implies αG 6= 0, or αG = 0 implies λnonc = 0, and it is proved
that

αG = 0 if and only if ∗λnonc = 0.

It is seen that the identities (7–6) and (7–7) adequately describe what happens

in a neighborhood of the extremal α in C̃p−1(M,S2) when one thinks in terms
of tilted troughs.

Two final points are in order. The first point is that the value of the func-
tional F⊥ evaluated at the extremal of G provides an a posteriori estimate of
how large λnonc is. This is apparent from the trough picture. The second point
is that when there is a pseudo-Riemannian structure on the manifold M , the
expression 〈·, ·〉k is no longer positive definite, hence the functionals considered
are no longer convex and the trough picture is no longer valid. Although the
orthogonal decomposition of Section MA-M is still a legitimate direct sum de-
composition and when βn−p+1(M,S2) = 0 the functional G still provides an
effective way of imposing the Lorentz gauge δα = 0 whenever the conservation
of charge (dλ = 0) is respected, it is not clear what the exact properties of G are.
From the point of view of computational electromagnetics, there is little motiva-
tion for pursuing this question and so the case of pseudo-Riemannian structures
is ignored.

7E. Tonti Diagrams

In this final section, Tonti diagrams and the associated framework for com-
plementary variational principles will be considered. This work is well known to
people in the field of computational electromagnetics and an overview of the liter-
ature in this context is given in the paper by Penmann and Fraser [PF84]. In this
connection the author also found the seminar paper by [Cam83] most useful. The
basis of the following discussion are the papers of Enzo Tonti [Ton72b, Ton72a]
where certain short exact sequences associated with differential operators appear-
ing in field equations are recognized as being a basic ingredient in formulating
a common structure for a large class of physical theories. This work of Tonti
fits hand in glove with the work of J. J. Kohn [Koh72] on differential complexes.
The point of view taken here is that for the practical problems described by
the paradigm problem being considered in this chapter, the interrelationship be-
tween the work of Tonti and Kohn is easily seen by considering the complexes
associated with the exterior derivative and its adjoint on a Riemannian man-
ifold with boundary. The idea of introducing complexes and various concepts
from algebraic topology into Tonti diagrams is not new and is developed in the
companion papers [Bra77] and [Ton77].

The main conclusion to be drawn from the present approach is that the dif-
ferential complexes associated with the exterior derivative give, when applica-
ble, a deeper insight into Tonti diagrams than is usually possible since the de
Rham isomorphism enables one to give concrete and intuitive answers to ques-
tions involving the (co)homology of the differential complexes. More precisely,
the usual development of Tonti diagrams involves differential complexes where
the symbol sequence of the differential operators involved is exact while what
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is actually desired is that the (co)homology of the complex be trivial. That
is, if the (co)homology of the differential complex is nontrivial, then reasoning
with the exactness of the symbol sequence alone may lead to false conclusions
concerning the existence and uniqueness of solutions to equations. To the best
of the author’s knowledge, the only differential complexes of practical use for
which something concrete can be said about (co)homology, are the differential
complexes associated with the exterior derivative since in this case the de Rham
isomorphism applies.

To formulate a Tonti diagram for the paradigm problem, consider first the
paradigm problem and suppose that Hp−1

c (M − S1) is trivial. In this case,

Zp−1
c (M − S1) = Bp−1

c (M − S1)

and

α→ α+ dχ, χ ∈ Cp−2
c (M − S1)

is a gauge transformation describing the nonuniqueness in the potential α. Next,
when dealing with complementary variational principles, we must find an

ηpart ∈ Cn−pc (M − S2) = ∗C̃p(M,S2)

such that

dηpart = λ

and

η − ηpart ∈ Bn−pc (M − S2) = ∗B̃p(M,S2).

In this case the forms β and η are determined by reducing the problem to a
boundary value problem for

ν ∈ Cn−p−1
c (M − S2) = ∗C̃p+1(M,S2),

where ν is defined by

dν = η − ηpart.

This boundary value problem for ν is deduced from the equations

dβ = 0 in M

tβ = 0 on S1

dν + ηpart = ∗C(β) in M .

From these equations the boundary value problem is seen to be

d
(
C−1

(
(−1)p(n−p) ∗

(
ηpart + dν

)))
= 0 in M

t
(
C−1

(
(−1)p(n−p) ∗

(
ηpart + dν

)))
= 0 on S1

tν = 0 on S2.

The variational formulation for this problem is obtained by considering a curve

γ : [0, 1]→ Cn−p−1
c (M − S2)
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and defining the functional for the complementary problem as follows:

J(γ(1))− J(γ(0))

= −(−1)p(n−p)
∫ 1

0

〈
C−1

(
(−1)p(n−p) ∗ (ηpart + dγ(s))

)
, ∗
(
ηpart + d

∂γ(s)

∂s

)〉

p

ds

= −
∫ 1

0

∫

M

(
C−1

(
(−1)p(n−p) ∗(ηpart + dγ(s))

))
∧
(
ηpart + d

∂γ(s)

∂s

)
ds.

To verify that this is indeed the correct functional let

γ(1) = ν,
∂γ(s)

∂s

∣∣∣∣
s=1

= ν̃

be the extremal and any variation of the extremal of the functional where the

space of admissible variations is Cn−p−1
c (M − S2) = ∗C̃p+1(M,S2). The func-

tional is stationary when

∂J

∂ε
γ(1− ε)

∣∣∣∣
ε=0

= 0

for all admissible variations of the extremal. This condition amounts to

0 =

∫

M

C−1
(
(−1)p(n−p) ∗ (ηpart + dγ(1))

)
∧ d
(
∂γ(s)

∂s

∣∣∣∣
s=1

)

or

0 =

∫

M

C−1
(
(−1)p(n−p) ∗ (ηpart + dν)

)
∧ dν̃

for all admissible ν̃. Integrating this expression by parts and using the fact that

tν = 0 on S2,

one obtains

0 =

∫

M

d
(
C−1

(
(−1)p(n−p) ∗ (ηpart + dν)

))
∧ ν̃

−
∫

S1

t
(
C−1

(
(−1)p(n−p) ∗ (ηpart + dν)

))
∧ tν̃,

from which it is apparent that the functional is the desired one since ν̃ can
be taken to be any admissible variation. In this formulation, the extremal of
the functional J is unique up an to an element of Zn−p−1

c (M − S2) and the
nonuniqueness can be described by a gauge transformation

ν → ν + νG, where νG ∈ Zn−p−1
c (M − S2).

Hence whenever there is a Riemannian structure on M which induces the inner
product 〈 · , · 〉k on k-forms, the functional J is convex on

(Zn−p−1
c (M − S2))

⊥ = B̃n−p−1(M,S1) = ∗Bp+1
c (M − S1)

and level on the space

Zn−p−1
c (M − S2) = ∗Z̃p+1(M,S2).
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Just as the construction of a functional F⊥ enabled one to modify the functional
F in order to construct a variational formulation involving a functional

G(α) = F (α) + F⊥(α)

for which the resulting extremal is unique, one can construct a functional J⊥(ν)
such that

I(ν) = J(ν) + J⊥(ν)

is a functional whose unique extremal is also an extremal of the functional J .
This, of course, happens when the functional J⊥ is constructed so that it is
convex on the space

Zn−p−1
c (M − S2) = ∗Z̃p+1(M,S2)

and level on

(Zn−p−1
c (M − S2))

⊥ = B̃n−p−1(M,S1) = ∗Bp+1
c (M − S1).

Thus, again, one is led to a situation involving two troughs as shown in Figure 7.3.
With this picture in mind, the functional J⊥ can be constructed in analogy with
the construction of F⊥. Consider first a mapping

K ′ : Cn−p−2(M)→ Cn−p−2(M)

which satisfies the same symmetry, monotonicity, and asymptotic properties re-
quired of the function K used in the construction of F⊥. Define a functional J⊥

as follows. Given

γ : [0, 1]→ C̃n−p−1(M,S1),

let

J⊥ (γ(1))− J⊥ (γ(0)) = −
∫ 1

0

〈
K ′−1 (δγ(s)) , δ

∂γ(s)

∂s

〉

n−p−2

−
βp+1(M,S1)∑

i=0

li

∫ 1

0

(∫

zi

∗γ(s)
)(∫

zi

∗∂γ(s)
∂s

)
ds,

where the zi are associated with generators of the homology group Hp+1(M,S1)
and the li are positive constants. The functional J⊥ thus defined is convex on
the space

Zn−p−1
c (M − S2) =

(
B̃n−p−1(M,S1)

)⊥

and level on the space
(
Zn−p−1
c (M − S2)

)⊥
= B̃n−p−1(M,S1).

This is easily seen, since the situations involving F⊥ and J⊥ become identical if
one interchanges the symbols

J⊥ ↔ F⊥,

S1 ↔ S2,

K ′ ↔ K,

n− p↔ p.
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Hence the functional I defined as

I(ν) = J(ν) + J⊥(ν),

with domain C̃n−p−1(M,S1) ∩ Cn−p−1
c (M − S2), has a unique extremum.

Finally, in order to finish this prelude to the Tonti diagram, note that if

βn−p−1(M,S2) = 0

the nonuniqueness in the complementary potential ν, when the variational for-
mulation involving the functional J is used, can be described by a gauge trans-
formation

ν → ν + dθ,

where

θ ∈ Cn−p−2
c (M − S2) = ∗C̃p+2(M,S2).

Furthermore, when considering the Tonti diagram it is convenient to assume that
β may be related to some type of source ρ through the equation

dβ = ρ,

where in the present case ρ = 0. Hence, in terms of the notation introduced
so far, the above formulation of the complementary variational principle for the
paradigm problem is summarized by the Tonti type diagram in Figure 7.4 and
used extensively in [PF84]. For the present purpose, the diagram in Figure 7.4
presents a simplistic view of the paradigm problem since boundary conditions

ξ

dp−3

?
dλ

dn−p+2

6

α

dp−2

? primal - λ

dn−p+1
6

β

dp−1

?
∗C - η

dn−p
6

ρ

dp

?
� dual

ν

dn−p−1
6

dρ

dp+1

?
θ

dn−p−2
6

dp+2

?

dn−p−3
6

Figure 7.4. Typical Tonti diagram.
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and domains of definition of operators have been ignored. Thus it is impossi-
ble to get a clear understanding of how homology groups come into play. To
remedy this situation, one must realize that when boundary conditions are im-
posed, the left hand side of the above diagram is associated with the complex
C∗
c (M − S1) while the right hand side of the diagram is associated with the

complex C∗
c (M − S2) = ∗C̃∗(M,S2). Thus to be more explicit, the above dia-

gram should be rewritten as shown in Figure 7.5. Once this structure has been

Cp−2
c (M − S1)

dp−3

?
Cn−p+2
c (M − S2)

dn−p+2
6

'C̃p−2(M,S2)

δp−2

6

Cp−1
c (M − S1)

dp−2

?
Cn−p+1
c (M − S2)

dn−p+16

'C̃p−1(M,S2)

δp−1
6

Cpc (M − S1)

dp−1

?
∗C- Cn−pc (M − S2)

dn−p6

' C̃p(M,S2)

δp

6

Cp+1
c (M − S1)

dp

?
Cn−p−1
c (M − S2)

dn−p−16

'C̃p+1(M,S2)

δp+1
6

Cp+2
c (M − S1)

dp+1

?
Cn−p−2
c (M − S2)

dn−p−26

'C̃p+2(M,S2)

δp+2
6

dp+2

?

dn−p−36
δp+3

6

Figure 7.5. Fortified Tonti diagram.

identified, it is apparent from the previous sections of this chapter that questions
of existence and uniqueness of potentials and questions of existence and unique-
ness of solutions to boundary value problems are easily handled by using the
orthogonal decomposition developed in Section MA-M. Though these questions
have been considered in detail in the case of the potential α and the results for
the complementary potential ν follow analogously, it is useful to outline the role
played by various cohomology groups. Specifically, the role of the following pairs
of groups and isomorphisms will be summarized:

Hp−1
c (M − S1) ' Hn−p+1

c (M − S2)(7–8)

Hp
c (M − S1) ' Hn−p

c (M − S2)(7–9)

Hp+1
c (M − S1) ' Hn−p−1

c (M − S2)(7–10)

Consequences of (7–8). Once tα is prescribed on S1, the group Hp−1
c (M−S1)

was seen to describe the nonuniqueness of α in the paradigm problem which
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cannot be described by a gauge transformation of the form

α→ α+ dχ, χ ∈ Cp−2
c (M − S1).

In other words, the nonuniqueness of α is described by Zp−1
c (M − S1) while

the above gauge transformation involves Bp−1
c (M − S1), hence the difference is

described by Hp−1
c (M − S1) since by definition

Hp−1
c (M − S1) = Zp−1

c (M − S1)/B
p−1
c (M − S1).

Dually, Hn−p+1
c (M − S2) was seen to be associated with the global conditions

ensuring that λ ∈ Bn−p+1
c (M − S2) once it is known that λ ∈ Zn−p+1

c (M − S2).
Finally, the isomorphism

Hp−1
c (M − S1) ' Hn−p+1

c (M − S2)

expresses the duality between the global degrees of freedom in the nonuniqueness
(gauge transformation) of α and the solvability condition (conservation law)
involving λ. This isomorphism is exploited in the construction of the functional
F⊥ and its interpretation is best appreciated by using the de Rham isomorphism
to reduce the above isomorphism to

Hp−1(M,S1) ' Hn−p+1(M,S2)

and to interpret this isomorphism in terms of the intersection numbers of the
generators of these two homology groups as in Chapter 1.

Consequences of (7–9). The group Hp
c (M − S1) is associated with global

conditions which ensure that β ∈ Bp
c (M − S1) once it is determined that β ∈

Zpc (M − S1). Furthermore, it gives insight into the conditions which α must
satisfy on S1 if β = dα. Dually the groupHn−p

c (M−S2) is associated with global
conditions which ηpart must satisfy in order for there to be a ν ∈ Cn−p−1

c (M−S2)
such that

dηpart = λ in M ,

dν = η − ηpart in M .

Thus the cohomology group Hp
c (M − S1) is used in formulating a primal vari-

ational principle, while the cohomology group Hn−p
c (M − S2) is used in formu-

lating a dual variational principle and the isomorphism

Hp
c (M − S1) ' Hn−p

c (M − S2)

then expresses the fact that the number of global conditions is the same in both
the original and complementary formulations. Note that for most problems, the
periods of closed forms on the generators of

Hp(M,S1), Hn−p(M,S2)

have the interpretation of a lumped parameter current, potential difference, or
flux as was seen in Examples 1.14, 1.15, 2.3, and 2.4. Thus in these examples
the isomorphism in homology has a direct interpretation.
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Consequences of (7–10). Had β not been a closed form but rather tied to an
equation of the form

dβ = ρ,

then if ρ ∈ Zp+1
c (M − S1) the group Hp+1

c (M − S1) is associated with the
conditions which ensure that ρ ∈ Bp+1

c (M−S1). Thus the groupHp+1
c (M−S1) is

associated with the global conditions which ensure the solvability of the equations
for the extremal ν of the complementary variational principle. Dually, the group
Hn−p−1
c (M − S2) describes the nonuniqueness in ν which cannot be described

by a gauge transformation of the form

ν → ν + dθ, θ ∈ Cn−p−2
c (M − S2).

In other words, the nonuniqueness of ν is described by Zn−p−1
c (M − S2) while

the above gauge transformation involves Bn−p−1
c (M − S2) and the difference is

characterized by Hn−p−1
c (M − S2). Finally the isomorphism

Hp+1
c (M − S1) ' Hn−p−1

c (M − S2)

expresses the duality between the global degrees of freedom in the nonunique-
ness (gauge transformation) of ν and the solvability condition (conservation law)
ρ ∈ Bp+1

c (M−S1). Thus the above isomorphism plays the same role in the com-
plementary variational formulation as the isomorphism in (7–8) played in the
primal variational formulation. This shows how the above isomorphism played
a role in the construction of the functional J⊥.

Summary. We have considered the role of homology and cohomology groups in
the context of the Tonti diagram for the paradigm problem. The Tonti diagram
for the paradigm problem includes as special cases electrostatics, magnetostatics
and electromagnetics hence it unifies all of the cases considered in [PF84] and
makes explicit the role of homology groups in this context. As mentioned in
the introductory paragraph, the main virtue of the paradigm problem is that
the Whitney form interpolation, introduced by Weil [Wei52], reproduces all of
the features of the paradigm problem in a discrete setting. Specifically, Whitney
forms provide a “chain homotopy” between the relative de Rham complex and its
simplicial counterpart. By its algebraic structure, this chain homotopy preserves
all considerations of homology and cohomology, that is, all circuit-theoretic in-
formation. Furthermore, the structure of the orthogonal decompositions is pre-
served in the discrete setting. Given the framework for quasistatic modeling
developed in Section 2E, we see that the practical implications are far reaching.
This chapter attempted to give a sketch of the mathematical coherence of the
underlying ideas.

The paradox is now fully established that the utmost abstractions are the
true weapons with which to control our thought of concrete fact.

A. N. Whitehead, Science and the modern world, 1925



In the year 1844 two remarkable events occurred, the publication by
Hamilton of his discovery of quaternions, and the publication by Grassmann
of his “Ausdehnungslehre”. . . . [I]t is regrettable but not surprising, that
quaternions were hailed as a great discovery while Grassmann had to wait 23
years before his work received any recognition at all from professional
mathematicians.

F. J. Dyson, [Dys72]

Mathematical Appendix:

Manifolds, Differential Forms, Cohomology,

Riemannian Structures

The systematic use of differential forms in electromagnetic theory started with
the truly remarkable paper of Hargraves [Har08] in which the space-time co-
variant form of Maxwell’s equations was deduced. Despite the efforts of great
engineers such as Gabriel Kron (see [BLG70] for a bibliography) the use of dif-
ferential forms in electrical engineering is, unfortunately, still quite rare. The
reader is referred to the paper by Deschamps [Des81] for an introductory view
of the subject. The purpose of this appendix is to summarize the properties of
differential forms which are necessary for the development of cohomology theory
in the context of manifolds without getting into the aspects which depend on
metric notions. We also develop the aspects of the theory that both depend on
the metric and are required for Chapter 7. Reference [Tei01] presents most of the
topics in this chapter from the point of view of the numerical analyst interested
in network models for Maxwell’s equations.

There are several books which the authors found particularly invaluable.
These are [War71, Chapters 4 and 6] for a proof of Stokes’ theorem and the
Hodge decomposition for a manifold without boundary, [Spi79, Chapters 8 and
11] for integration theory and cohomology theory in terms of differential forms,
[BT82] for a quick route into cohomology and [Yan70] for results concerning
manifolds with boundary. Finally, the papers by Duff, Spencer, Conner, and
Friedrichs (see bibliography) are for basic intuitions about orthogonal decompo-
sitions on manifolds with boundary.

What remains to be developed is a systematic way of manipulating differential
forms which involves only basic linear algebra and partial differentiation. Once
the basic operations on differential forms have been defined, all of the properties
of cohomology groups appear as in the first chapter.

215
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MA-A. Differentiable Manifolds

In order to talk about differential forms, it is important first to have an
acquaintance with the notion of a differentiable manifold. Roughly speaking, a
differentiable manifold of dimension n can be described locally by n coordinates,
that is, given any point p in an n-dimensional differentiable manifold M , one
can find a neighborhood U of p which is homeomorphic to a subset of Rn. More
accurately, the one-to-one continuous mapping ϕ which takes U into a subset of
Rn is differentiable a specified number of times. The reason why one is required
to work in terms of open sets and not the whole manifold is because the simplest
of n-dimensional manifolds are not homeomorphic to any subset of Rn. The
two-dimensional sphere S2, for example, requires at least two such open sets for
a cover.

More formally, an atlas is used in order to describe an “n-dimensional differ-
entiable manifold M of class Ck”. An atlas A is a collection of pairs (Ui, ϕi)
called charts where Ui is an open set of M and ϕi is a one-to-one bijective map,
differentiable of class Ck, mapping Ui into an open set of Rn. In addition the
charts in the atlas are assumed to satisfy:

(1) ϕi ◦ ϕ−1
j : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj) is a differentiable function of class Ck

whenever (Ui, ϕi), (Uj , ϕj) ∈ A (see Figure MA-1). The functions ϕi ◦ ϕ−1
j

are called transition functions.
(2)

⋃
Ui = M.

M Ui Uj

ϕi ϕj

ϕi ◦ ϕ−1

j

Figure MA-1.

Thus, referring back to the sphere we see that it is a 2-dimensional differen-
tiable manifold of class C∞ which can be described by an atlas which contains
two charts. The actual definition of a differentiable manifold involves not only
an atlas but an equivalence class of atlases where if A and B are atlases for a
manifold M , then A ∪ B is also an atlas. That is, if

(Ui, ϕi) ∈ A and (Wj , ψj) ∈ B,
then

ϕi ◦ ψ−1
j : ψj(Ui ∩Wj)→ ϕi(Ui ∩Wj)
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is a continuous map which is just as smooth as ϕi or ψj . Thus a set M together
with an equivalence class of atlases is called a differentiable manifold.

The local nature of the definition of a manifold is essential if one is not to
constrain the global topology of the manifold. A fundamental property of differ-
entiable manifolds is paracompactness, which enables one to construct partitions
of unity [War71, pages 5–10]. The existence of a partition of unity is required
to smoothly specify a geometrical object such as a vector field, differential form
or Riemannian structure globally on a differentiable manifold by specifying the
geometrical object locally in terms of the coordinate charts. Throughout this
chapter it will be assumed that such geometrical objects are defined globally and
most computations will be performed in local coordinate charts without regard
to how the charts fit together globally. Another almost immediate consequence of
the definition of a manifold is that once a notion of distance (Riemannian struc-
ture) is defined, the cohomology of the manifold is easily computed in terms of
differential forms [BT82, §5]. Holding off on the questions of homology and coho-
mology the exposition will concentrate on the algebraic properties of differential
forms.

MA-B. Tangent Vectors and the Dual Space of One-Forms

Suppose that in a neighborhood of a point p in an n-dimensional manifold M
there are local coordinates

xi, 1 ≤ i ≤ n
The tangent space Mp at the point p ∈ M is defined to be the linear span of
all linear first-order differential operators. That is, if X ∈ Mp then X can be
represented as

X =
n∑

i=1

Xi(p)
∂

∂xi
.

It is obvious that
∂

∂xi
, 1 ≤ i ≤ n,

form a basis for Mp. The interpretation of the tangent space is obtained by
considering

X(f)

∣∣∣∣
p

=
n∑

i=1

Xi(p)
∂f

∂xi

∣∣∣∣
p

.

The tangent vectors can be interpreted as giving directional derivatives of func-
tions. The collection of all tangent spaces to a manifold is called the tangent
bundle and is denoted by T (M). Thus

T (M) =
⋃

p∈M

Mp.

A vector field on M is defined to be a smooth section of the tangent bundle, that
is, if one writes a vector field X in terms of local coordinates in a neighborhood
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of p then

X =
n∑

i=1

Xi ∂

∂xi
,

where the X i are smooth functions of the local coordinates.
Since a vector space has been defined it is natural to inquire about its dual

space. An element of the dual space to Mp is a first-order differential form (or
1-form) evaluated at p, which is expressed as

ω =

n∑

i=1

ai(p) dx
i.

The dual space to the tangent space M will be denoted by M ∗
p . In this scheme

one identifies

dxi, 1 ≤ i ≤ n,
as a basis for M∗

p and the dual basis to

∂

∂xi
, 1 ≤ i ≤ n.

Thus

dxi
∂

∂xj
= δij

and

ω(X)

∣∣∣∣
p

=

n∑

i=1

ai(p) dx
i

( n∑

j=1

Xj(p)
∂

∂xj

)

=
n∑

i=1

n∑

j=1

ai(p)X
j(p) dxi

∂

∂xj
=

n∑

i=1

ai(p)X
i(p).

Having defined the dual space to vectors as differential forms, one can also define
the cotangent bundle to the manifold M as

T ∗(M) =
⋃

p∈M

M∗
p .

In order to verify that ω(X) is really an invariant quantity, it is essential
to know how ω and X behave under coordinate transformations. Suppose ϕ
is a mapping between an m-dimensional manifold M ′ and an n-dimensional
manifold M :

ϕ : M ′ →M.

We now choose points p′ ∈ M ′, p ∈ M such that ϕ(p′) = p, and look at the
actions induced by ϕ on 1-forms and vector fields:

ϕ# : T ∗(M)→ T ∗(M ′),

ϕ# : T (M ′)→ T (M).

These actions have the property that if ω ∈ T ∗(M) and X ∈ T (M ′), then

(ϕ#ω)(X)
∣∣
p′

= ω(ϕ#X)
∣∣
p
.
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The form ϕ#ω is called the pullback of ω under ϕ. Let (y1, . . . , ym) and
(x1, . . . , xn) be local coordinates around p′ ∈ M ′ and p ∈ M respectively. In
terms of these local coordinates there is a functional relationship

xi = xi(y1, . . . , yn), 1 ≤ i ≤ n,

and the induced transformations ϕ#, ϕ# transform basis vectors according to
the rules

dxj =

m∑

i=1

∂xj

∂yi
dyi,

∂

∂yj
=

n∑

i=1

∂xi

∂yj
∂

∂xi
.

Hence, if

ω =

n∑

i=1

ai(p) dx
i,

X =

m∑

j=1

Xj (ϕ(p′))
∂

∂yj
,

then

ϕ#(ω) =

m∑

j=1

( n∑

i=1

ai (ϕ(p′))
∂xi

∂yj

)
dyj ,

ϕ#(X) =

n∑

i=1

( m∑

i=1

Xj(p)
∂xi

∂yj

)
∂

∂xi

and

(ϕ#ω)(X)
∣∣
p′

=

n∑

i=1

m∑

j=1

ai (ϕ(p′))
∂xi

∂yj
Xj (ϕ(p′))

=
n∑

i=1

m∑

j=1

ai(p)
∂xi

∂yj
Xj(p) = ω (ϕ#X)

∣∣
p
,

which is the desired transformation. The transformation rule for the basis vectors
dxi (1 ≤ i ≤ n) and ∂/∂yj (1 ≤ j ≤ m) is intuitive if these basis vectors are
regarded as infinitesimals and partial derivatives and the usual rules of calculus
are used. However the reader should avoid making any interpretation of the
symbol d until the exterior derivative is defined. That is,

d(something)

should not be interpreted as an infinitesimal.
One more remark is in order. Suppose M ′′ is another manifold and there is a

transformation ψ : M ′′ →M ′. There is a composite transformation ϕ ◦ψ which
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makes the following diagram commutative

M ′′ ψ - M ′

M

ϕ

?

ϕ
◦ψ

-

The chain rule for partial derivatives shows that the induced transformations on
vector fields and 1-forms make the following diagrams commutative

T (M ′′)
ψ#- T (M ′) T ∗(M ′′) �ψ

#

T ∗(M ′)

T (M)

ϕ#

?

(ϕ
ψ
)
# -

T ∗(M)

ϕ#

6
�

(ϕ
ψ
) #

Hence
(ϕψ)# = ϕ#ψ#,

(ϕψ)# = ψ#ϕ#.

Thus vector fields transform covariantly while 1-forms transform contravariantly
and the whole scheme is invariant under transformations.

MA-C. Higher-Order Differential Forms and Exterior Algebra

The identification of 1-forms at a point p as elements of the dual space of Mp

enables one to regard a differential 1-form at a point p as a linear functional on
the tangent space Mp. Higher-order k-forms are a generalization of this idea.
At a point p ∈ M , a differential k-form is defined to be an alternating k-linear
functional on the tangent space Mp. That is, if ω is a k-form then

ω
∣∣
p

: Mp ×Mp × · · · ×Mp︸ ︷︷ ︸
k times

→ R,

which is linear in each argument and satisfies the following. If

X1,X2, . . . ,Xk ∈Mp

then for any permutation π of k integers (1, . . . , k) we have

ω
(
Xπ(1),Xπ(2), . . . ,Xπ(k)

)
= sgn(π)ω(X1,X2, . . . ,Xk),

where

sgn(π) =

{
1 if π is an even permutation,

−1 if π is an odd permutation.

The set of k-forms at a point p form a vector space denoted by

Λk(M
∗
p ).
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In addition, the following definitions are made:

Λk(M
∗
p ) = 0, k < 0,

Λ1(M
∗
p ) = M∗

p ,

Λ0(M
∗
p ) = values of functions evaluated at p.

When thinking of alternating multilinear mappings, it is useful to remember the
alternation mapping which sends any multilinear mapping into an alternating
one:

Alt (T (X1, . . . ,Xk)) =
∑

π∈Sk

sgn(π)

k!
T
(
Xπ(1),Xπ(2), . . . ,Xπ(k)

)

where Sk is the group of permutations of k objects. The alternation mapping
has the same properties as the determinant function and from this fact one can
deduce that

Λk(M
∗
p ) = 0 if k > n.

The exterior algebra of M ∗
p is defined as

Λ(M∗
p ) =

n⊕

k=0

Λk(M
∗
p ).

By forming

Λ∗
k(M) =

⋃

p∈M

Λk(M
∗
p )

and considering the k-forms whose coefficients are differentiable functions of
coordinates, one has the exterior k-bundle of the manifold M . The set of all
differential forms on a manifold M form the exterior algebra bundle of M which
is defined as

Λ∗(M) =
⋃

p∈M

Λ(M∗
p ) =

n⊕

k=0

Λ∗
k(M).

The term exterior algebra has been used several times without any mention
of what this algebra is. There is a product

∧ : Λ∗(M)× Λ∗(M)→ Λ∗(M),

called the exterior product (or wedge product, or Grassmann product) that takes
a k-form and an l-form and gives a (k+l)-form according to the following rule.
If ω ∈ Λ∗

k(M), η ∈ Λ∗
l (M), and (X1,X2, . . . ,Xk+l) ∈ T (M), then

(ω ∧ η)(X1,X2, . . . ,Xk+l)

=
1

(k + l)!

∑

π∈Sk+l

sgn(π)ω
(
Xπ(1), . . . ,Xπ(k)

)
η
(
Xπ(k+l), . . . ,Xπ(k+l)

)
.

This definition of wedge multiplication is not very useful for explicit calculations,
being rather like the formal definition of a matrix determinant. For practical
computations it is important to remember that wedge multiplication is:
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(1) bilinear:

ω ∧ (a1η1 + a2η2) = a1(ω ∧ η1) + a2(ω ∧ η2),
(a1η1 + a2η2) ∧ ω = a1(η1 ∧ ω) + a2(η2 ∧ ω)for a1, a2 ∈ R;

(2) associative:

(λ ∧ µ) ∧ η = λ ∧ (µ ∧ η);
(3) graded commutative:

ω ∧ η = (−1)klη ∧ ω for ω ∈ Λ∗
k(M), η ∈ Λ∗

l (M).

Before considering some examples of wedge multiplication it is worth considering
what differential forms look like at a point p ∈M where (x1, x2, . . . , xn) are local
coordinates. Let

dxi, 1 ≤ i ≤ n
be a basis for M∗

p . By taking repeated wedge products in all possible ways,
Λk(M

∗
p ) is seen to be spanned by expressions of the form

dxi1 ∧ dxi2 ∧ · · · ∧ dxik .
Furthermore for π ∈ Sk one has

dxi1 ∧ dxi2 ∧ · · · ∧ dxik = sgn(π)dxiπ(1) ∧ · · · ∧ dxiπ(k)

and since dxi, 1 ≤ i ≤ n span Λ1(M
∗
p ), one sees that Λk(M

∗
p ) has a basis of the

form

dxi1 ∧ dxi2 ∧ · · · ∧ dxik , 1 ≤ i1 < · · · < ik ≤ n.
Therefore, for k > 0, ω ∈ Λk(M

∗
p ) looks like:

ω =
∑

i1<i2<···<ik

ai1,i2,...ik(p) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

and

dim Λk(M
∗
p ) =

n!

(n− k)!k! =

(
n

k

)
.

By the binomial theorem it is trivial to calculate the dimension of the exterior
algebra of M∗

p

dim
(
Λ(M∗

p )
)

=

n∑

k=0

dim
(
Λk(M

∗
p )
)

=

n∑

k=0

(
n

k

)

= (1 + 1)n = 2n.

At this point it is useful to consider an example.

Example 7.2 Wedge multiplication in three dimensions. Consider the
cotangent bundle to a three-dimensional manifold embedded in Rm for some
m ≥ 3. Let p ∈M and dx1, dx2, dx3 be a basis of Λ1(M

∗
p ) = M∗

p . If

ω1, ω2, ω3 ∈ Λ1(M
∗
p ) and η ∈ Λ2(M

∗
p ),
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where

ω1 = A1 dx
1 +A2 dx

2 +A3 dx
3,

ω2 = B1 dx
1 +B2 dx

2 +B3 dx
3,

ω3 = C1 dx
1 + C2 dx

2 + C3 dx
3,

η = P1 dx
2 ∧ dx3 + P2 dx

3 ∧ dx1 + P3 dx
1 ∧ dx2,

one obtains, using the rules for wedge multiplication,

η∧ω3 = (P1 dx
2∧dx3+P2 dx

3∧dx1+P3 dx
1∧dx2)∧(C1 dx

1+C2 dx
2+C3 dx

3)

= (P1C1+P2C2+P3C3) dx
1∧dx2∧dx3,

ω1∧ω2 = (A1 dx
1∧A2 dx

2∧A3 dx
3)∧(B1 dx

1+B2 dx
2+B3 dx

3)

= (A2B3−A3B2) dx2∧dx3+(A3B1−A1B3)dx
3∧dx1

+(A1B2−A2B1) dx
1∧dx2.

Identifying ω1 ∧ ω2 with η, these two formulas give

ω1 ∧ ω2 ∧ ω3

=
(
(A2B3−A3B2)C1 +(A3B1−A1B3)C2 +(A1B2−A2B1)C3

)
dx1 ∧ dx2 ∧ dx3.

Hence, the scalar product, vector product and scalar triple product of vector
calculus arise in the wedge multiplication of forms of various degrees on a three-
dimensional manifold. ˜

MA-D. Behavior of Differential Forms Under Mappings

In the previous section many of the properties of differential forms were seen
to be properties of alternating multilinear functionals over a vector space. The
following fact is also a consequence of the definition of alternating multilinear
functionals. Suppose there is a linear transformation on Mp then there is an
induced exterior algebra homomorphism. That is, suppose there is a homomor-
phism

f# : M ′
p →Mp

that induces

f# : Λ(M∗
p )→ Λ(M ′∗

p ).

If

ω → f#ω, η → f#η, ω ∧ η → f#(ω ∧ η),
then

f#(ω ∧ η) = (f#ω) ∧ (f#η).

Earlier, when discussing covariance and contravariance, we considered the
pullback ϕ# on 1-forms induced by a mapping ϕ, along with the induced trans-
formation ϕ# on vector fields. The preceding equation enables one to define a
pullback on all differential forms:
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Theorem. Given ϕ : M ′ →M , there is an induced homomorphism

ϕ# : Λ∗(M)→ Λ∗(M ′)

such that

ϕ#(ω ∧ η) = (ϕ#ω) ∧ (ϕ#η)

for all ω, η ∈ Λ∗(M).

The significance of this result is best appreciated in local coordinates, since
it dictates a “change of variables” formula for differential forms. Consider
p ∈ M with local coordinates (x1, . . . , xn) and p′ ∈ M ′ with local coordinates
(y1, . . . , ym) along with

ϕ : M ′ →M

such that ϕ(p′) = p. This transformation induces (via ϕ#) a linear transforma-
tion on Λ∗

1(M), where

dxi =
m∑

j=1

∂xi

∂yj
dyj .

The exterior algebra homomorphism says that given a k-form ω ∈ Λ∗
k(M), where

ω =
n∑

i1<i2<···<ik

ai1i2...ik(p)dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

we have

ϕ#ω =
n∑

i1<···<ik

ai1i2...ik (ϕ(p′))

( m∑

j1=1

∂xi1

∂yj1
dyj1

)
∧ · · · ∧

( n∑

jk=1

∂xik

∂yjk
dyjk

)
.

This transformation is precisely the one required to leave

(ϕ#ω)(X1, . . . ,Xk) = ω(ϕ#X1, . . . , ϕ#Xk).

Furthermore, the change of variables formula for multiple integrals takes on the
following form ∫

R′

ϕ#ω =

∫

ϕ(R′)

ω.

This change of variable formula is most easily understood by means of a few
examples.

Example 7.3 Change of variables formula in two dimensions. Suppose
R′ ⊂ M ′ has local coordinates u, v, while ϕ(R′) ⊂ M has local coordinates s, t.
Let

I =

∫

ϕ(R′)

f(s, t) ds ∧ dt

and consider the change of variables

s = s(u, v), t = t(u, v).

Since

ds =
∂s

∂u
du+

∂s

∂v
dv, dt =

∂t

∂u
du+

∂t

∂v
dv,
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and

ds ∧ dt =

(
∂s

∂u
du+

∂s

∂v
dv

)
∧
(
∂t

∂u
du+

∂t

∂v
dv

)

=

(
∂s

∂u

∂t

∂v
− ∂s

∂v

∂t

∂u

)
du ∧ dv =

∂(s, t)

∂(u, v)
du ∧ dv,

one has

I =

∫

R′

f (s(u, v), t(u, v))
∂(s, t)

∂(u, v)
du ∧ dv. ˜

Example 7.4 Change of variables formula for surface integrals in three
dimensions. Suppose R′ ⊂ M ′ has local coordinates u, v, while ϕ(R′) ⊂ M
has local coordinates x, y, z. Let

J =

∫

ϕ(R′)

Bz dx ∧ dy +By dz ∧ dx+Bx dy ∧ dz

where Bx, By, Bz, are functions of x, y, z. Consider a change of variables

x = x(u, v), y = y(u, v), z = z(u, v).

By the same type of calculation as in the previous example,

dx ∧ dy =
∂(x, y)

∂(u, v)
du ∧ dv,

dz ∧ dx = . . .

one has

J =

∫

R′

(
Bz

∂(x, y)

∂(u, v)
+By

∂(z, x)

∂(u, v)
+Bx

∂(y, z)

∂(u, v)

)
du ∧ dv.

This is a generalization of the usual change of variables formula. ˜

Example 7.5 Change of variables formula in three dimensions. Suppose
R′ ⊂M ′ has coordinates u, v, w while ϕ(R′) ⊂M has coordinates x, y, z. Let

I =

∫

ϕ(R′)

p dx ∧ dy ∧ dz.

Transforming coordinates,

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w),

taking differentials, and using the triple product of Example 7.2 gives

I =

∫

R′

p
∂(x, y, z)

∂(u, v, w)
du ∧ dv ∧ dw. ˜

It is now time to consider the formal definition of the exterior derivative,
which will enable us to define a complex associated with the exterior algebra
bundle and the corresponding cohomology in terms of differential forms.
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MA-E. The Exterior Derivative

The exterior derivative will now be introduced in a formal way and illustrated
in specific instances. As a preliminary to its definition it is useful to introduce
certain vocabulary.

Definition 2. An endomorphism l of the exterior algebra bundle Λ∗(M) is

(1) a derivation if for ω, η ∈ Λ∗(M)

l(ω ∧ η) = l(ω) ∧ η + ω ∧ l(η);
(2) an antiderivation if for ω ∈ Λ∗

k(M), η ∈ Λ∗(M)

l(ω ∧ η) = l(ω) ∧ η + (−1)kω ∧ l(η);
(3) of degree k if l : Λ∗

j (M)→ Λ∗
j+k(M) for all j.

The following theorem characterizes the exterior derivative as a unique map-
ping which satisfies certain properties.

Theorem. There exists a unique antiderivation d : Λ∗(M) → Λ∗(M) of
degree +1 such that

(1) d ◦ d = 0, and
(2) for f ∈ Λ∗

0(M), df(X) = X(f), that is, df is the differential of f .

For a globally valid construction of the exterior derivative, the reader is re-
ferred to [War71]. Next it is advantageous to see what the exterior derivative
does when a local coordinate system is introduced. To this end, an obvious
corollary of the above theorem is considered in order to strip the discussion of
algebraic terminology.

Corollary. Consider a chart about a point p ∈ M where there is a local
coordinate system with coordinates (x1, . . . , xn). In this chart there exist a
unique mapping

d : Λ∗
i (M)→ Λ∗

i+1(M)

satisfying

(1) d(dω) = 0 for ω ∈ Λ∗(M),
(2) df =

∑n
i=1(∂f/∂x

i) dxi for f ∈ Λ∗
0(M),

(3) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη, where ω ∈ Λ∗
k(M) and η ∈ Λ∗(M).

From this corollary, it is easily verified that for a k-form

ω =

n∑

i1<i2<···<ik

ai1i2...ik(xj) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

the exterior derivative is given by

dω =

n∑

i1<···<ik

( n∑

j=1

∂ai1...ik
∂xj

(xk) dxj
)
∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .
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Hence when local coordinates are introduced, the exterior derivative can be com-
puted in a straightforward way. The properties which the exterior derivative
satisfies according to the above corollary will now be examined. The property

d(dω) = 0 for ω ∈ Λ∗(M)

should hold if Stokes’ theorem is to hold and the exterior derivative is to be
considered an operator adjoint to the boundary operator (recall Chapter 1).
The property

df =

n∑

i=1

∂f

∂xi
dxi

is what is required to make bases of the dual space to the tangent space transform
in a contravariant way. Finally the last condition of the corollary is what is
required to make the following theorem true:

Theorem. Given ϕ : M ′ →M and ω ∈ Λ∗(M)

ϕ#dω = d(ϕ#ω).

For a proof of this theorem and the previous one, see [War71], pages 65-68.
The next sensible thing to do is consider a series of examples which serve the dual
purpose of illustrating exterior differentiation and introducing Stokes’ Theorem.

Example 7.6 Exterior differentiation in one dimension. Consider a
one-dimensional manifold with local coordinate t and a 0-form.

ω = f(t) implies dω =
∂f(t)

∂t
dt.

The fundamental theorem of calculus states that∫ b

a

∂f(t)

∂t
dt = f

∣∣b
a
,

or, rewritten in terms of differential forms,∫

[a,b]

dω =

∫

∂[a,b]

ω. ˜

Example 7.7 Complex variables. Let f be a function of a complex variable.
That is,

f(z) = f(x+ iy) = U(x, y) + iV (x, y).

Consider
ω = f(z) dz =

(
U(x, y) + iV (x, y)

)
(dx+ i dy)

hence

dω =

(
∂U

∂x
dx+

∂U

∂y
dy + i

∂V

∂x
dx+ i

∂V

∂y
dy

)
∧ (dx+ i dy)

=

(
−
(
∂U

∂y
+
∂V

∂x

)
+ i

(
∂U

∂x
− ∂V

∂y

))
dx ∧ dy.

In this case, “Green’s theorem in the plane” states that∫

∂R

ω =

∫

R

dω
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and the Cauchy–Riemann equations

∂U

∂y
= −∂V

∂x
,

∂V

∂y
=
∂U

∂x
in R

are equivalent to the statement

dω = 0 in R.

Hence, if the Cauchy–Riemann equations hold in the region R
∫

∂R

f(z) dz = 0 =

∫

∂R

ω.

This is the Cauchy integral theorem. Furthermore, if one considers the above
equation for arbitrary 1-cycles, partitions these cycles into homology classes and
uses de Rham’s theorem, then one obtains the residue formula of complex analy-
sis. Also, by partitioning the above expressions into real and imaginary parts one
obtains the integral formulas associated with irrotational and solenoidal flows in
two dimensions. ˜

Example 7.8 The classical version of Stokes’ theorem. Let u, v, w be local
coordinates in a three-dimensional manifold and R a region in a two-dimensional
submanifold. Consider the 1-form:

ω = Au(u, v, w) du+Av(u, v, w) dv +Aw(u, v, w) dw.

Using the rules for wedge multiplication and exterior differentiation one has

dω = dAu ∧ du+ dAv ∧ dv + dAw ∧ dw

=
(∂Av
∂u
− ∂Au

∂v

)
du∧dv+

(∂Aw
∂v
− ∂Av
∂w

)
dv∧dw+

(∂Au
∂w
− ∂Aw

∂u

)
dw∧du,

and the classical version of Stokes’ theorem becomes
∫

∂R

ω =

∫

R

dω. ˜

Example 7.9 The divergence theorem in three dimensions. Next con-
sider a 2-form on a three-dimensional manifold with local coordinates u, v, w.
Let

ω = Du(u, v, w) dv ∧ dw +Dv(u, v, w) dw ∧ du+Dw(u, v, w)du ∧ dv.
Then, using the rules,

dω = dDu ∧ dv ∧ dw + dDv ∧ dw ∧ du+ dDw ∧ du ∧ dv

=

(
∂Du

∂u
+
∂Dv

∂v
+
∂Dw

∂w

)
du ∧ dv ∧ dw.

In this case, Ostrogradskii’s formula becomes
∫

∂R

ω =

∫

R

dω. ˜
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Example 7.10 Electrodynamics. Consider the four-dimensional space-time
continuum with local coordinates x, y, z, t. Let

α = Ax dx+Ay dy +Az dz − φdt
β = (Ex dx+ Ey dy + Ez dz) ∧ dt+ (Bx dy ∧ dz +By dz ∧ dx+Bz dx ∧ dy)
η = (Hx dx+Hy dy +Hz dz) ∧ dt− (Dx dy ∧ dz +Dy dz ∧ dx+Dz dx ∧ dy)
λ = (Jx dy ∧ dz + Jy dz ∧ dx+ Jz dx ∧ dy) ∧ dt− ρ dx ∧ dy ∧ dz.

By a straightforward calculation it is easy to verify that Maxwell’s equations can
be written as

dβ = 0, dη = λ.

If ϕ is a transformation of coordinates, the identity

ϕ#d = dϕ#

is an expression of the principle of general covariance. Also, putting aside con-
siderations of homology theory, the identity d ◦ d = 0 enables one to write the
field in terms of potentials

β = dα.

The general covariance of Maxwell’s equations is nicely expressed in [Bat10]
and makes the study of electrodynamics in noninertial reference frames tractable.
Following [Har08] one can rewrite Maxwell’s equations in integral form by using
Stokes’ theorem:∫

b2=∂c′3

β =

∫

c′3

dβ = 0,

∫

∂c3

η =

∫

c3

dη =

∫

c3

λ,

where b2 is any 2-boundary and c3, c
′
3 are any 3-chains. Hence, putting aside

considerations of homology, we have∫

z2

β = 0,

∫

∂c3

η =

∫

c3

λ,

where z2 is any 2-cycle. For modern uses of these equations see [Pos78, Pos84].
˜

MA-F. Cohomology with Differential Forms

It is now possible to restate the ideas of Chapter 1 in a more formal way.
Rewrite

d : Λ∗(M)→ Λ∗(M)

as
d :
⊕

p

Λ∗
p(M)→

⊕

p

Λ∗
p(M),

and define the restriction of the exterior derivative to p-forms by

dp : Λ∗
p(M)→ Λ∗

p+1(M).

As usual, one can define the set of p-cocycles (or in the language of differential
forms, the space of closed p-forms) as

Zp(M) = ker
(
Λ∗
p(M)

dp

−→ Λ∗
p+1(M)

)
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and the set of p-coboundaries (or in the language of differential forms, the space
of exact p-forms) as

Bp(M) = im
(
Λ∗
p−1(M)

dp−1

−−−→ Λ∗
p(M)

)
.

The equation
dp+1 ◦ dp = 0

shows that Λ∗(M) is a cochain complex and that

Bp(M) ⊂ Zp(M).

Thus one defines
HP

deR(M) = Zp(M)/Bp(M)

to be the de Rham cohomology of the manifold. In order to relate the notation
of this and the first chapter, define

C∗(M) = Λ∗(M),

where
Cp(M) = Λ∗

p(M).

One can define many other cohomology theories if the definition of cohomology
is written out explicitly, with

Hp(M) = (Zp(M) ∩ Cp(M)) /
((
dp−1Cp−1(M)

)
∩ Cp(M)

)
.

Thus if Cp(M) consisted of all p-forms of compact support, or all p-forms with
square integrable coefficients, one would obtain “cohomology with compact sup-
port” or “L2 cohomology”. Although these cohomology theories tend to agree
on compact manifolds, they do not agree in general. The precise definition of
compactly supported cohomology involves a limiting procedure which is ignored
here (see [GH81, Chapter 26]). Thus for example

H3
deR(R3) ' 0 6' R ' H3

c (R
3).

Although this result has not been proven here, it is easily deduced from [Spi79],
p. 371. The regions of interest are bounded subsets of Rn and in this case
cohomology with compact support is easily interpreted in terms of boundary
conditions, an interpretation which will soon be given. As in the first chapter,
the complex associated with differential forms with compact support in a region
Ω will be denoted by

C∗
c (Ω)

and the associated cocycle, coboundary, and cohomology spaces will be distin-
guished by the subscript c.

The de Rham cohomology vector spaces play a central role for the present
purpose as does the cohomology with compact support in the context of relative
cohomology. The L2 cohomology spaces, although important in the context of
finite energy constraints on variational functionals, will not be considered. There
are two reasons for this. First, the properties of L2 cohomology are harder to
articulate mathematically and secondly, for bounded regions of R3 the de Rham
cohomology and cohomology with compact support give the required insight into
L2 cohomology while unbounded domains in R3 can be handled by attaching a
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point at infinity and mapping R3 onto the unit sphere S3 in R4 (this procedure
is analogous to stereographic projections in complex variables).

MA-G. Cochain Maps Induced by Mappings Between Manifolds

Having defined the cochain complexes associated with de Rham cohomology
and cohomology with compact support, we now consider how mappings between
manifolds induce cochain maps between cochain complexes. Given a map

ϕ : M ′ →M,

there are covariant and contravariant transformations

ϕ# : T (M ′)→ T (M),

ϕ# : Λ∗(M)→ Λ∗(M ′)

on vector fields and differential forms respectively. For a given k and

ω ∈ Λ∗
k(M) and Xi ∈ T (M ′), 1 ≤ i ≤ k,

one has

ω (ϕ#(X1), ϕ#(X2), . . . , ϕ#(Xk)) = (ϕ#ω)(X1,X2, . . . ,Xk)

which express the invariance of the whole scheme. Having defined

C∗(M) = Λ∗(M),

C∗(M ′) = Λ∗(M ′),

the formula

ϕ#dM = dM ′ϕ#,

where the d on the right is the coboundary operator (exterior derivative) in
the complex C∗(M ′) while the d on the left is the exterior derivative in the
complex C∗(M), shows that ϕ# is a cochain homomorphism. That is, if ϕp is
the restriction of ϕ# to p-forms, the following diagram commutes for all k:

...
...

Ck(M)

dk−1
M

?
ϕk

- Ck(M ′)

dk−1

M′

?

Ck+1(M)

dk
M

?
ϕk

- Ck+1(M ′)

dk
M′

?

...

dk+1
M

?
...

dk+1

M′

?
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A very important special case of this construction occurs when M ′ is a subman-
ifold of M and ϕ is the injection mapping. That is, if S is a submanifold of M
and i : S →M is the injection map, the pullback

i# : C∗(M)→ C∗(S)

is a cochain homomorphism. When this happens, it is possible to construct a
long exact cohomology sequence in several ways (see [Spi79, pp. 571–591] or
[BT82, pp. 78–79]). This topic, however, will not be pursued here since once the
de Rham theorem is established, it is easier to think in terms of cycles and the
long exact homology sequence.

MA-H. Stokes’ Theorem, de Rham’s Theorems and Duality
Theorems

As a prelude to Stokes’ Theorem, the concepts of an orientation and regular
domain are required. Since Λn(M

∗
p ) is one-dimensional, it follows that Λn(M

∗
p )−

{0} has two connected components. An orientation ofM ∗
p is a choice of connected

component of Λn(M
∗
p )−{0}. An n-dimensional manifold is said to be orientable if

it is possible to make an unambiguous choice of orientation forM ∗
p at each p ∈M .

If M is not connected, M is orientable if each of its connected components
is orientable. The following proposition clears up the intuitive picture about
orientation:

Proposition. If M is a differentiable manifold of dimension n, the following
are equivalent:

(1) M is orientable;
(2) there is an atlas A = {(Ui, ϕi)} such that

(
∂(x1, . . . , xn)

∂(y1, . . . , yn)

)
> 0 on Ui ∩ Uj

whenever
(
Ui, (x

1, . . . , xn)
)
,
(
Uj , (y

1, . . . , yn)
)
∈ A;

(3) there is a nowhere vanishing n-form on M .

The proof of this proposition can be found in [War71, pages 138–140]. An
example of a nonorientable surface is the Möbius band of Example 1.12.

The notion of a regular domain is defined thus:

Definition 3. A subset D of a manifold M is called a regular domain if for
each p ∈M one of the following holds:

(1) There is an open neighborhood of p which is contained in M −D.
(2) There is an open neighborhood of p which is contained in D.
(3) Given Rn with Cartesian coordinates (r1, . . . , rn) there is a centered coordi-

nate system (U,ϕ) about p such that ϕ(U ∩D) = ϕ(U) ∩Hn, where Hn is
the half-space of Rn defined by rn ≥ 0.

Thus if we trained a powerful microscope onto any point of D, we would see
one of the cases in Figure MA-2.

A regular domain D in a manifold M inherits from M a structure of submani-
fold with boundary ; points p ∈ D satisfying condition (2) above form the interior
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of D, and points satisfying condition (3) form the boundary of D, denoted by
∂D. The boundary of a regular domain is itself a manifold (without boundary).

In cases where this definition is too restrictive, for example if D is a square,
one can use the notion of an almost regular domain (see [LS68, pp. 424–427]).

M − D D

M − D

D

Figure MA-2.

The main result of this section is the following version of Stokes’ Theorem.

Theorem. Let D be a regular domain in an oriented n-dimensional manifold
M and let ω be a smooth (n− 1)-form of compact support. Then

∫

D

dω =

∫

∂D

i#ω,

where i : ∂D →M induces the pullback

i# : C∗(M)→ C∗(∂D).

For a nice, simple proof of this theorem, see [War71, pages 140–148].
At this point it is worthwhile interpreting integration as a bilinear pairing

between differential forms and chains so that the de Rham isomorphism is easy
to understand. It has been assumed all along that integration is a bilinear pairing
between chains and cochains (forms). In the heuristic development of Chapter 1
this was emphasized by writing

∫
: Cp(M)× Cp(M)→ R.

Furthermore, the reader was lead to believe that differential forms were linear
functionals on differentiable chains. This was emphasized notationally by writing

∫

c

ω = [c, ω].

Stokes’ Theorem was then written as

[∂pc, ω] = [c, dp−1ω] for all p,

and hence was interpreted as saying that the exterior derivative (coboundary)
operator and the boundary operator were adjoint operators. This is the setting
for de Rham’s theorem, for if the domain of the bilinear pairing is restricted to
cocycles (closed forms) and cycles, that is,

∫
: Zp(M)× Zp(M)→ R,
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then it is easy to show that the value of this bilinear pairing depends only on
the homology class of the cycle and the cohomology class of the closed form
(cocycle). This is easily verified by the following calculation. Take zp ∈ Zp(M)
where cp−1 ∈ Cp−1(M) and zp ∈ Zp(M) where cp+1 ∈ Cp+1(M). Then
[
zp + ∂p+1cp+1, z

p + dp−1cp−1
]

= [zp, z
p] +

[
zp, d

p−1cp−1
]
+
[
∂p+1cp+1, z

p + dp−1cp−1
]

(linearity)

= [zp, z
p] +

[
∂pzp, c

p−1
]
+
[
cp+1, d

pzp + dp ◦ dp−1cp−1
]

(Stokes’ Theorem)

= [zp, z
p] +

[
0, cp−1

]
+ [cp+1, 0] (by definition)

= [zp, z
p] .

Hence, when the domain of the bilinear pairing is restricted to chains and
cochains, one obtains a bilinear pairing between homology and cohomology. The
theorems of de Rham assert that this induced bilinear pairing is nondegenerate
and hence there is an isomorphism

Hp(M) ' Hp
deR(M).

As noted in Chapter 1, this is not meant to be the place to prove that such an
isomorphism exists since no formal way of computing homology is considered.
The reader will find down-to-earth proofs of the de Rham isomorphism in de
Rham [dR31] or Hodge [Hod52, Chapter 2]. A sophisticated modern proof can
be found in [War71, Chapter 5], while less formal proofs can be found in the
appendices of [Gol82] and [Mas80].

For the present exposition de Rham type of isomorphism is required for rel-
ative homology and cohomology groups. Though this type of isomorphism is
not readily found in books (if at all) there are two methods of obtaining such
an isomorphism once the usual de Rham isomorphism is established. The first
approach is in Duff [Duf52]. The second approach is to reduce the problem to
a purely algebraic one and use the so called five lemma. Though this second
approach is straightforward, it does not appear to be in the literature.

Consider, for example, a manifold M with compact boundary ∂M . In this
case there is the following long exact cohomology sequence [Spi79, Theorem 13,
p. 589]:

· · · → Hk
c (M)→ Hk(∂M)→ Hk+1

c (M−∂M)→ Hk+1
c (M)→ Hk+1(∂M)→ · · ·

Also there is a long exact homology sequence (see [GH81, Chapter 14] for exam-
ple)

· · · ← Hk(M)← Hk(∂M)← Hk+1(M,∂M)← Hk+1(M)← Hk+1(∂M)← · · ·
and the following de Rham isomorphisms are known to exist for all k:

Hk(M) ' Hk
c (M) (M compact)

Hk(∂M) ' Hk(∂M).

The above isomorphisms are induced by integration and there is also a bilin-
ear pairing between Hk+1

c (M − ∂M) and Hk+1(M,∂M) which is induced by
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integration. In this case the following diagram is commutative:

Hk+1(∂M) - Hk+1(M) - Hk+1(M,∂M) - Hk(∂M) - Hk(M)

Hk+1(∂M)

'

?

6

� Hk+1
c (M)

'

?

6

� Hk+1
c (M − ∂M)

?

6

� Hk(∂M)

'

?

6

� Hk
c (M).

'

?

6

What is required is to show that the middle vertical arrow in this picture (and
hence every third arrow in the long sequence of commutative squares) is an iso-

morphism. To do this one first considers the dual spaces
(
Hk(∂M)

)∗
,
(
Hk
c (M)

)∗
,

and
(
Hk
c (M − ∂M)

)∗
and notices that, by definition there is a commutative di-

agram

Hk+1(∂M) � Hk+1
c (M) � Hk+1

c (M − ∂M) � Hk(∂M) � Hk
c (M)

(
Hk+1(∂M)

)∗

'

?

6

- Hk+1
c (M)∗

'

?

6

- Hk+1
c (M − ∂M)∗

'

?

6

- Hk(∂M)∗

'

?

6

- Hk
c (M)∗

'

?

6

where the vertical arrows are all isomorphisms, the two rows are exact sequences
and the mappings on the bottom row are the adjoints of the mappings directly
above them. Combining the above two commutative diagrams one has the fol-
lowing commutative diagram:

Hk+1(∂M) - Hk+1(M) - Hk+1(M,∂M) - Hk(∂M) - Hk(M)

Hk+1(∂M)∗

'

?

6

- Hk+1
c (M)∗

'

?

6

- Hk+1
c (M − ∂M)∗

'

?

6

- Hk(∂M)∗

'

?

6

- Hk
c (M)∗

'

?

6

where the rows are exact sequences and one wants to know whether the middle
homomorphism is an isomorphism. To see that the answer is yes consider the
following lemma (see Greenberg and Harper [GH81, p. 77–78]).

Five Lemma. Given a diagram of R-modules and homomorphisms with all
rectangles commutative

A1
a1 - A2

a2 - A3
a3 - A4

a4 - A5

B1

α

?
b1 - B2

β

?
b2 - B3

γ

?
b3 - B4

δ

?
b4 - B5

ε

?

such that the rows are exact (at joints 2, 3, 4) and the four outer homomorphisms
α, β, δ, ε are isomorphisms, then γ is an isomorphism.
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It is obvious that the five lemma applies in the above situation (since a vector
space over R is an instance of an R-module) and hence

Hk+1(M,∂M) ' Hk+1
c (M − ∂M)∗.

Thus

Hk+1(M,∂M) ' Hk+1
c (M − ∂M)

and the relative de Rham isomorphism is proven. It is also obvious that the
isomorphism would be true if ∂M were replaced by a collection of connected
components of ∂M or parts of ∂M which arise from symmetry planes as in
Chapter 1 all that is required is the existence of long exact (co)homology se-
quences and the usual de Rham isomorphism.

Having seen how the de Rham isomorphism can be understood with the help
of Stokes’ Theorem, a simple corollary of Stokes’ Theorem will now be used to
give a heuristic understanding of duality theorems. Suppose M is an oriented
n-dimensional manifold, D is a regular domain in M and λ ∈ Ck

c (M), µ ∈
Cn−k−1(M). Since λ has compact support,

ω ∈ Cn−1
c (M) if ω = λ ∧ µ.

Furthermore

dω = d(λ ∧ µ) = (dλ) ∧ µ+ (−1)kλ ∧ dµ,
and if i is the injection of ∂D into M then, as usual, the pullback i# satisfies

i#(ω) = i#(λ ∧ µ) = i#(λ) ∧ i#(µ).

Substituting this expression for ω into Stokes’ Theorem one obtains an important
corollary:

Corollary (Integration by parts). If D is a regular domain in an oriented
n-dimensional manifold M and

λ ∈ Ckc (M), µ ∈ Cn−k−1(M)

then

(−1)k
∫

D

λ ∧ dµ =

∫

∂D

(i#λ) ∧ (i#µ)−
∫

D

dλ ∧ µ

where

i : ∂D →M

induces

i# : C∗(M)→ C∗(∂D).

Just as Stokes’ Theorem is often called the fundamental theorem of multivari-
able calculus since it generalizes the usual fundamental theorem of integral cal-
culus, the above corollary is the multivariable version of “integration by parts”.
This integration by parts formula is of fundamental importance in the calculus of
variations and in obtaining an interpretation of duality theorems on manifolds.
These duality theorems will be considered next.
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Consider first the situation of a manifold without boundary M and the Poin-
caré duality theorem. In this case the integration by parts formula reduces to

(−1)k
∫

M

λ ∧ dµ = −
∫

M

(dλ) ∧ µ

whenever λ ∈ Ckc (M) and µ ∈ Cn−k−1(M). Also there is a bilinear pairing
∫

M

: Cpc (M)× Cn−p(M)→ R,

where a p-form of compact support is wedge multiplied with an (n−p)-form to
yield an n-form of compact support which is then integrated over the entire man-
ifold. The heart of the proof of the Poincaré duality theorem involves restricting
the domain of this bilinear pairing from chains to cycles and noticing that one
has a bilinear pairing on dual (p and n − p) cohomology groups. Though the
Poincaré duality theorem is not proved here, it is useful to see how this bilinear
pairing on cohomology comes about. Consider

∫

M

: Zpc (M)× Zn−p(M)→ R,

where for

zp ∈ Zpc (M), zn−p ∈ Zn−p(M)

one computes ∫

M

zp ∧ zn−p.

To see that the value of this integral depends only on the cohomology classes of
zp and zn−p one lets

cp−1 ∈ Cp−1
c (M), cn−p−1 ∈ Cn−p−1(M)

and computes
∫

M

(zp + dp−1cp−1) ∧ (zn−p + dn−p−1cn−p−1)

=

∫

M

zp∧zn−p+

∫

M

(dp−1cp−1)∧zn−p+

∫

M

(zp+dp−1cp−1)∧dn−p−1cn−p−1

=

∫

M

zp ∧ zn−p + (−1)p
∫

M

cp−1 ∧ dn−pzn−p

−(−1)p
∫

M

(dpzp + dp ◦ dp−1cp−1) ∧ cn−p−1 (integrating by parts)

=

∫

M

zp ∧ zn−p (using the definition of cocycle).

Thus restricting the domain of the bilinear form from cochains to cocycles induces
the following bilinear pairing on cohomology:

∫

M

: Hp
c (M)×Hn−p

deR (M)→ R.
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The Poincaré duality theorem asserts that this bilinear pairing is nondegenerate.
Thus

Hp
c (M) ' Hn−p

deR (M) for all p,

or, if M is compact,

Hp
deR(M) ' Hn−p

deR (M).

This statement of the Poincaré duality theorem is not the most general version
(see [BT82, pp. 44–47] for a proof and explanation of the subtleties encountered
in generalizing the above). The implicit assumption in the above argument is
the finite dimensionality of the cohomology vector spaces. A nice discussion
of this aspect is given in [Spi79, p. 600 and preceding pages]. As mentioned
in Chapter 3, [Mas80, Chapter 9] and [GH81, Chapter 26] have proofs of the
Poincaré duality theorem which do not appeal to the formalism of differential
forms.

When the manifold M is not compact, the Poincaré duality theorem may be
used to show the difference between de Rham cohomology and cohomology with
compact support. Take for example Rn, where, by Poincaré duality and the
arguments of the last chapter, one has

Hn−p
c (Rn) ' Hp

deR(Rn) '
{

R if p = 0,

0 if p 6= 0.

Hence, in the case of R3,

H3
c (R

3) ' R 6' 0 ' H3
deR(R3),

H0
deR(R3) ' R 6' 0 ' H0

c (R
3).

As stated in the previous chapter, the Poincaré duality theorem does not have
many direct applications in boundary value problems of electromagnetics. For
the present purpose, attention will be paid to compact manifolds with boundary
and for these there is a variety of duality theorems. In this case, it is useful to
get certain ideas established once and for all. First, if we take i : ∂M →M , i# :
C∗(M) → C∗(∂M), then c ∈ C∗

c (M − ∂M) if i#c = 0. Thus zp ∈ Zpc (M−∂M)
if dzp = 0, i∗zp = 0, and bp ∈ Bpc (M−∂M) if bp = dcp−1 for some cp−1 ∈
Cp−1
c (M − ∂M).
In this case, it is customary to denote the symbol i# by t, and avoid referring to

the injection i. Thus tω denotes the pullback of ω to ∂M and is the “tangential”
part of ω. In this notation the integration by parts formula takes the form:

(−1)k
∫

M

λ ∧ dµ =

∫

∂M

(tλ) ∧ (tµ)−
∫

M

(dλ) ∧ µ

where λ is a k-form, and µ is a (n−k−1)-form.
To see how the Lefschetz Duality Theorem comes about, consider an orientable

compact n-dimensional manifold with boundary and the bilinear pairing∫

M

: Cpc (M − ∂M)× Cn−p(M)→ R.

Note that if the boundary of the manifold is empty then the situation is identical
to that of the Poincaré duality theorem. Restricting the domain of this bilinear
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pairing to cocycles (closed forms) one can easily show that there is an induced
bilinear pairing on two cohomology groups. That is, considering∫

M

: Zpc (M − ∂M)× Zn−p(M)→ R,

the integration by parts formula shows that the integral
∫
M
zp ∧ zn−p depends

only on the cohomology classes of zp and zn−p, whenever zp ∈ ZpC(M − ∂M)
and zn−p ∈ Zn−p(M). Hence there is a bilinear pairing

∫

M

: Hp
c (M − ∂M)×Hn−p

deR (M)→ R

induced by integration. The Lefschetz Duality Theorem asserts that this bilinear
pairing is nondegenerate. Hence

Hp
c (M − ∂M) ' Hn−p

deR (M).

Again one can find the proof of this type of theorem in [Mas80, §9.7], or
Greenberg and Harper [GH81, Ch. 28]. Conner [Con54] has shown that there is
a generalization of the Lefschetz duality theorem. To see what this generalization
is, write

∂M =

m⋃

i=1

Ci,

where each ci is a connected manifold without boundary, and set

S1 =

r⋃

i=1

Ci, S2 =

m⋃

i=r+1

Ci

where M is a compact, orientable n-dimensional manifold with boundary. In
this case the result of Conner states that

Hp
c (M − S1) ' Hn−p

c (M − S2).

This result can be interpreted, as before, by saying that the bilinear pairing∫

M

: Cpc (M − S1)× Cn−pc (M − S2)

descends into a nondegenerate bilinear pairing on cohomology when the domain
is restricted to cocycles. This is verified by using the integration by parts for-
mula to show that the restricted bilinear pairing does indeed depend only on
cohomology classes.

In electromagnetism the situation is slightly more general in that S1 and S2

are not necessarily disjoint but at the intersection S1 ∩ S2 a symmetry plane
and a component of the boundary of some original problem meet at right angles.
From the usual proofs of the Lefschetz duality theorem (which construct the
double of a manifold) it is apparent that the duality theorem

Hp
c (M − S1) ' Hn−p

c (M − S2)

is still true. It is useful to note that the interpretation of the above duality
theorems is in some sense dual to the approach taken in Chapter 3 in that the
homology point of view stresses intersection numbers while the cohomology point
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of view stresses the bilinear pairing induced by integration. It is important to
keep this interplay in mind since topological problems in electromagnetics in-
volve the bilinear pairing in cohomology and these problems can be resolved
very conveniently by thinking in terms of intersection numbers. In the case of
the Alexander duality theorem there is no nice intersection number or integral
interpretation. This is apparent from the proof of the Alexander Duality Theo-
rem (see [Mas80, §9.6] or [GH81, Chapter 27]). For a different but down-to-earth
exposition of intersection numbers from the point of view of differential forms
and many other topics treated so far in this chapter the reader is referred to
[Her77, Chapter 34, part 5].

MA-I. Existence of Cuts Via Eilenberg–MacLane Spaces

In this section we will demonstrate the existence of cuts corresponding to gen-
erators of H1(Ω,Z) by showing that generators of H2(Ω, ∂Ω,Z) can be realized
by orientable embedded submanifolds with boundary which are inverse images
of regular points of maps from Ω into the circle. To see why this is the right
thing to do, let K(Z, n) be the Eilenberg–MacLane space [BT82, p. 240] [Spa66,
Chapter 8, §1] corresponding to the additive group Z and the integer n. The
Eilenberg–MacLane space K(Z, n) is uniquely characterized, up to homotopy, by
the property that its ith homotopy group is trivial except in dimension n where
it is isomorphic to Z. For example, we have

(MA-1) K(Z, 1) = S1,

where S1 is the circle. Eilenberg–MacLane spaces are of interest to us because
of the isomorphism

(MA-2) Hp(A; Z) ' [A,K(Z, p)].

This means that given a space A, the kth cohomology group of A with coefficients
in Z is isomorphic to the homotopy classes of maps from A into K(Z, k). In
particular, if A is taken to be the region Ω where irrotational magnetic fields
exist then, by (MA-1) and (MA-2), this isomorphism becomes

(MA-3) H1(Ω; Z) ' [Ω, S1].

That is, cohomology classes of magnetic fields H with integral periods are in
one to one correspondence with some homotopy class of maps from Ω to S1.
Furthermore, since S1 can be thought of as the unit circle in the complex plane,
a map from Ω to S1 can be thought of as an assignment of an angle θ ∈ R1 for
each point of Ω such that eiθ varies smoothly. Note that this prescription still
allows for θ to jump by 2πn on some “cutting surface”.

It is important to have an acquaintance with how the isomorphism (MA-2)
comes about in general, and a clear understanding of how it works in the case of
interest (MA-3). From the definition of K(Z, n) and the Hurewicz isomorphism
[BT82, p. 225], it follows that:

(MA-4) Hp(K(Z, p); Z) ' Z.
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In general the isomorphism (MA-2) comes about as follows. Let [µ] be the
generator of the cohomology group in (MA-4) and consider a map f : A →
K(Z, p). The isomorphism (MA-2) is then given by the cohomology class [f ∗µ]
which is obtained by pulling back [µ] via f . To see this in the case of interest
(MA-3) let µ = dθ/2π, where, by the usual abuse of notation, dθ, the element of
arc length on S1 is a closed 1-form which is not exact and hence not cohomologous
to zero. Also, µ ∈ H1(S1,Z) since its integral over S1 is equal to one. The
isomorphism (MA-3) then says that given and closed 1-form ω on Ω which has
integral periods, there is a map f : Ω → S1 such that [ω] is cohomologous to
[f∗(dθ/2π)].

We can now talk about cuts. Consider, by means of the isomorphism (MA-3),

a map f̃ : Ω → S1 which corresponds to a given integral cohomology class. If
[f̃∗µ] is not cohomologous to zero, then f̃ is onto S1. To see this concretely,

suppose f̃ missed a point p on S1 then f̃ misses an open neighborhood X of p.
Since it is possible to construct a form µ′ cohomologous to µ but with support
in X, we have

[f̃∗µ] ' [f̃∗µ′] ' 0.

Hence we have a contradiction which shows that f̃ is onto if [f̃∗µ] is nonzero.

Now f̃ can always be approximated by a smooth map f . By the Morse–Sard
theorem [Hir76], the set of critical values of f : Ω→ S1 has measure zero. Thus
if f represents a nontrivial cohomology class, the set of regular values, that is
the set of points in S1 such that the derivative of f is nonzero, is dense in S1.
Thus it is always possible to pick a point p ∈ S1 and an open neighborhood
(p− ε, p+ ε) such that every point in this neighborhood is a regular value of f .

Claim 1. f−1(p) is an orientable 2-dimensional compact manifold with bound-
ary embedded in Ω representing a nonzero element in H2(Ω, ∂Ω; Z) which is the
Poincaré-Lefschetz dual to [f∗µ].

In order to prove this claim, consider f−1(p) the inverse image of a regu-
lar point. By a generalization of the implicit function theorem for manifolds
with boundary [Hir76, Chap. 1, §4], f−1(p) a neatly embedded 2-dimensional
submanifold. That is f−1(p) is an embedded 2-dimensional submanifold of Ω
such that ∂f−1(p) = f−1(p)

⋂
∂Ω and f−1(p) is not tangent to ∂Ω at any point

p ∈ ∂f−1(p). Also, since f is a map between compact spaces, it is a proper map
and hence f−1(p) is a compact embedded submanifold.

It remains to be seen why f−1(p) is orientable and why it has f ∗(µ′) as a
Poincaré-Lefschetz dual. Take (p−ε, p+ε) to be an open interval which contains
only regular points of f . We see that f maps U−f−1(p) into (p−ε, p+ε)−{p} and
that the latter set has two connected components. Since f is continuous we see
that for each connected component of f−1(p) there are at least two connected
components of U − f−1(p). Hence f−1(p − ε, p) and f−1(p, p + ε) lie on two
globally defined “sides” of f−1(p) and so f−1(p) is orientable.
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Finally, we want to verify that f ∗µ is the Poincaré-Lefschetz dual f−1(p)
[BT82, pp. 50–53]. This involves checking that

(MA-5)

∫

Ω

f∗µ′ ∧ γ =

∫

f−1(p)

γ

for any closed two-form γ. To do this we notice that we can construct µ′ so that
its support lies inside of (p− ε′, p+ ε′) with ε > ε′ > 0. In this case, the function
h defined by

(MA-6) h(θ) =

∫ θ

p−ε′
µ′ satisfies h(p− ε′) = 0, h(p+ ε′) = 1.

Thus Equation (MA-5) is verified by the following computation:

∫

Ω

f∗µ′ ∧ γ =

∫

U

f∗µ′ ∧ γ (since Supp(f∗µ′) ⊂ U)

=

∫

U

f∗(dh) ∧ γ =

∫

U

d(f∗h) ∧ γ (since f∗ commutes with d)

=

∫

U

d(f∗h ∧ γ) (since dγ = 0)

=

∫

∂U

f∗h ∧ γ = −
∫

f−1(p−ε′)

f∗h ∧ γ +

∫

f−1(p+ε′)

f∗h ∧ γ

(by Stokes’ theorem and the definition of U)

= −0 +

∫

f−1(p+ε′)

γ (by definition of h, i.e. Equation (MA-6))

=

∫

f−1(p)

γ (since f−1(p) and f−1(p+ ε′) are homologous).

Hence the claim is proved. Summarizing the results of this section we have
proven the following theorem.

Theorem. Given Ω ⊂ R3, a compact submanifold with boundary and a
nonzero cohomology class [ω] ∈ H1(Ω; Z), there exists a map f : Ω → S1

and a regular value p ∈ S1 such that f−1(p) is a compact neatly embedded 2-
dimensional submanifold of Ω and [ω] is the Poincaré-Lefschetz dual to [f−1(p)] ∈
H2(Ω, ∂Ω; Z).

Given the set of generators for H1(Ω,Z), this theorem, with the previous
lemma yields:

Corollary. There are cuts Si, 1 ≤ i ≤ dimH1(Ω,R), which ensure that any
irrotational vector field can be written as the gradient of some continuous single
valued scalar function on Ω − ⋃Si. The Si are compact orientable embedded
submanifolds and the “jump” in the scalar function across these surfaces depends
only on the cohomology class of the vector field.
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The assemblage of points on a surface is a twofold manifoldness; the
assemblage of points in a tri-dimensional space is a threefold manifoldness;
the values of a continuous function of n arguments is an n-fold manifoldness.

G. Chrystal, Encyclopædia Britannica, 1892.

MA-J. Riemannian Structures, the Hodge Star Operator and an
Inner Product for Differential Forms

So far, we have considered those aspects of differential forms that are indepen-
dent of the notion of distance in the manifold: the complex structure associated
with the exterior algebra bundle of the manifold, the change of variable formu-
las for integrals, Stokes’ theorem, de Rham’s theorems, and duality theorems in
homology and cohomology. We now turn to constructions that depend on the
choice of a local inner product between vectors in the manifold’s tangent bun-
dle. Such a local inner product defines not only a metric, or distance, between
points in the manifold, but also an inner product between differential forms on
the manifold. It is therefore an important idea, worthy of a formal definition:

Definition 4. A Riemannian structure on a differentiable manifold M is a
smooth choice of a positive definite inner product ( · , · ) on each tangent space
Mp (recall that Mp is the tangent space to M at p).

Here smooth means that if the functions in the charts of an atlas for M are
differentiable of order Ck and if X,Y ∈ T (M) have components which are Ck

differentiable, then the function (X,Y ) is a Ck differentiable function of the
coordinates of M . It is a basic fact in Riemannian geometry that any manifold
admits a Riemannian structure (see for example [War71], p. 52 or [BT82], p.
42–43). A Riemannian manifold is, by definition, a differentiable manifold with
a Riemannian structure, hence any differentiable manifold can be made into a
Riemannian manifold.

In terms of local coordinates (x1, . . . , xn) about a point p ∈M, if X,Y ∈Mp

and

X =

n∑

i=1

Xi ∂

∂xi
, Y =

n∑

i=1

Y i
∂

∂xi
,

then there is a symmetric positive definite matrix (called the metric tensor) with
entries

gij =

(
∂

∂xi
,
∂

∂xj

)

p

so that

(X,Y )p =

n∑

i=1

n∑

j=1

XigijY
j .

Since 1-forms were defined to be elements of M ∗
p (the dual space to Mp), the

above inner product induces one on the dual space. That is, if ω, η ∈M ∗
p , where
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in terms of local coordinates

ω =

n∑

i=1

ai dx
i, η =

n∑

j=1

bj dx
j ,

then

(ω, η) =
n∑

i=1

n∑

j=1

aig
ijbj

where

gijg
jk = δik (Kronecker delta).

A Riemannian structure on a differentiable manifold induces an inner product
on k-forms and the immediate objective at this point is to see how this comes
about. Given a Riemannian structure on the tangent bundle of a manifold it
is always possible to do local computations in terms of an orthonormal basis
obtained by the Gram–Schmidt procedure and patching together the results
with a partition of unity. Hence, in order to define a pointwise inner product
on k-forms it suffices to work in terms of local coordinates. Having made these
observations, let ωi, for 1 ≤ i ≤ n, be an orthonormal basis for M ∗

p (that is,
Λ1(M

∗
p ) in some coordinate chart). This means that

(ωi, ωj) = δij (Kronecker delta).

By taking all possible exterior products of these basis forms we see that Λk(M
∗
p )

is spanned by
(
n
k

)
k-forms that look like

ωi1 ∧ ωi2 ∧ · · · ∧ ωik , 1 ≤ i1 < i2 < · · · < ik ≤ n,
and in particular that Λn(M

∗
p ) is spanned by the one element

ω1 ∧ ω2 ∧ · · · ∧ ωn.
This n-form is called the volume form. Next, by the symmetry of binomial
coefficients,

dim Λk(M
∗
p ) =

(
n

k

)
=

(
n

n−k

)
= dimΛn−k(M

∗
p ).

Hence the two spaces are isomorphic. Consider an isomorphism (called the Hodge
star operator)

∗ : Λk(M
∗
p )→ Λn−k(M

∗
p )

acting on the basis vectors above in the following way. Let π be a permutation
of n integers and let

ωπ(1) ∧ ωπ(2) ∧ · · · ∧ ωπ(k)

be a basis vector in Λk(M
∗
p ), so that

ωπ(k+1) ∧ ωπ(k+2) ∧ · · · ∧ ωπ(n)

becomes a basis vector in Λn−k(M
∗
p ). Define

∗
(
ωπ(1) ∧π(2) ∧ · · ·ωπ(k)

)
= sgn(π)(ωπ(k+1) ∧ · · · ∧ ωπ(n)).
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Since the linear transformation is defined on the basis vectors of Λk(M
∗
p ), the

linear transformation is completely defined. Alternatively, one can define the
operation of ∗ on basis vectors of Λk(M

∗
p ) as follows:

(
ωπ(1) ∧ ωπ(2) ∧ · · · ∧ ωπ(k)

)
∧ ∗
(
ωπ(1) ∧ · · · ∧ ωπ(k)

)
= ω1 ∧ ω2 ∧ · · · ∧ ωn.

Using the usual abuse of notation, one defines the volume form

dV = ω1 ∧ ω2 ∧ · · · ∧ ωn,
where it is understood that dV is not necessarily the exterior derivative of any
(n−1)-form. If

ω = ωπ(1) ∧ · · · ∧ ωπ(k),

the rules for wedge multiplication and the definition of the star operator show
that

dV = ω ∧ (∗ω) = (−1)k(n−k)(∗ω) ∧ ω
and

dV = (∗ω) ∧ (∗(∗ω)) ;

hence

∗∗ω = (−1)k(n−k)ω, 1 = ∗(dV ).

By linearity, this is true for all k-forms. Furthermore if ω, η ∈ Λk(M
∗
p ) then

∗(ω ∧ ∗η) = ∗(η ∧ ∗ω)

is a symmetric positive definite function (an inner product) on Λ∗(M∗
p ) (see

Flanders [Fla89, Ch. 2] for a discussion of this result). This completes the con-
struction of a pointwise inner product on differential forms. At this point several
remarks are in order:

(1) Given an orientation on Λn(M
∗
p ), the definition of the Hodge star operator

is independent of the orthonormal basis chosen. That is, if the Hodge star
operator is defined in terms of an orthonormal basis then the definition of
the star operator is satisfied on any other orthonormal basis related to the
first by an orthogonal matrix with positive determinant.

(2) On an orientable manifold, it is possible to choose an orientation consistently
over the whole manifold and hence the star operator can be defined smoothly
as a mapping

∗ : Λ∗
k(M)→ Λ∗

n−k(M),

or, equivalently,

∗ : Ck(M)→ Cn−k(M).

(3) When there is a pseudo-Riemannian structure on the manifold, that is, a
Riemannian structure which is nondegenerate but not positive definite then
it is still possible to define a star operator, but it does not give rise to a
positive definite bilinear pairing on k-forms. Such a star operator depends
on the “signature” of the metric and occurs in four-dimensional formulations
of electrodynamics (see [Fla89, §2.6–2.7] and [BLG70, §3.5]).

The following examples show how the operations (d,∧, ∗) are related to the
operators of vector analysis.
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Example 7.11 Vector analysis in 3-d orthogonal curvilinear coordi-
nates. Suppose x1, x2, x3 are orthogonal curvilinear coordinates in a subset of
R3, that is,

gij =

{
h2
i , if i = j

0 if i 6= j,

so that ωi = hi dx
i, 1 ≤ i ≤ 3, is an orthonormal basis for 1-forms. In this case,

if π is the permutation of three integers sending 1, 2, 3 into i, j, k, then

∗1 = ω1 ∧ ω2 ∧ ω3, ∗(ω1 ∧ ω2 ∧ ω3) = 1,

∗ωk = sgn(π)ωi ∧ ωj , ∗(ωj ∧ ωk) = sgn(π)ωi;

hence

∗1 = h1h2h3 dx
1 ∧ dx2 ∧ dx3,

∗(dxk) = sgn(π)

(
hihj
hk

)
dxi ∧ dxj ,

∗(dxj ∧ dxk) = sgn(π)

(
hi
hjhk

)
dxi,

∗(dxi ∧ dxj ∧ dxk) =
1

h1h2h3
sgn(π).

Furthermore, if ω=
∑3

i=1 Fiωi =
∑3
i=1 Fihi dx

i, η=
∑3

i=1Giωi =
∑3

i=1Gihi dx
i,

and f is a function, it is a straightforward computation to show that

df =

3∑

i=1

(
1

hi

∂f

∂xi

)
ωi,

∗dω =

∣∣∣∣∣∣∣∣∣∣

ω1

h2h3

ω2

h1h3

ω3

h1h2

∂

∂x1

∂

∂x2

∂

∂x3

h1F1 h2F2 h3F3

∣∣∣∣∣∣∣∣∣∣

,

∗d ∗ ω =
1

h1h2h3

(
∂

∂x1
(h2h3F1) +

∂

∂x2
(h1h3F2) +

∂

∂x3
(h1h2F3)

)
,

∗(ω ∧ η) =

∣∣∣∣∣∣∣∣

ω1

h2h3

ω2

h1h3

ω3

h1h2

F1 F2 F3

G1 G2 G3

∣∣∣∣∣∣∣∣
,

∗(ω ∧ ∗η) = F1G1 + F2G2 + F3G3.

Thus the operations grad, curl,div,× and · from vector analysis are easily con-
structed from operations on differential forms and the correspondence is made
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clear by making the following identifications:

d0f ↔ grad f,

∗d1ω ↔ curlF ,

∗d1 ∗ ω ↔ div F ,

∗(ω ∧ η)↔ F ×G,

∗(ω ∧ ∗η)↔ F ·G.

In vector analysis it is customary to identify flux vector fields (arising from
2-forms) with vector fields arising from 1-forms by means of the Hodge star
operator. Furthermore, one has

∗d(df) = ∗(dd)f = 0 (that is, curl grad f = 0)

, ∗d ∗(∗dω) = ∗d(∗∗) dω = ∗(dd)ω = 0 (that is, div curlF = 0),

as well as the following identities, used when integrating by parts:

∗d ∗ (fω) = ∗ (d(f ∗ ω)) = ∗(df ∧ ∗ω) + f ∗ d ∗ ω,
∗d(fω) = ∗(df ∧ ω) + f ∗ dω,

∗d ∗ (∗(ω ∧ η)) = ∗ (d ∗∗(ω ∧ η)) = ∗ (d(ω ∧ η)) = ∗ ((dω) ∧ η)− ∗(ω ∧ dη)
= ∗ (∗(∗dω) ∧ η)− ∗ (ω ∧ ∗(∗dη)) ,

which translate respectively into

div(fF ) = (grad f) · F + f div F ,

curl(fF ) = (grad f)× F + f curlF ,

div(F ×G) = (curlF ) ·G− F · (curlG).

Thus, once the algebraic rules for manipulating differential forms are under-
stood, commonly used vector identities can be derived systematically. ˜

Example 7.12 Vector analysis in 2-d orthogonal curvilinear coordi-
nates. Suppose x1, x2 are orthogonal curvilinear coordinates in a 2-dimensional
manifold, that is

gij =

{
h2
i i = j,

0 i 6= j,

so that ωi = hi dx
i, 1 ≤ i ≤ 2, is an orthonormal basis for 1-forms. In this case

∗1 = ω1 ∧ ω2, ∗ω1 = ω2, ∗ω2 = −ω1, ∗(ω1 ∧ ω2) = 1.

Hence

∗(dx1 ∧ dx2) =
1

h1h2
, ∗1 = h1h2 dx

1 ∧ dx2,

∗(dx1) =
h2

h1
dx2, ∗dx2 = −h1

h2
dx1.
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Furthermore, if ω =
∑2
i=1 Fiωi, η =

∑2
i=1Giωi, and f is any function, it is a

straightforward computation to show that

df =
1

h1

∂f

∂x1
ω1 +

1

h2

∂f

∂x2
ω2,

∗df = − 1

h2

∂f

∂x2
ω1 +

1

h1

∂f

∂x1
ω2,

∗dω =
1

h1h2

( ∂

∂x1
(h2F2)−

∂

∂x2
(h1F1)

)
,

∗d ∗ω =
1

h1h2

( ∂

∂x1
(h2F1) +

∂

∂x2
(h1F2)

)
,

∗(ω ∧ ∗η) = F1G1 + F2G2.

Thus the operators grad, curl, curl,div and · are easily constructed from opera-
tions on differential forms and the correspondence is made explicit by making
the identifications

d0f ↔ grad f,

∗d0f ↔ curl f,

∗d1ω ↔ curlF ,

∗d1 ∗ ω ↔ div F ,

∗(ω ∧ ∗η)↔ F ·G.
In addition one sees that

∗d(df) = ∗(ddf) = 0 (that is, curl grad f = 0),

∗d ∗(∗df) = ∗d(∗∗) df = − ∗ ddf = 0 (that is, div curl f = 0),

∗d ∗(df) = ∗d(∗df) (that is, div grad f = −4 f = curl curl f),

and the following identities, commonly used when integrating by parts:

∗d ∗ (fω) = ∗d(f ∗ ω) = ∗(df ∧ ∗ω) + f ∗ d ∗ ω,
∗d(fω) = ∗ (d(fω)) = ∗(df ∧ ω) + f ∗ dω

= − ∗
(
(∗(∗df)) ∧ ω

)
+ f ∗ dω,

which translate into

div(fF ) = (grad f) · F + f div F ,

curl(fω) = −
(
curl f

)
· F + f curlF .

These are the formulas used in [Ned78]. Once again with the use of the formalism
of differential forms commonly used vector identities can be derived systemati-
cally. ˜

Hopefully the reader has realized that the formalism of differential forms en-
compasses the types of computations encountered in vector analysis and more
general computations in n-dimensional manifolds. For simple calculations in-
volving Maxwell’s equations in four dimensions, see Flanders [Fla89, §2.7, §4.6]
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and [BLG70, Chapter 4]. Returning to the topic of inner products, recall that
for an orientable Riemannian manifold, the expression

∗(ω ∧ ∗η), with ω, η ∈ Ck(M),

can be used to define a smooth symmetric positive definite bilinear form on
Λk(M

∗
p ) for all p ∈M . Hence let

〈ω, η〉k =

∫

M

(
∗(ω ∧ ∗η)

)
dV

be an inner product on Ck(M). This inner product will be of fundamental
importance in deriving orthogonal decompositions. Before moving on, we recall
three fundamental properties of the star operator:

∗∗ω = (−1)k(n−k)ω with ω ∈ Ck(M),

ω ∧ ∗η = η ∧ ∗ω with η, ω ∈ Ck(M),

∗dV = 1 with dV the volume n-form.

These expressions enable one to express the inner product above in four different
ways. Note that

(
∗(ω ∧ ∗η)

)
dV = ∗∗

(
(∗(ω ∧ ∗η)) dV

)
= ∗
(
∗(ω ∧ ∗η)

)
= (ω ∧ ∗η).

This expression and the symmetry of the inner product give

〈ω, η〉k =

∫

M

(
∗(ω ∧ ∗η)

)
dV =

∫

M

ω ∧ ∗η

=

∫

M

(
∗(η ∧ ∗ω)

)
dV =

∫

M

η ∧ ∗ω.

For simplicity, assume that M is compact. The above inner product makes
Ck(M) into a Hilbert space. This is the first step toward obtaining useful or-
thogonal decompositions.

MA-K. The Operator Adjoint to the Exterior Derivative

Having an inner product on the exterior k-bundle of an orientable Riemannian
manifold M (which will henceforth be assumed compact) and an operator

dp : Cp(M)→ Cp+1(M),

one wants to know the form of the Hilbert space adjoint

δp+1 : Cp+1(M)→ Cp(M)

satisfying

〈dpω, η〉p+1 = 〈ω, δp+1η〉p + boundary terms for ω ∈ Cp(M), η ∈ Cp+1(M).

This type of formula will now be deduced from the integration by parts formula
which was developed as a corollary to Stokes’ Theorem. Let

ω ∈ Cp(M), µ ∈ Cn−p−1(M).

Then ∫

M

dω ∧ µ =

∫

∂M

tω ∧ tµ− (−1)p
∫

M

ω ∧ dµ.
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Next let µ = ∗η for some η ∈ Cp+1(M), so that

〈dω, η〉p+1 =

∫

M

dω ∧ ∗η =

∫

∂M

tω ∧ t(∗η)− (−1)p
∫

M

ω ∧ d(∗η).

However, using that (−1)p(n−p) ∗∗γ = γ for γ ∈ Cp(M) and that

−(−1)p(−1)p(n−p) = (−1)np+1+p(1−p) = (−1)np+1,

one has

〈dω, η〉p+1 = −(−1)p
∫

M

ω ∧ d(∗η) +

∫

∂M

tω ∧ t(∗η)

= −(−1)p(−1)p(n−p)
∫

M

ω ∧ ∗(∗d ∗ η) +

∫

∂M

tω ∧ t(∗η)

=

∫

M

ω ∧ ∗
(
(−1)np+1 ∗ d ∗ η

)
+

∫

∂M

tω ∧ t(∗η).

Hence

〈dpω, η〉p+1 = 〈ω, δp+1η〉p +

∫

∂M

tω ∧ t(∗η),

where

δp+1 = (−1)np+1 ∗ dn−p−1 ∗ on (p+ 1)−forms.

To gain an intuitive understanding of what is happening on the boundary, we
rework the boundary term. Up to now the operator t which gives the tangential
components of a differential form was considered to be the pullback on differential
forms induced by the map

i : ∂M →M.

That is, t = i#. Given a Riemannian metric on M and if ∂M is smooth then
given a point p ∈ ∂M one can find a set of orthogonal curvilinear coordinates such
that p has coordinates (0, . . . ,0), ∂M has local coordinates (u1, . . . ,un−2,un−1,0),
and (u1, u2, . . . , un), un ≤ 0, are a set of local coordinates in M . In terms of
these local coordinates a k-form looks like

ω =
∑

1≤i1<i2<···<ik≤n

ai1i2...ik du
i1 ∧ dui2 ∧ · · · ∧ duik .

On ∂M , the component of this form tangent to ∂M is given by replacing one
inequality in the summation by a strict inequality:

tω =
∑

1≤i1<i2<···<ik<n

ai1i2...ik du
i1 ∧ dui2 ∧ · · · ∧ duik ,

while the normal component is given by

nω = ω − tω.
Clearly, each term in nω involves dxn. This definition of the normal component
of a differential form seems to be due to Duff [Duf52] and is heavily used in
subsequent literature (see for instance the papers by Duff, Spencer, Morrey, and
Conner in the bibliography). By considering the k-form ω written as

ω = tω + nω
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in the orthogonal coordinate system above, it is apparent that ∗ω can be decom-
posed in two ways:

∗(ω) = ∗(tω) + ∗(nω), (∗ω) = t(∗ω) + n(∗ω).

Thus subtracting the above two equations, one deduces that

∗tω − n ∗ ω = ∗nω − t ∗ ω.

Noticing that each term in the right-hand side of this equation involves dxn and
that no term in the left-hand side involves dxn, we deduce that

t ∗ ω = ∗nω, n ∗ ω = ∗tω.

Furthermore, since exterior differentiation commutes with pullbacks, one has

dtω = tdω dt ∗ ω = t d ∗ ω.

Starring this last formula and using the earlier formulas relating normal and
tangential components, we conclude successfully that

∗dt ∗ω = ∗t d∗ω,
∗d∗nω = n ∗d∗ω
δnω = nδω.

Thus, in summary,

nω = ω − tω,
n ∗ ω = ∗tω,
∗nω = t ∗ ω,
dtω = tdω,

δnω = nδω.

Finally, these identities can be used to rewrite the integration by parts for-
mula. From the identities involving the normal components of a differential form,
one has

〈d∗ω, η〉 = 〈ω, δk+1η〉+
∫

∂M

tω ∧ ∗nη.

Next, suppose ∂M = S1 ∪ S2, where S1 ∩ S2 is (n−2)-dimensional and where
S1 and S2 are collections of connected components of ∂M or parts of M where
symmetry planes exist. In this latter case S1 and S2 may not be disconnected
but meet at right angles. The above integration by parts formula can then be
reworked into the following form, which will be essential in the derivation of
orthogonal decompositions:

〈dkω, η〉k+1 −
∫

S1

tω ∧ ∗nη = 〈ω, δk+1η〉k +

∫

S2

tω ∧ ∗nη.
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MA-L. The Hodge Decomposition and Ellipticity

On a compact orientable Riemannian manifold, an inner product structure on
C∗(M) and an operator adjoint to the exterior derivative enables one to define
the Laplace–Beltrami operator

4p = dp−1δp + δp+1 d
p

(an elliptic operator on p-forms) and harmonic forms (solutions of the equa-
tion 4ω = 0). Furthermore, when the manifold has no boundary, one has the
Hodge decomposition theorem which generalizes the Helmholtz Theorem of vec-
tor analysis. For compact orientable manifolds without boundary, the Hodge
decomposition theorem asserts that

Cp(M) = im(dp−1)⊕ im(δp+1)⊕Hp(M),

where Hp(M) is the space of harmonic p-forms. Using the tools of elliptic oper-
ator theory and the de Rham isomorphism, one can show that

dimHp(M) = βp(M) <∞
and that the basis vectors for the de Rham cohomology vector spaces may be
represented by harmonic forms. A self contained proof of the Hodge decompo-
sition as well as an explanation of the relevant machinery from elliptic operator
theory can be found in [War71, Chapter 6]. Alternatively, a short and sweet
account of the Hodge decomposition theorem along the lines of this appendix
is given in Flanders [Fla89, §6.4] while a succinct proof of the theorem in the
case of 2-dimensional surfaces is usually given in any decent book on Riemann
surfaces (see for example Springer [Spr57] or [SS54]).

For orthogonal decompositions of p-forms on orientable Riemannian manifolds
with boundary, the tools of elliptic operator theory are less successful in obtaining
a nice orthogonal decomposition which relates harmonic forms to the relative
cohomology groups of the manifold. The history of this problem starts with the
papers of Kodaira [Kod49], Duff and Spencer [DS52] and ends with the work of
Friedrichs [Fri55], Morrey [Mor66], and Conner [Con56]. A general reference for
this problem is [Mor66, Chapter 7]. The basic problem encountered in the case
of a manifold with boundary is that the space of harmonic p-forms is generally
infinite-dimensional and the questions of regularity at the boundary are quite
thorny. An excellent recent reference to the theory and applications of Hodge
theory on manifolds with boundary is Schwarz [Sch95]. There is a way of getting
an orthogonal decomposition for p-forms on manifolds with boundary which
completely avoids elliptic operator theory by defining harmonic p-fields (p-forms
which satisfy dpω = 0, δpω = 0). Such a decomposition is called a Kodaira
decomposition after [Kod49] introduced the notion of a harmonic field and the
associated decompositions of p-forms. It turns out that for compact orientable
Riemannian manifolds without boundary the proof of the Hodge decomposition
theorem shows that harmonic fields and harmonic forms are equivalent concepts.
In some sense the setting of the Kodaira decomposition generalizes that of the
Hodge decomposition, but the conclusions are much weaker.
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MA-M. Orthogonal Decompositions of p-Forms and Duality
Theorems

The immediate objective is to show that the structure of a complex with an
inner product enables one to derive useful orthogonal decompositions of p-forms.
As usual, let M be a compact orientable n-dimensional Riemannian manifold
with boundary, where

∂M = S1 ∪ S2

and S1 ∩ S2 is an (n−2)-dimensional manifold where a symmetry plane meets
the boundary of some original problem at right angles. Consider the cochain
complexes C∗(M), C∗

c (M − S1) and recall that

Cpc (M − S1) =
{
ω
∣∣ ω ∈ Cp(M), tω = 0 on S1

}
,

Zpc (M − S1) =
{
ω
∣∣ ω ∈ Cpc (M − S1), dω = 0

}
,

Bpc (M − S1) =
{
ω
∣∣ ω = dν, ν ∈ Cp−1

c (M − S1)
}
,

Hp
c (M − S1) = Zpc (M − S1)/B

p
c (M − S1).

Next define the complex C̃∗(M,S2), where

C̃∗(M,S2) =
{
ω
∣∣ ω ∈ Cp(M), nω = 0 on S2

}

and the “boundary operator” in this complex is the Hilbert space formal adjoint

δ of the exterior derivative d. Note that C̃∗(M,S2) is actually a complex, since
if η is a (p+1)-form in this complex the condition nη = 0 on S2 implies

δp+1nη = n(δp+1η) = 0 on S2

and

(−1)nδpδp+1η = ∗dn−p ∗∗dn−p−1 ∗ η = (−1)p(n−p) ∗ dn−p dn−p−1 ∗ η = 0.

Hence define

Z̃p(M,S2) =
{
η
∣∣ η ∈ C̃p(M,S2), δpη = 0

}
,

B̃p(M,S2) =
{
η
∣∣ η = δp+1γ, γ ∈ C̃p+1(M,S2)

}
,

H̃p(M,S2) = Z̃(M,S2)/B̃p(M,S2).

The “cycles” of this complex are called coclosed differential forms while the
“boundaries” are called coexact differential forms. The first step in deriving an
orthogonal decomposition of p-forms on Cp(M) is to recall the inner product
version of the integration by parts formula:

〈dkω, η〉k+1 −
∫

S1

tω ∧ ∗nη = 〈ω, δk+1η〉k +

∫

S2

tω ∧ ∗nη.

If k = p and ω ∈ Zpc (M−S1), the left side of this formula vanishes and we see that

closed p-forms are orthogonal to coexact p-forms in C̃∗(M,S2). Alternatively, if
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eBp(M, S2)

Zp
c (M − S1)

Hp(M, S1) Bp
c (M − S1)

eZp(M, S2)

Figure MA-3.

k+1 = p and η ∈ Z̃p(M,S2), it is easily seen that coclosed p-forms are orthogonal
to the exact p-forms in C∗

c (M − S1). Actually,

Cp(M) = Zpc (M − S1)⊕ B̃p(M,S2),

Cp(M) = Z̃p(M,S2)⊕Bpc (M,M − S1),
(MA-7)

since these identities express the fact that if A is an operator between Hilbert
spaces, then

(imA)
⊥

= kerAadj.

Next, since Cpc (M − S1) and C̃p(M,S2) are complexes, one has

B̃p(M,S2) ⊂ Z̃p(M,S2),

Bpc (M − S1) ⊂ Zpc (M − S1).
(MA-8)

Finally, defining the relative harmonic p-fields as

Hp(M,S1) = Z̃p(M,S2) ∩ Zp(M − S1),

the orthogonal decomposition is immediate once Equations (MA-7) and (MA-8)
above are expressed in terms of a Venn diagram of orthogonal spaces as shown
in Figure MA-3. Thus

Z̃p(M,S2) = B̃p(M,S2)⊕Hp(M,S1),

Zpc (M − S1) = Bpc (M − S1)⊕Hp(M,S1),

Cp(M) = B̃p(M,S2)⊕Hp(M,S1)⊕Bpc (M − S1),

where the direct summands are mutually orthogonal with respect to the inner
product 〈 · , · 〉p.

To relate this orthogonal decomposition to the relative cohomology of the pair
(M,S1), consider the identities

Zpc (M − S1) = Bpc (M − S1)⊕Hp(M,S1),

Hp
c (M − S1) = Zpc (M − S1)/B

p
c (M − S1).

This gives

Hp
c (M − S1) ' Hp(M,S1),
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that is, in each de Rham cohomology class there is exactly one harmonic field. A
more concrete way of seeing this is to write the above orthogonal decomposition
explicitly in terms of differential forms and use the de Rham isomorphism. That
is, any ω ∈ Cp(M) can be decomposed into three unique, mutually orthogonal
factors, say

ω = dν + δγ + χ,

where ν ∈ Cp−1
c (M − S1), γ ∈ C̃p+1(M,S2), and χ ∈ Hp(M,S2). Furthermore,

ω ∈ Zpc (M − S1) =⇒ ω = dν + χ,

ω ∈ Z̃p(M,S1) =⇒ ω = δγ + χ.

Thus if ω ∈ Zpc (M − S1) and zp ∈ Zp(M,S1), then
∫

zp

ω =

∫

zp

dν +

∫

zp

χ =

∫

zp

χ, since

∫

zp

dν = 0.

Hence there is at least one harmonic field in each de Rham cohomology class.
However it is easy to show that there cannot be more than one distinct harmonic
field in each de Rham cohomology class. Suppose that

ω1 − ω2 = dβ,

with β ∈ Cp−1
c (M − S1), ω1 = dν1 + h1, and ω2 = dν2 + h2. Then

h1 − h2 = d(β − ν1 + ν2) ∈ Bpc (M − S1);

but by the orthogonal decomposition we have

h1 − h2 ∈ Hp(M,S1), Hp(M,S1) ⊥ Bpc (M − S1),

so h1 = h2 and there is necessarily exactly one harmonic field in each de Rham
cohomology class. Thus, explicitly, it has been shown that

Hp
c (M − S1) ' Hp(M,S1);

hence

∞ > βp(M,S1) = βpc (M − S1) = dimHp(M,S1),

where the first equality results from the de Rham theorem. The preceding iso-
morphism shows that the projection of ω on Hp(M,S1) is deduced from the
periods of ω on a basis of Hp(M,S1).

At this point we summarize the preceding discussion with a theorem.

Theorem (Orthogonal Decomposition of p-forms). Given M,S1, S2 as usual
and

Hp(M,S1) = Zpc (M − S1) ∩ Z̃p(M,S2),

one has

(1) direct sum decompositions

Cp(M) = Bpc (M − S1)⊕Hp(M,S1)⊕ B̃p(M,S2),

Zpc (M − S1) = Bpc (M − S1)⊕Hp(M,S1),

Z̃p(M,S2) = B̃p(M,S2)⊕Hp(M,S1),
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where the direct summands are mutually orthogonal with respect to the
inner product 〈 · , · 〉p ; and

(2) a unique harmonic field in each de Rham cohomology class, that is, an
isomorphism

Hp(M,S1) ' Hp
c (M − S1),

so that

∞ > βp(M,S1) = βpc (M − S1) = dimHp(M,S1).

Having established the orthogonal decomposition theorem, it is useful to see
how duality theorems come about as a result of the Hodge star operator. As a
preliminary, several formulas must be derived. Recall that if ω ∈ Cp(M) then

∗∗ω = (−1)p(n−p)ω, δpω = (−1)n(p+1)+1 ∗ d ∗ ω.
Thus

∗δp = (−1)n(p+1)+1 ∗∗dn−p∗= (−1)n(p+1)+1+(p+1)(n−p−1) dn−p∗ ,
∗dn−p = (−1)p(n−p) ∗dn−p ∗∗ = (−1)p(n−p)+n(p+1)+1δp∗ .

Cleaning up the exponents with modulo 2 arithmetic gives

∗δp = (−1)pdn−p∗ , ∗dn−p = −(−1)n−pδp∗ ,
and hence

∗δn−p = (−1)n−p dp∗ , ∗dp = −(−1)pδn−p∗ .
Next recall the identities

∗t = n∗, ∗n = t∗ .
These six formulas will now be used to make some useful observations. Let
λ ∈ Ck(M) and µ ∈ Cn−k(M), where ∗λ = µ. In this case

δkλ = 0 ⇐⇒ 0 = ∗δkλ = (−1)kdn−k ∗ λ = (−1)kdn−kµ,

dkλ = 0 ⇐⇒ 0 = ∗dkλ = −(−1)kδn−k ∗ λ = −(−1)kδn−pµ,

tλ = 0 ⇐⇒ 0 = ∗tλ = n ∗ λ = nµ,

nλ = 0 ⇐⇒ 0 = ∗nλ = t ∗ λ = tµ.

In other words, if λ, µ ∈ C∗(M) and ∗λ = µ, we have the equivalences

δλ = 0 ⇐⇒ dµ = 0,

tλ = 0 ⇐⇒ nµ = 0,

dλ = 0 ⇐⇒ δµ = 0,

nλ = 0 ⇐⇒ tµ = 0.

With a little reflection, the above four equivalences show that the Hodge star
operator induces the following isomorphisms, where 1 ≤ i ≤ 2, 1 ≤ k ≤ n:

Cp(M) ' Cn−p(M),

C̃k(M,Si) ' Cn−kc (M − Si),
Z̃k(M,Si) ' Zn−kc (M − Si),
B̃k(M,Si) ' Bn−kc (M − Si),
H̃k(M,Si) ' Hn−k

c (M − Si).
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What is particularly interesting is the following computation, where 1 ≤ i, j ≤ 2,
i 6= j, 1 ≤ l ≤ n:

∗Hl(M,Si) = ∗
(
Zlc(M − Si) ∩ Z̃l(M,Sj)

)

= ∗
(
Zlc(M − Si)

)
∩ ∗
(
Z̃l(M,Sj)

)

=
(
Z̃n−l(M,Si)

)
∩
(
Zn−lc (M − Sj)

)

= Hn−l(M,Sj).

To interpret this result, notice that the derivation of the orthogonal decomposi-
tion is still valid if S1 and S2 are interchanged everywhere. Hence, juxtaposing
the two orthogonal decompositions

Cp(M) = Bpc (M − S1)⊕Hp(M,S1)⊕ B̃p(M,S2),

Cn−p(M) = B̃n−p(M,S1)⊕Hn−p(M,S2)⊕Bn−pc (M − S2)
,

one sees that each term in these decompositions is related to the one directly
above or below it by the Hodge star operator. Also, the star operation performed
twice maps Hp(M,S1) and Hn−p(M,S2) isomorphically back onto themselves,
since in this case

(−1)p(n−p) ∗∗ = Identity.

Hence
Hp(M,S1) ' Hn−p(M,S2).

At this point it is useful to summarize the isomorphisms in (co)homology
derived in this chapter where coefficients are taken in R (of course) and M is an
orientable, compact, n-dimensional Riemannian manifold with boundary where
∂M = S1 ∪ S2 in the usual way.

Theorem.

Hk(M,S1) ' Hk
c (M − S1) ' Hk(M,S1)

Hn−k(M,S2)

'

?

6

'Hn−k
c (M − S2)'Hn−k(M,S2)

This theorem expresses the relative de Rham isomorphism (on the right),
the representability of relative de Rham cohomology classes by harmonic fields
(in the center), and the duality isomorphism induced on harmonic fields by the
Hodge star (on the left). For the inspiration behind this theorem see [Con54].

In order to let the orthogonal decomposition sink in, it is useful to rewrite it
in terms of differential forms and then consider several concrete examples. Thus
consider the following theorem, which restates the orthogonal decomposition
theorem in a more palatable way:

Theorem. If M,S1, and S2 have their usual meaning and ω ∈ Cp(M), then
ω has the unique representation

ω = dν + δγ + χ,
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where

tν = 0, tχ = 0 on S1,

nγ = 0, nχ = 0 on S2,

dχ = 0, δχ = 0 in M and on ∂M .

Furthermore:

(1) The three factors are mutually orthogonal with respect to the inner product
〈 · , · 〉p.

(2) If dω = 0 in M and tω = 0 on S1 one can take γ = 0.
(3) If δω = 0 in M and nω = 0 on S2 then one can take ν = 0.

We illustrate the theorem with a couple of examples.

Example 7.13 The Hodge decomposition and 3-d vector analysis:
n = 3, p = 1. In vector analysis it is customary to identify flux vector fields
(arising from 2-forms) with vector fields arising from 1-forms by means of the
Hodge star operator. Keeping this in mind, the identifications established in
Example 7.11 show that in the case of n = 3, p = 1 the theorem above can
be rewritten as follows. If M is an orientable, compact three-dimensional man-
ifold with boundary embedded in R3, then any vector field V can be uniquely
expressed as

V = gradϕ+ curlF + G,

where

ϕ = 0, n×G = 0 on S1,

F · n = 0, n ·G = 0 on S2,

curlG = 0, div G = 0 in M and on ∂M .

Furthermore:

(1) The three factors are mutually orthogonal with respect to the inner product

〈U ,V 〉1 =

∫

M

U · V dV.

(2) If curlV = 0 in M and n× V = 0 on S1, we may set F to zero;
(3) If div V = 0 in M and V · n = 0 on S2, we may set ϕ to zero.

In practical problems it is customary to describe G through a (possibly mul-
tivalued) scalar potential. The dimension of the space of harmonic vector fields
that satisfy the conditions imposed on G is β1(M − S1) = β2(M − S2). ˜

Example 7.14 The Hodge decomposition and 2-d vector analysis:
n = 2, p = 1. Let M be an orientable compact 2-dimensional Riemannian
manifold with boundary where ∂M = S1 ∪ S2 in the usual way. Using the
identifications established in Example 7.12 one can rephrase the orthogonal de-
composition theorem as follows. Any vector field V on M can be written as

V = gradφ+ curlψ + G,
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where

φ = 0, n×G = 0 on S1,

ψ = 0, G · n = 0 on S2,

curlG = 0, div G = 0 in M and on ∂M .

Furthermore:

(1) The three factors are mutually orthogonal with respect to the inner product
given by the metric tensor in the usual way:

〈U ,V 〉1 =

∫

M

U · V dV.

(2) if curlV = 0 in M and n× V = 0 on S1 we may set ψ to zero.
(3) if div V = 0 in M and V · n = 0 on S2 we may set φ to zero.

In practical problems G is invariably described in terms of a (possibly mul-
tivalued) scalar potential or stream function. The dimension of the space of
harmonic vector fields which satisfy the conditions imposed on G is β1(−S1) =
β1(M − S2). ˜

One final remark is appropriate. In the case of electrodynamics there is no
positive definite inner product on p-forms since the metric tensor is not positive
definite. One can, however, define all of the spaces found in the orthogonal
decomposition and obtain a direct sum decomposition of Cp(M) even though
there is no positive definite inner product.

The committee which was set up in Rome for the unification of vector
notation did not have the slightest success, which was only to have been
expected.

F. Klein, Elementary Mathematics from an Advanced Standpoint, 1925.
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[Kot82] P. R. Kotiuga, Well-posed three dimensional magnetostatics formulations, Master’s
thesis, McGill University, Montreal, August 1982.

[Kot84] , Hodge decompositions and computational electromagnetics, Ph.D. thesis,

McGill University, Montreal, 1984.

[Kot87] , On making cuts for magnetic scalar potentials in multiply connected regions,
J. Appl. Phys. 61 (1987), no. 8, 3916–3918.

[Kot88] , Toward an algorithm to make cuts for magnetic scalar potentials in finite

element meshes, J. Appl. Phys. 64 (1988), no. 8, 3357–3359, Erratum: 64, (8), 4257,
(1988).

[Kot89a] , An algorithm to make cuts for scalar potentials in tetrahedral meshes based

on the finite element method, IEEE Trans. Mag. 25 (1989), no. 5, 4129–4131.

[Kot89b] , Helicity functionals and metric invariance in three dimensions, IEEE Trans.
Mag. 25 (1989), no. 4, 2813–2815.

[Kot89c] , Topological considerations in coupling scalar potentials to stream functions

describing surface currents, IEEE Trans. Mag. 25 (1989), no. 4, 2925–2927.



264 BIBLIOGRAPHY

[Kot91] , Essential arithmetic for evaluating three dimensional vector finite element

interpolation schemes, IEEE Trans. Mag. MAG-27 (1991), no. 6, 5208–5210.

[Kro59] G. Kron, Basic concepts of multidimensional space filters, AIEE Transactions 78
(1959), no. Part I, 554–561.

[Lam32] Sir Horace Lamb, Hydrodynamics, Dover, New York, 1932, (1879).

[Lan70] Cornelius Lanczos, The variational principles of mechanics, University of Toronto

Press, Toronto, 1970.
[LS68] L.H. Loomis and S. Sternberg, Advanced calculus, Addison-Wesley, Reading, Mas-

sachusetts, 1968.

[Lue69] D. G. Luenberger, Optimization by vector space methods, John Wiley, 1969.
[Mac70] A.G.J. MacFarlane, Dynamical system models, George Harrap, London, 1970.

[Mas67] W. S. Massey, Algebraic topology: An introduction, GTM, vol. 56, Springer Verlag,

1967.

[Mas80] , Singular homology theory, GTM #70, Springer-Verlag, New York, 1980.
[Max91] James Clerk Maxwell, A treatise on electricity and magnetism, third ed., Oxford

University Press, Clarendon, England, 1891, Republished Dover Publications, Inc.,

New York, 1954.

[MIK59] Y. Mizoo, M. Iri, and K. Kondo, On the torsion characteristics and the duality of
electric, magnetic, and dielectric networks, RAAG Memoirs 2 (1959), 262–295.

[MN82] A. Milani and A. Negro, On the quasi-stationary Maxwell equations with monotone

characteristics in a multiply connected domain, Journal of Mathematical Analysis
and Applications 88 (1982), 216–230.

[Mor66] C.B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin,

1966.

[Mül78] Werner Müller, Analytic torsion and R-torsion of Riemannian manifolds, Advances
in Mathematics 28 (1978), 233–305.

[Mun84] James R. Munkres, Elements of algebraic topology, Addison-Wesley, Reading, MA,

1984, p. 377–380.

[Ned78] J. C. Nedelec, Computation of eddy currents on a surface in R3 by finite element
methods, SIAM J. Numer. Anal. 15 (1978), no. 3, 580–594.

[Neu79] Lee Neuwirth, The theory of knots, Sci. Am. 240 (1979), no. 6, 110–124.

[PF84] J. Penman and J.R. Fraser, Unified approach to problems in electromagnetism, IEE
Proc. A 131 (1984), no. 1, 55–61.

[PF90] Alex Pothen and Chin-Ju Fan, Computing the block triangular form of a sparse

matrix, ACM Transactions on Mathematical Software 16 (1990), 303–324.

[Pin66] Tad Pinkerton, An algorithm for the automatic computation of integral homology
groups., Math. Algorithms 1 (1966), 27–44.

[Pos78] E. J. Post, The gaussian interpretation of ampere’s law, Journal of Mathematical

Physics 19 (1978), no. 1, 347.

[Pos84] , The metric dependence of four-dimensional formulations of electromag-
netism, J. Math. Phys. 25 (1984), no. 3, 612–613.

[PP62] W. K. H. Panofsky and M. Phillips, Classical electricity and magnetism, Addison-

Wesley, Reading, MA, 1962, pp. 8–10, 20–23, 125–127.

[Rot55a] J. P. Roth, An application of algebraic topology to numerical analysis: On the exis-
tence of a solution to the network problem, Proc. Nat. Acad. Sci. U. S. A. 41 (1955),

518–521.

[Rot55b] , The validity of Kron’s method of tearing, Proc. Nat. Acad. Sci. U. S. A. 41
(1955), 599–600.

[Rot59] , An application of algebraic topology: Kron’s method of tearing, Quart. App.

Math. XVII (1959), no. 1, 1–24.

[Rot71] , Existence and uniqueness of solutions to electrical network problems via
homology sequences, Mathematical Aspects of Electrical Network Theory, SIAM-

AMS Proceedings III, 1971, pp. 113–118.

[Rot88] Joseph J. Rotman, An introduction to algebraic topology, Springer-Verlag, NY, 1988.



BIBLIOGRAPHY 265

[Sai94] I. Saitoh, Perturbed H-method without the Lagrange multiplier for three dimensional

nonlinear magnetostatic problems, IEEE Trans. Mag. 30 (1994), no. 6, 4302–4304.

[Sch95] G. Schwarz, Hodge decomposition: A method for solving boundary value problems,
Lecture Notes in Mathematics, 1607, Springer-Verlag, 1995.

[SF73] Gilbert Strang and George Fix, An analysis of the finite element method, Wellesley-

Cambridge Press, Wellesley, MA, 1973.

[SF90] P.P. Silvester and R.L. Ferrari, Finite elements for electrical engineers, Cambridge
U. Press, NY, 1990, 2nd Ed.

[Sle68] P. Slepian, Mathematical foundations of network analysis, Springer-Verlag, Berlin,

1968.
[Sma72] S. Smale, On the mathematical foundations of electrical network theory, J. Differen-

tial Geom. 7 (1972), 193–210.

[Spa66] E. Spanier, Algebraic topology, Springer-Verlag, New York, 1966.

[Spi65] Michael Spivak, Calculus on manifolds. A modern approach to classical theorems of
advanced calculus, W. A. Benjamin, Inc., New York-Amsterdam, 1965.

[Spi79] , A comprehensive introduction to differential geometry. Vol. I, second ed.,

Publish or Perish Inc., Wilmington, Del., 1979.

[Spr57] George Springer, Introduction to Riemann surfaces, Addison-Wesley, Reading, MA,
1957, Section 5-8.

[SS54] Menahem Schiffer and Donald C. Spencer, Functionals of finite Riemann surfaces,

Princeton University Press, Princeton, N. J., 1954. MR 16,461g
[SS70] L. M. Sibner and R. J. Sibner, A non-linear Hodge-de-Rham theorem, Acta Math.

125 (1970), 57–73.

[SS79] , Nonlinear Hodge theory: Applications, Adv. in Math. 31 (1979), no. 1, 1–15.

[SS81] , A sub-elliptic estimate for a class of invariantly defined elliptic systems,
Pacific J. Math. 94 (1981), no. 2, 417–421.

[ST80] H. Seifert and W. Threlfall, A textbook on topology, Academic Press, 1980, Translated

by W. Heil from original 1934 German edition.

[Ste54] A. F. Stevenson, Note on the existence and determination of a vector potential,
Quart. Appl. Math. 12 (1954), 194–198. MR 16,36a

[Sti93] John Stillwell, Classical topology and combinatorial group theory, second edition,

Springer-Verlag, NY, 1993, Ch. 3,4.
[Str41] J. A. Stratton, Electromagnetic theory, McGraw-Hill, New York, 1941, pp. 227–228.

[Tar02] Timo Tarhasaari, Mathematical structures and computational electromagnetics,

Ph.D. thesis, Tampere University of Technology, Tampere, Finland, 2002.

[Tei01] F. L. Teixeira (ed.), Geometric methods for computational electromagnetics, Progress
In Electromagnetis Research, no. 32, Cambridge, MA, EMW Publishing, 2001.

[Tho69] W. Thompson, On vortex motion, Transactions of the Royal Society of Edinburgh

XXV (1869), 217–280.

[Thu97] William P. Thurston, Three-dimensional geometry and topology, Princeton Univer-
sity Press, Princeton, New Jersey, 1997.

[Ton68] Enzo Tonti, Gauge transformations and conservation laws, Atti Accad. Naz. Lincei

Rend. Cl. Sci. Fis. Mat. Natur. (8) XLV (1968), 293–300.

[Ton69] , Variational formulation of nonlinear differential equations. II, Acad. Roy.
Belg. Bull. Cl. Sci. (5) 55 (1969), 262–278.

[Ton72a] , A mathematical model for physical theories. I, II, Atti Accad. Naz. Lincei

Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 175–181; ibid. (8) 52 (1972), 350–
356.

[Ton72b] , On the mathematical structure of a large class of physical theories, Atti

Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 52 (1972), 48–56.

[Ton77] , The reason of the analogies in physics, Problem Analysis in Science and
Engineering (F. H. Branin Jr. and K. Husseyin, eds.), Academic Press, New York,

1977.

[Vai64] M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-

Day, San Francisco, 1964.



266 BIBLIOGRAPHY

[VB89] A. Vourdas and K. J. Binns, Magnetostatics with scalar potentials in multiply con-

nected regions, IEE Proc. A 136 (1989), no. 2, 49–54.

[Vic94] James W. Vick, Homology theory, second ed., Springer-Verlag, New York, 1994.
[Wal57] A.H. Wallace, An introduction to algebraic topology, vol. 1, Pergamon Press, New

York, 1957.

[War71] F.W. Warner, Foundations of differentiable manifolds and lie groups, Scott, Fores-

man and Company, Glenview, Illinois, 1971.
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Symbols in the list are sometimes also used temporarily for other
purposes. . .

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers,
5th ed.

Summary of Notation

Because the material in the book draws on a variety of fields, there are some
resulting conflicts or ambiguities in the notation. In general, these ambiguities
can be cleared up by context, and the authors have attempted to avoid situations
where like notation overlaps in the same context. Some examples are:

(1) The symbol [ · , · ] can have three meanings: bilinear form, commutator, and
homotopy classes of maps.

(2) χ can have three meanings: Euler characteristic, stream function for a surface
current, or a gauge function.

(3) π can be a permutation map or the ratio of circumference to diameter of a
circle. In addition, πk signifies the kth homotopy group, while πk1 signifies
the kth term in the lower central series of the fundamental group.

(4) R can be a resistance matrix, the de Rham map, or a region in R3.
(5) Pullbacks and pushforwards of many varieties can be induced from a single

map. For example, an inclusion map i can induce maps denoted by i∗, i∗,
i#, i[, ı̃, etc.

(6) The symbols ξ, λ, α, β, η, ρ, ν, and θ have meanings particular to Chapter 7
(see Figure 7.4, page 211).

Other multiple uses of notation are noted below.

βp(R) pth Betti number = Rank Hp(R)
δij Kronecker delta; 1 if i = j, 0 otherwise
δ Inner product space adjoint to the exterior derivative
δ Connecting homomorphism in a long exact sequence
∂ Boundary operator
∂T Coboundary operator.

∂̆ Boundary operator on dual mesh (related to ∂T )
ε Dielectric permittivity
ζij jth 1-cocycle on dual mesh, indexed on 1-cells of DK: 1 ≤ i ≤

m̆1

267
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η Wave impedance
θ Normalized angle of f : R −→ S1

θij θ discretized on nodes of unassembled mesh
λ Wavelength
λi Barycentric coordinates, 1 ≤ i ≤ 4
µ Magnetic permeability
π Ratio of circumference to diameter of a circle
π Permutation map
πi ith homotopy group (but π0 distinguishes path components and

is not a group)
ρ Volume electrical charge density
σ Electrical conductivity
σs Surface electrical charge density
σp,i ith p-simplex in a triangulation of R
τe Dielectric relaxation time, τe = ε/σ
Φi ith magnetic flux
φ Electric scalar potential
χ Euler characteristic
χ Stream function for surface current distribution
χ Gauge function
χe, χm Electric and magnetic susceptibilities
ψ Magnetic scalar potential
ψ+ (ψ−) Value of ψ on plus (minus) side of a cut
ω Radian frequency
Ω Subset of Rn

A Magnetic vector potential
B Magnetic flux density vector
Bp(K;R) p-coboundary group of K with coefficients in module R
Bp(K;R) p-boundary group or K with coefficients in module R
Bp(K,S;R) Relative p-coboundary group of K (relative to S)
Bp(K,S;R) Relative p-boundary group of K (relative to S)
Bpc (M − S) Relative exact form defined via compact supports; S ⊂ ∂M
B̃p(M,S1) Coexact p-forms in C̃p(M,S1)
c Speed of light in a vacuum, (ε0µ0)

−1/2

c Curve (or contour of integration)
cp p-chain
cp p-cochain
curl Curl operator

curl Adjoint to the curl operator in two dimensions
C Capacitance matrix
C Constitutive law (see Figure 7.4)
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Cijk Connection matrix, 1 ≤ i ≤ m3, 1 ≤ j ≤ 4, 1 ≤ k ≤ m0

Cip,jk Connection matrix of p-dimensional mesh

Cp(K;R) p-cochain group of K with coefficients in module R
Cp(K;R) p-chain group or K with coefficients in module R
Cp(K,S;R) Relative p-cochain group of K (relative to S)
Cp(K,S;R) Relative p-chain group or K (relative to S)
Cpc (M − S) Differential forms with compact support on M − S; S ⊂ ∂M
C̃p(M,S1) p-forms in the complex defined by δ, the formal adjoint of d in

C∗
c (M − S2)

d Coboundary operator; exterior derivative
d Thickness of current-carrying sheet
div Divergence operator
divS Divergence operator on a surface
D Differential operator
D, δ Skin depth
D Electric displacement field
DK Dual cell complex of simplicial complex K
E Electric field intensity
EM Magnetic energy
fp “Forcing function” associated with the pth cut (a vector with

entries fpi)
f Frequency
f Generic function
f∗(µ) Pullback of µ by f
F Rayleigh dissipation function
Fp Free subgroup of pth homology group
F p Free subgroup of pth cohomology group
F Primary functional
F⊥ Secondary functional needed for convexity
F s0 Number of FLOPs per CG iteration for node-based interpolation

of scalar Laplace equation
F0 Number of FLOPs per CG iteration for node-based vector in-

terpolation
F1 Number of FLOPs per CG iteration for edge-based vector inter-

polation
F , G Spaces of vector fields with elements F and G, respectively
grad Gradient operator
G Convex functional
H Magnetic field intensity
Hp(R; Z) pth cohomology group of R with coefficients in Z

Hp(R; Z) pth homology group of R, coefficients in Z
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Hp(R, ∂R; Z) pth cohomology group of R relative to ∂R, coefficients in Z

Hp(R, ∂R; Z) pth homology group of R relative to ∂R, coefficients in Z

Hp
c (M − S) Zpc (M − S)/Bpc (M − S); harmonic forms

Hp(M,S1) Z̃pc (M,S2) ∩ Zp(M − S1); harmonic fields
i inclusion map
im Image of map
I Electrical current
Ii ith current
If ,Ip Free and prescribed lumped-parameter currents
Int ( · , · ) Oriented intersection number
I Intersection number matrix
Ip(m, l) Indicator function, 1 ≤ p ≤ β1(R), 1 ≤ m ≤ 4, 1 ≤ l ≤ m3

j Map inducing a third map in a long exact sequence
J (Volumetric) current density vector
Jav Average current density in effective depth of current sheet
J ij ∈ Z Nodal jumps on each element, 1 ≤ i ≤ m3, 1 ≤ j ≤ 4
ker Kernel of map
K Surface current density vector
K Simplicial complex
Kkmn Stiffness matrix for kth element in mesh
K Global finite element stiffness matrix
lmax “Characteristic length” of electromagnetic system
L Inductance matrix
L Lagrangian
L2Λq(X) Space of square-integrable differential q-forms on manifold X
Link( · , · ) Linking number of two curves
mp Number of p-simplexes in a triangulation of R
m̆p Number of p-cells in dual complex
M Magnetization
M Manifold
nc, nv Number of prescribed currents and number of prescribed volt-

ages
np Number of p-simplexes in a triangulation of ∂R
n Normal vector to a codimension 1 surface
n

′ Normal to a two-dimensional manifold with boundary embedded
in R3

nz(A) Number of nonzero entries of a matrix A
O(nα) Order nα

P Polarization density
P Poynting vector
P Period matrix



SUMMARY OF NOTATION 271

PJ Eddy current power dissipation
Qi ith charge
R Resistance matrix
R de Rham map, R : L2Λq(X) → Cq(K) (K a triangulation of

X)
R Region in R3, free of conduction currents

R̃ Three-dimensional manifold with boundary, subset of R3

RS Surface resistivity
S Surface
S′, S′

ck Current-carrying surface after cuts for stream function have
been removed, and the kth connected component of S ′

Sq qth cut
S1 Unit circle, S1 = {p ∈ C | |p| = 1}
T Kinetic energy
T Vector potential for volumetric current distributions
Tp Torsion subgroup of pth homology group
T p Torsion subgroup of pth cohomology group
T ∗ Cotangent space
uk Nodal potential, 1 ≤ k ≤ m0

v vertex
V Voltage
Vj Prescribed voltage, 1 ≤ i ≤ nv
V Potential energy
we Electric field energy density
wm Magnetic field energy density
W Whitney map W : Cq(K)→ L2Λq(X)
We Electric field energy
Wm Magnetic field energy
X Riemannian manifold
Xs

0 # nonzero entries in stiffness matrix for node-based scalar in-
terpolation

X0 # nonzero entries in stiffness matrix for node-based vector in-
terpolation

X1 # nonzero entries in stiffness matrix for edge-based vector in-
terpolation

z̄ Complex conjugate of z
zp p-cocycle
zp p-cycle
Zp(K;R) p-cocycle group of K with coefficients in module R
Zp(K;R) p-cycle group or K with coefficients in module R
Zp(K,S;R) Relative p-cocycle group of K (relative to S)
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Zp(K,S;R) Relative p-cycle group or K (relative to S)
Zpc (M − S) Relative closed form defined via compact supports; S ⊂ ∂M
Z̃p(M,S1) Coclosed p-forms in C̃p(M,S1)
S+(−) Positive (negative) side of an orientable surface with respect to

a normal defined on the surface
Ac Set-theoretic complement of A
[A,B] Homotopy classes of maps f : A→ B, i.e. π0(Map(A,B))
[ · , · ] Homotopy classes of maps
[ · , · ] Commutator
[ · , · ] Bilinear pairing
[ · ] Equivalence class of element ·
∧ Exterior multiplication
∗ Hodge star
∩ Set-theoretic intersection
∪ Set-theoretic union
∪ Cup product
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Möbius band, 232
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