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Topological insulators are new states of quantum matteclwban not be adiabatically connected to
conventional insulators and semiconductors. They areactenized by a full insulating gap in the bulk
and gapless edge or surface states which are protected éydirarsal symmetry. These topologi-
cal materials have been theoretically predicted and exgetally observed in a variety of systems,
including HgTe quantum wells, BiSb alloys, and:Be; and B Se; crystals. We review theoreti-
cal models, materials properties and experimental resultsvo-dimensional and three-dimensional
topological insulators, and discuss both the topologieaidotheory and the topological field theory.
Topological superconductors have a full pairing gap in thik bnd gapless surface states consisting
of Majorana fermions. We review the theory of topologicapetconductors in close analogy to the

theory of topological insulators.
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% I. INTRODUCTION
[0
O 30 Eversince the Greeks invented the concept of the atom, fun-
31 damental science has focused on finding ever smaller build-
%34 ing blocks of matter. In the 19th century, the discovery of
elements defined the golden age of chemistry. Throughout
[J34 most of the 20th century, fundamental science was dominated
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by the search for elementary particles. In condensed mattgrocess. The operation of smooth deformation groups shapes
physics, there are no new building blocks of matter to be disinto topological equivalence classes. In physics, one ocan c
covered: one is dealing with the same atoms and electrorsder general Hamiltonians of many-particle systems with a
as those discovered centuries ago. Rather, one is intdrestenergy gap separating the ground state from the excitezbstat
in how these basic building blocks are put together to formin this case, one can define a smooth deformation as a change
new states of matter. Electrons and atoms in the quantuimm the Hamiltonian which does not close the bulk gap. This
world can form many different states of matter: for exampletopological concept can be applied to both insulators and su
they can form crystalline solids, magnets and supercondugerconductors with a full energy gap, which are the focus of
tors. The greatest triumph of condensed matter physicsin ththis review article. It cannot be applied to gapless staieh s
last century is the classification of these quantum states bgs metals, doped semiconductors, or nodal superconductors
the principle of spontaneous symmetry breakMrson,According to this general definition, if we put in contact two
@). Forexample, a crystalline solid breaks translation-  quantum states belonging to the same topological class)-the
metry, even though the interaction among its atomic buildterface between them does not need to support gapless states
ing blocks is translationally invariant. A magnet breakro On the other hand, if we put in contact two quantum states be-
tion symmetry, even though the fundamental interactiors arlonging to different topological classes, or put a topotadjiy
isotropic. A superconductor breaks the more subtle gaugeontrivial state in contact with the vacuum, the interfaaesn
symmetry, leading to novel phenomena such as flux quantizaupport gapless states.
tion and Josephson effects. The pattern of symmetry brgakin From these simple arguments, we immediately see that the
leads to a unique order parameter, which assumes a nonvagibstract concept of topological classification can be agb
ishing expectation value only in the ordered state, and a gercondensed matter system with an energy gap, where the no-
eral effective field theory can be formulated based on therord tion of a smooth deformation can be defined (2 ang. 2008).
parameter. The effective field theory, generally calleddaarn  Further progress can be made through the concepts of topolog
Ginzburg theoryl(Landau and Lifshitz, 1980), is determinedical order parameter and topological field theory (TET),sbhi
by general properties such as dimensionality and symmetrgre powerful tools describing topological states of quantu
of the order parameter, and gives a universal description ahatter. Mathematicians have expressed the intuitive quince
guantum states of matter. of genus in terms of an integral, called topological invari-
In 1980, a new quantum state was discovered which doeant, over the local curvature of the surfaﬁfﬂ)wgo
not fit into this simple paradigm (von Klitzinet al,,[1980). In  Whereas the integrand depends on details of the surface ge-
the quantum Hall (QH) state, the bulk of the two-dimensionalometry, the value of the integral is independent of suchildeta
(2D) sample is insulating, and the electric current is earri and depends only on the global topology. In physics, topo-
only along the edge of the sample. The flow of this unidi-logically quantized physical quantities can be similark e
rectional current avoids dissipation and gives rise to anqua pressed as invariant integrals over the frequency-momentu
tized Hall effect. The QH state provided the first example ofspacel(Thoulelss, 1998; Thoulessall, [1982). Such quanti-
a quantum state which is topologically distinct from alltega  ties can serve as a topological order parameter which ulyique
of matter known before. The precise quantization of the Halldetermines the nature of the quantum state. Furthermae, th
conductance is explained by the fact that it is a topological long-wavelength and low-energy physics can be completely
variant, which can only take integer values in unitsofh, in-  described by a TFT, leading to powerful predictions of ekper
dependent of material details (Laughlin, 1981; Thoutsssl,  mentally measurable topological eﬁe&ﬁ@%mﬂo
@). Mathematicians have introduced the concept of topdegical order parameters and TFTs for topological quantum
logical invariance to classify differentgeometrical afifeinto  states play the role of conventional symmetry-breakingord
broad classes. For example, 2D surfaces are classified by tiparameters and effective field theories for broken-symynetr
number of holes in them, or genus. The surface of a perfecttates.
sphere is topologically equivalent to the surface of arpelli  The QH states belong to a topological class which ex-
soid, since these two surfaces can be smoothly deformed infglicitly breaks time-reversal (TR) symmetry, for example,
each other without creating any holes. Similarly, a coffee ¢ by the presence of a magnetic field. In recent years,
is topologically equivalent to a donut, since both of them-co a new topological class of materials has been theoreti-
tain a single hole. In mathematics, topological classificat cally predicted and experimentally observed (Bernetial.,
discards small details and focuses on the fundamentatdisti [2006;| Cheret all, [2009:| Fuet all, [2007:[ Hsiefet al, 2;
tion of shapes. In physics, precisely quantized physicahgu |Konig et al, [2007; | Xiaetal,, [2009; | Zhanetal,, [2009).
tities such as the Hall conductance also have a topologieal 0 These new quantum states belong to a class which is invari-
gin, and remain unchanged by small changes in the sample.ant under TR, and where spin-orbit coupling (SOC) plays
It is obvious that the link between physics and topologyan essential role. Some important concepts were devel-
should be more general than the specific case of QH statesped in earlier works_(Bernevig and Zhang, 2006; Haldane,
The key concept is that of a “smooth deformation”. In math-1988;|Kane and Mele, 2005; Murakagtial, 2003,/ 2004;
ematics, one considers smooth deformations of shapes witinovaet all, 2004, Zhang and Hil, 2001), culminating in the

out the violent action of creating a hole in the deformationconstruction of the topological band theory (TBT) and the




TFT of 2D and 3D topological insulatots (Fu and Kane, 2007; 5 b

Fuet all, |29_0_'}7; &M&Md|m&_mmmmnts, spinless 1D chain spinful 1D chain
12007;[ Qiet all, [2008; Roy) 2009). All TR invariant insula- =2

tors in nature (without ground state degeneracy) fall into t v

distinct classes, classified byZa topological order parame- ﬂ oot ﬂ 4=242
ter. The topologically nontrivial state has a full insutatigap

in the bulk, but has gapless edge or surface states cogsistil

of an odd number of Dirac fermions. The topological prop- o) ¥
erty manifests itself more dramatically when TR symmetry ~ M

is preserved in the bulk but broken on the surface, in whict QH QsH
case the material is fully insulating both inside the bulkl an f;

on the surface. In this case, Maxwell’'s laws of electrodynam
ics are dramatically altered by a topological term with a pre

cisely quantized coefficient, similar to the case of the QH ef rig_ 1 Analogy between QH and QSH effects: (a) A spinless 1D
fect. The 2D topological insulator, synonymously called th system has both forward and backward movers. These two thasic
guantum spin Hall (QSH) insulator, was first theoreticallg-p  grees of freedom are spatially separated in a QH bar, asssquidy
dicted in 2006/(Bernevigt all, [2006) and experimentally ob- the symbolic equation2 = 1 + 1". The upper edge supports only a
served L(_KQDJQI_&IJ @LRQUE.L&H [29_0_9) in HgTe/CdTe forward mover and the lower edge suppo_rts onI_y a k_)ackwar_demov
quantum wells (QW). A topologically trivial insulator seat The states are robust and go around an impurity withoutesdagt

is realized when the thickness of the QW is less than a critgb) A spinful 1D system has four basic degrees of freedomchwhi

. . <. . are spatially separated in a QSH bar. The upper edge sugpfmts
ical value, and the topologically nontrivial state is ob&d  ard mover with spin up and a backward mover with spin dowd, an

when that thickness exceeds the critical value. In the tipol  conversely for the lower edge. That spatial separation fsessed
ically nontrivial state, there is a pair of edge states with 0 by the symbolic equationt“= 2 + 2". Adapted fron{ Qi and Zhahg,
posite spins propagating in opposite directions. Founiteal

measurements (Konkt all, [2007) show that the longitudinal

conductance in the QSH regime is quantize@d®/h, inde-

pendently of the width of the sample. Subsequent nonlocdbgical state of quantum matter. It is remarkable that such
transport measurements (Rethall, [2009) confirm the edge topological effects can be realized in common materials; pr
state transport as predicted by theory. The first discovery oviously used for infrared detection or thermoelectric &l

the QSH topological insulator in HgTe was ranked by Sci-tions, without requiring extreme conditions such as higlgma
ence Magazine as one of the top ten breakthroughs amonggtic fields or low temperatures. The discovery of topolabic
all sciences in year 2007, and the subject quickly becam@sulators has undoubtedly had a dramatic impact on the field
mainstream in condensed matter physics (Day, [2008). Thef condensed matter physics.

3D topological insulator was predicted in the, Bi Sb, alloy After briefly reviewing the history of the theoretical pre-
within a certain range of compositiongFu and Kane. 2007), diction and the experimental observation of the topoldgica
and angle-resolved photoemission spectroscopy (ARPEShaterials in nature, we now turn to the history of the con-
measurements soon observed an odd number of topologeptual developments, and retrace the intertwined pakies ta
ically nontrivial surface states (Hsieftal, [2008). Sim-  py theorists. An important step was taken in 1988 by Hal-
pler versions of the 3D topological insulator were theoret-gane|(Haldané, 1988), who borrowed the concept of the parity
ically predicted in BiTes, ShyTes (Zhangetall, 2009) and  anomalyl(RedlidH, 1984; Semendff, 1684) in quantum electro
Bi»Se; (Xia et al., 2009] Zhangt al,2009) compounds with  gynamics to construct a theoretical model of the QH state on
a large bulk gap and a gapless surface state consisting oftRe 2D honeycomb lattice. This model does not require an
single Dirac cone. ARPES experiments indeed observed thexternal magnetic field nor the associated orbital quatitiza
linear dispersion relation of these surface states (@haf,  and Landau levels (LLs). However, it is in the same topo-
2009; Xiaet al, 2009). These pioneering theoretical and ex-logical class as the ordinary QH states, and requires bath tw
perimental works opened up the exciting field of topolog-dimensionality and the breaking of the TR symmetry. There
ical insulators, and the field is now expanding at a rapidvas a misconception at the time that topological quantum
pacel(Hasan and Kane, 201L0; Kane, 2008; K@nigl,'2008;  states could only exist under these conditions. Another im-
IMoore, |2009; Qi and Zhang. 2010; Zhang. 2008). Beyondhortant step was the construction in 1989 of a TFT of the QH
the topological materials mentioned above, more than fiftyeffect based on the Chern-Simons (CS) term (Zhang,! 1992).
new compounds have been predicted to be topological infhijs theory captures the most important topological aspect
sulators [(Chadoet al, 2010;| Franz, 2010; Lietal, [2010;  of the QH effect in a single and unified effective field the-
Yanet al, [2010), and two of them have been experimentallyory, At this point, the path towards generalizing the QH
observed recently (Cheet al, 2010; Satet all, 2010). This  states became clear: since the CS term can exist in all even
collective body of work establishes beyond any reasonablgpatial dimensions, the topological physics of the QH state
doubt the ubiquitous existence in nature of this new topocan be generalized to such dimensions. However, it was un-
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clear at the time what kind of microscopic interactions doul TR invariant 2D insulators. In addition, they devised a pre-
be responsible for these topological states. In 2001, Zhangise algorithm for the computation ofZ, topological invari-

and Hu (Zhang and Hu, 2001) explicitly constructed a micro-ant within TBT. TBT was soon extended to 3D by Fu, Kane
scopic model for the generalization of the QH state in 4D.and Mele, Moore and Balents and Roy (Fu and Kane, 2007;
A crucial ingredient of this model is its invariance under TRM,M;W@M%MOQ), where
symmetry, in sharp contrast to the QH state in 2D which exsixteen topologically distinct states are possible. Méttiese
plicitly breaks TR symmetry. This fact can also be seen distates can be viewed as stacked 2D QSH insulator planes, but
rectly from the CS effective action ih+ 1 spacetime dimen- one of them, the strong topological insulator, is genuid&y
sions, which is invariant under TR symmetry. With this gener The topological classification according to TBT is only dali
alization of the QH state, two basic obstacles, the brea&ing for noninteracting systems, and it was not clear at the time
TR symmetry and the restriction to 2D, were removed. Partlywhether these states are stable under more general togallogi
because of the mathematical complexity involved in thiskwor deformations including interactions. Qi, Hughes and Zhang
it was not appreciated by the general community at the time —ntroduced the TFT of topological insulato, ),

but is clear now — that this state is the root state from whichand demonstrated that these states are indeed generally sta
all TR invariant topological insulators in 3D and 2D are de-ble in the presence of interactions. Furthermore, a topolog
rived LQ_iT_all ). TR invariant topological insulators can ically invariant topological order parameter can be defined
be classified in the form of a family tree, where the 4D statewithin the TFT as a experimentally measurable, quantized
is the “grandfather” state and begets exactly two generatio topological magnetoelectric effect. The standard Maxwell

of descendants, the 3D and 2D topological insulators, by thequations are modified by the topological terms, leading to

procedure of dimensional reductidn (Kitaev, 2009;e0all,  the axion electrodynamics of the topological insulatorsisT
2008; Ryuet all,'2010; Schnydeet all, [2008). work also showed that the 2D and 3D topological insulators

Motivated by the construction of a TR invariant topolog- are descendants of the 4D topological insulator state disco
ical state, theorists started to look for a physical resitiza. ~ ered in 2001/ (Zhang and Hu, 2001), and motivated this series
of this new topological class, and discovered the intrispin Of recent developments. At this point, the two differenthsat
Hall effect (Murakamet all, 2003/ 2004; Sinovet al,,[2004).  based on the TBT and TFT converged, and an unified theoret-
Murakamiet al. (Murakamiet al, [2003) state their motivation ical framework emerged.
clearly in the introduction: Recently, the QH effect has been There are a number of excellent reviews on this sub-
generalized to four spatial dimensions [...]. The QH resgon ject (Hasan and Kahe, 201.0; Koregall,2008] Moork, 2009;
in that system is physically realized through the SOC in a TRQi.and Zhang, 2010). This article attempts to give a simple
symmetric systemSoon after, it was realized in 2004 that the pedagogical introduction to the subject and reviews the cur
two key ideas, TR symmetry and SOC, can also be applied teent status of the field. In Sdcl Il and Sedl I, we review the
insulators as well, leading to the concept of spin Hall iasul standard models, materials and experiments for the 2D &nd th
tor (Murakamiet al,, [2004). The spin Hall effect in insulators 3D topological insulators. These two sections can be under-
is dissipationless, similarly to the QH effect. The concafpt stood without any prior knowledge of topology. In SEC] IV,
spin Hall insulator motivated Kane and Mele in 2005 to inves-we review the general theory of topological insulators,-pre
tigate the QSH effect in grapherie (Kane and Mele, 2005), aenting both the TFT and the TBT. In Sgd. V, we discuss an
material first discovered experimentally that same yearkWo important generalization of topological insulators—tiogical
ing independently, Bernevig and Zhang studied the QSH efsuperconductors.
fect in strained semiconductors, where SOC generates LLs
without the breaking of TR symmetry (Bernevig and Zhang,

2006). Unfortunately the energy gap in graphene caused hy. TWO-DIMENSIONAL TOPOLOGICAL INSULATORS

the intrinsic SOC is insignificantly sma, 2006;

lYaoetall, 2007). Even though neither models have been The QSH state, or the 2D topological insulator was first dis-
experimentally realized, they played important roles fug t covered in the HgTe/CdTe quantum wells. Bernevig, Hughes
conceptual developments. In 2006, Bernevig, Hughes andnd Zhangl (Bernevigt all, [2006) initiated the search for the
Zhang (Bernevigt all, '2006) successfully predicted the first QSH state in semiconductors with an “inverted” electronic
topological insulator to be realized in HgTe/CdTe QWs. gap, and predicted a quantum phase transition in HgTe/CdTe

The QSH state in 2D can be roughly understood as twajuantum wells as a function of the thicknéssy of the quan-
copies of the QH state, where states with opposite spitum well. The quantum well system is predicted to be a con-
counter-propagate at the edge. A natural question arises a&gntional insulator forlqw < d., and a QSH insulator with
to whether the edge states of the QSH state are stable. msingle pair of helical edge states fgw > d., whered, is
a deeply insightful papet_(Kane and Mele, 2005), Kane andh critical thickness. The first experimental confirmatiotief
Mele showed in 2005 that the stability depends on the numexistence of the QSH state in HgTe/CdTe quantum wells was
ber of pairs of edge states. An odd number of pairs is staearried out by Koéniget al. (Konig et al, [2007). This work
ble, whereas an even number of pairs is not. This obsereports the observation of a nominally insulating statecivhi
vation led Kane and Mele to proposeZa classification of conducts only through 1D edge channels, and is strongly in-




fluenced by a TR symmetry-breaking magnetic field. Further

transport measurements_(Rethall, 2009) reported unique o \Cm/
nonlocal conduction properties due to the helical edgestat 1'° s v
The QSH insulator state is invariant under TR, has a charge o s
excitation gap in the 2D bulk, but has topologically pro- R M )
tected 1D gapless edge states that lie inside the bulk insu- & °2
lating gap. The edge states have a distinct helical prop- /\ L
erty: two states with opposite spin polarization counter- — @
propagate at a given edge (Kane and Mele, 2005:e¥\all, 10 o 10
[2006;| Xu and Moore, 2006). For this reason, they are also /\ r
called helical edge states, i.e. the spin is correlated thith I S
direction of motior(Wtet al, [2006). The edge states come B e o wre | ——
in Kramers doublets, and TR symmetry ensures the crossing ,, ______ "
of their energy levels at special points in the Brillouin 2on cate || caTe CTe |- - <7 -~~{| cdTe
Because of this level crossing, the spectrum of a QSH insu- - .
lator cannot be adiabatically deformed into that of a topo- a<ae o d>d.

lnglcz.i”);ht.”VIal IUSUIator WlttT]OUt g?_:lgal eld?e stateshén';:l— FIG. 2 (a) Bulk band structure of HgTe and CdTe; (b) schenpitic
ore, in this precise sense, the Q Insulator represerewan o ¢ guantum well geometry and lowest subbands for twierint

topologically distinct state of matter. In the special cHs®  hjcknesses. From Berneveg all,[2006.
SOC preserves@ (1), subgroup of the fulkTU (2) spin rota-

tion group, the topological properties of the QSH state @an b

characterized by the spin Chern number (Shetnail, 2006).  [2006) (BHZ) to describe the physics of those subbands of

More generally, the topological properties of the QSH stateHgTe/CdTe quantum wells that are relevant for the QSH ef-

are mathematically characterized by.a topological invari-  fect. HgTe and CdTe crystallize in the zincblende latticecst

ant (Kane and Mele, 2005). States with an even number ofure. This structure has the same geometry as the diamond

Kramers pairs of edge states at a given edge are topolodiattice, i.e. two interpenetrating face-centered-cubttides

cally trivial, while those with an odd number are topolodiiza  shifted along the body diagonal, but with a different atom

nontrivial. TheZ, topological quantum number can also be on each sublattice. The presence of two different atoms per

defined for generally interacting systems and experimintal |attice site breaks inversion symmetry, and thus reduces th

measured in terms of the fractional charge and quantized cupoint group symmetry fron©;, (cubic) to T, (tetrahedral).

rent on the edge (Git all, 2008), and spin-charge separation However, even though inversion symmetry is explicitly bro-

in the bulk {Qi and Zhang, 2008; Rat all,[2008). ken, this only has a small effect on the physics of the QSH

In this section, we shall focus on the basic theory of theeffect. To simplify the discussion, we shall first ignoresthi

QSH state in the HgTe/CdTe system because of its simplicitpulk inversion asymmetry (BIA).

and experimental relevance, and provide an explicit and ped For both HgTe and CdTe, the important bands near

agogical discussion of the helical edge states and theistira the Fermi level are close to thE point in the Brillouin

port properties. There are several other theoretical mopo zone [Fig[2(a)]. They are atype band ['s), and ap-type

als for the QSH state, including bilayer bismm:ﬂmi,band split by SOC into & = 3/2 band {'s) and aJ = 1/2

M), and the “broken-gap” type-Il AISb/InAs/GaSbh quan-band ("7). CdTe has a band ordering similar to GaAs witfr a

tum wells , M). Initial experiments in the type ('s) conduction band, angttype valence band$'¢, I'7)

AlSb/InAs/GaSb system already show encouraging signawhich are separated from the conduction band by a large en-

tures , 2010). The QSH system has also been proergy gap & 1.6 eV). Because of the large SOC present in

osed for the transition metal oxide NeOs (Shitadeetal,  the heavy element Hg, the usual band orderingverted
). The concept of fractional QSH state was proposethe negative energy gap ef300 meV indicates that th&'s

at the same time as the QSH_(Bernevig and Zhang, |2006phand, which usually forms the valence band, is abovd'the

and has been investigated theoretically in more details reband. The light-hold's band becomes the conduction band,

cently {Levin and Stern, 2009; Youre all,[2008). the heavy-hole band becomes the first valence band, and the
s-type band ['4) is pushed below the Fermi level to lie be-
tween the heavy-hole band and the spin-orbit split-off band

A. Effective model of the two-dimensional time-reversal I'7) [Fig.IZ(a)]. Due to the degeneracy between heavy-hole
invariant topological insulator in HgTe/CdTe quantum and light-hole bands at the point, HgTe is a zero-gap semi-
wells conductor.

When HgTe-based quantum well structures are grown, the

In this section we review the basic electronic structure ofpeculiar properties of the well material can be utilizeduiogt
bulk HgTe and CdTe, and present a simple model first inthe electronic structure. For wide QW layers, quantum con-
troduced by Bernevig, Hughes and Zham, finement is weak and the band structure remains “inverted”.



100 ' ' ' ' ~ only terms allowed in the diagonal elements are terms that
have even powers df including k-independent terms. The
501 i subbands must come in degenerate pairs at kaclo there

can be no matrix elements between thetate and the- state

3 c of the same band. Finally, if there are nonzero matrix elémen
EO H—— | between E1+), |H1—) or |E;—), | H1+), this would induce a
w higher-order process coupling thestates of the same band
50 and splitting the degeneracy. Therefore, these matrixeisn
are forbidden as well. These simple arguments led to the fol-
lowing model,
-100 -
4 6 8 ] /10 12 14 hk) 0
Qw nm —
FIG. 3 E levels of the QW function of QW width H_< 0 h*(_k)>7 w
. nergy levels of the as a function o width. u
From Koniget all, [2008. h(k) = e(k)laxo + do(k)o®, 2
wherel, s is the2 x 2 identity matrix, and
However, the confinement energy increases when the well e(k) =C — D(k? + ki),
width is reduced. Thus, the energy levels will be shifted,and da(k) = (Aky, —Ak,, M(K)),

eventually, the energy bands will be aligned in a “normal”
way, if the QW thicknesdqw falls below a critical thickness
d.. We can understand this heuristically as follows: for thin
QWs the heterostructure should behave similarly to CdTe anﬁ_’l
have a normal band ordering, i.e. the bands with primaigly
symmetry are the conduction subbands andthbands con-
tribute to the valence subbands. On the other handgas
is increased, we expect the material to behave more like HgTe
which has inverted bands. Af&,w increases, we expect to B = (k) & v/ dada )
reach a critical thickness where thg andI's subbands cross =e(k) £ \/AQ(kg% 4 k;) + M2 (k). (5)
and become inverted, with tH& bands becoming conduc-
tion subbands and th@ﬁ bands becoming valence SubbandSFor B = O' the model reduces to two Copies of the massive
[Fig. 2(b)] (Berneviget al, 2006;| Noviket al, 2005). The  pirac Hamiltonian in £ + 1)D. The mass\ corresponds to
shift of energy levels witllqw is depicted in Fid.13. The QW the energy difference between tie and H; levels at thel
states derived from the heavy-hdlg band are denoted by point. The mass/ changes sign at the critical thicknets
H,,, where the subscript = 1,2,3, ... describes well states \yhere £, and H; become degenerate. At the critical point,
W|th increasing numbel’ Of nOdeS in tb@lil’ection. S|m|lar|y, the System is described by two Copies of the massless Dirac
the QW states derived from the electbnband are denoted Hamiltonian, one for each spin, and at a single valey
by E,,. The inversion betweef; and H, bands occurs ata (). This situation is similar to graphen
critical thicknesslqw = d. ~ 6.3 nm [Fig[3]. Inthe follow-  [2009), which is also described by the massless Dirac Hamil-
ing, we develop a simple model and discuss why we expeabnian in ¢ + 1)D. However, the crucial difference lies in the
QWs withdqw > d. to form TR invariant 2D topological fact that graphene has four Dirac cones, consisting of two va
insulators with protected edge states. leys and two spins, whereas we have two Dirac cones, one
Under our assumption of inversion symmetry, the rele-for each spin, and at a single valley. Fagw > d., the &)
vant subbandsk; and H;, must be doubly degenerate since level falls below thef7; level at thel’ point, and the mass/
TR symmetry is present. We express states in the basigecomes negative. A pure massive Dirac model does not dif-
{|E1+), |Hi+),|E1—), |Hi—)}, where |E;+) and |H;+) ferentiate between a positive or negative mass Since we
are two sets of Kramers partners. The stafgst) and|H;+)  are dealing with a nonrelativistic system, tBeerm is gener-
have opposite parity, hence a Hamiltonian matrix elemeatt th ally allowed. In order to make the distinction clear, we ¢l
connects them must be odd under parity. Thus, to lowest otthe Dirac mass, an& the Newtonian mass, since it describes
derink, (|E1+),|H1+)) and (|E1—), |[H,—)) will each be  the usual nonrelativistic mass term with quadratic dispers
coupled generically via a term linear in The|H;+) heavy-  relation. We shall show later that the relative sign betwteen
hole state is formed from the spin-orbit couplpérbitals ~ Dirac mass\/ and the Newtonian masds is crucial to deter-
|pz+ipy, 1), while the| H; —) heavy-hole state is formed from mine whether the model describes a topological insulatte st
the spin-orbit coupleg-orbitals| — (p, —ip,), ). Therefore,  with protected edge states or not.
to preserve rotation symmetry around the growth axithe HgTe has a crystal structure of the zincblende type which
matrix elements must by proportionalte = k, +ik,. The lacks inversion symmetry, leading to a BIA term in the Hamil-

M(k) =M — B(k2 + k), ()

hereA, B, C, D, M are material parameters that depend on
e QW geometry, and we choose the zero of energy to be the
valence band edge of HgTelat= 0 [Fig.[2].

The bulk energy spectrum of the BHZ model is given by




d(A)|A (eV-A)|B (eV-A%)|D (eV)| M (eV) |A. (eV) the model Hamiltonian into two parts,
55 3.87 —48.0 | —=30.6| 0.009 | 0.0018 0= ﬁO‘Fﬁl, (8)
61 3.78 —55.3 | —37.8—0.00015] 0.0017 -
70 3.65 —68.6 | —51.2| —0.010 | 0.0016 M(kw) {1/{1 0 0
o = ek + Ak, —M(ky) O 0
TABLE | Material parameters for HgTe/CdTe quantum wellshwit 0= €\ 0 0 M(ky) —Ak, ’

different well thicknesses. 0 0 Ak, —]\Zf(km)

~BK2 iAk, 0 0
—iAk, Bk2 0 0

tonian, given to leading order by (Koneg all,[2008) 3

Hy = —Dk; + 5 , 9
0 0 0 A, 0 0 —BkK iAk,
0 0 A, 0 0 0 —iAky Bkz
Hea=1"9 A 0 o | ©® v
A OZ 00 with é(k,) = C — Dk2 andM (k) = M — Bk2. All k,-

dependent terms are includedAh,. For such a semi-infinite

This term plays an important role in determining the spinSyStem'kw needs to be replaced by the operatad,. On

orientation of the helical edge state. The topological [ahasthe otherdhand,htrar?slation Zymmetry alongéphdzirFecti(in s

transition in the presence of BIA has been investigated rePreserved, sot d, is a goo quantgm num er. Foy =0,

cently [Koniget all, (2008 Murakamet al, [2007). In addi- e haveH) = 0 and the wave equation is given by

tion, in an asymmetric QW structural inversion symmetry can Ho(ky — —i0y) VU (x) = BV (). (10)

be broken by a build-in electric field, leading to a SOC term of o ) i

Rashba type in the effective Hamiltonian (Ro#tel, [2010: SinceH, is block-diagonal, the eigenstates have the form

Stromet all,12010). For simplicity, we will focus on symmet- " 0

ric QW witout SIA. In Tabldll, we give the parameters of the Uy(z) = ( 00 ) , U (z) = ( " ) , (11)
0

BHZ model for various values afqyy .
where0 is a two-component zero vector, afd (z) is related
to ¥, (z) by TR. For the edge states, the wave functje(iz)
is localized at the edge and satisfies the wave equation
For the purposes of studying the topological properties of <

this system, as well as the edge states, it is sometimes cor{-¢(—id, ) + M(,_Z&”) iZAl(?I )) Yo(z) = Eo(¥2)
venient to work with a lattice regularization of the contimu —i410; —M(—i0,)

model [1) which gives the energy spectrum over the entirgypich has been solved analytically for open boundary
Brillouin zone, i.e. a tight-binding representation. Siral  .,nditions using different methods (Koregall, [2008:
the interesting physics at low energy occurs neaftip®int, LLinderet all. [2009{ Luet all, 2010] Zhovet aI,@). In or-

the behavior of the dispersion at energies much larger f@n t yer 1o show the existence of the edge states and to find the re-
bulk gap at thd” point is notimportant. Thus, we can choose giq where the edge states exist, we briefly review the deriva
a regularization to simplify our calculations. This sinfigd  ion, of the explicit form of the edge states by neglectirfgr
lattice model consists of replacird (3) by simplicity (Koniget all, 2008).
_ Neglectinge, the wave equatiofi{12) has particle-hole sym-
— 2
e(k) = C' —2Da™(2 — cos ko — cos kya), metry. Therefore, we expect that a special edge state with

do(k) = (Aa~ " sinkya, —Aa™" sinkya, M(k)), E = 0 can exist. With the wave function ansatg = ¢e**,
M(k) = M —2Ba~? (2 — cos kpa — cos kya). (7) the above equation can be simplified to
(M + B/\Q) Ty0 = AN, (13)

Itis clear that near thE point, the lattice Hamiltonian reduces

to the continuum BHZ model in E4.](1). For simplicity, below therefore the two-component wave functigrshould be an

we work in units where the lattice constant= 1. eigenstate of the Pauli matrix. Defining a two-component
spinor ¢1 by 7,0+ = +¢1, Eq. [IB) is simplified to a
guadratic equation faok. If A is a solution forg, then—\ is

B. Explicit solution of the helical edge states a solution forg_. Consequently, the general solution is given
by

The existence of topologically protected edge states is an _ (A Aaz iz —Aow
important property of the QSH insulator. The edge states Yo(@) = (ae™ +be™)g. + (ce e Jo-(14)
can be obtained by solving the BHZ modél (2) with an openwhere; » satisfy

boundary condition. Consider the model Hamiltonian (2) de- 1
fined on the half-space > 0 in thezy plane. We can divide A2 =op (A VA2 - 4MB) : (15)



The coefficients:, b, ¢, d can be determined by imposing tt
open boundary conditiofh(0) = 0. Together with the nor-
malizability of the wave function in the regian > 0, the

open boundary condition leads to an existence condition
the edge statesRA1 2 < 0 (c = d = 0) or RA\12 > 0

(a = b = 0), whereR stands for the real part. As seen fro
Eq. (15), these conditions can only be satisfied in the iede
regime whenM /B > 0. Furthermore, one can show th
whenA/B < 0, we haveRt\; 2 < 0, while whenA/B > 0,

we haveR\; o > 0. Therefore, the wave function for the ed
states at thé&' point is given by

(@) o005

E(K) (eV)

- a (eA”E — ekﬂ) ¢+, A/B<O0;
vola) = { cleeM® —e2%) ¢ A/B>0. (16)
The sign ofA/B determines the spin polarization of the ed
states, which is key to determine the helicity of the Dir
Hamiltonian for the topological edge states. Another i
portant quantity characterizing the edge states is thaiayl
length, which is defined ds = max {|RA; 2| '}.
The effective edge model can be obtained by projecting
bulk Hamiltonian onto the edge statés and ¥ defined in
Eqg. [I1). This procedure leads t2ax 2 effective Hamil-

tonian defined byH) (k) = (V.| (ﬁo + ﬁl) |Ts). To
leading order irk,,, we arrive at the effective Hamiltonian for

the helical edge states:

FIG. 4 Energy spectrum of the effective Hamiltonifh (2) inytire

der geometry. In a thin QW, (a) there is a gap between coratucti
band and valence band. In a thick QW, (b) there are gapless edg
states on the left and right edge (red and blue lines, reispBot

The dashed line stands for a typical value of the chemicadmiiatl

within the bulk gap. Adapted fro Oi and Zhahg, 2010.

Heqge = Akyo™. (17)

For HgTe QWs, we havel ~ 3.6 eV-A (Konig et all,[2008),

and the Dirac velocity of the edge states is givenby=
A/h~5.5x 105 m/s.

In the QH effect, the chiral edge states can not be backscat-
tered for sample widths larger than the decay length of the
edge states. In the QSH effect, one may naturally ask whether

The analytical calculation above can be confirmed by exadpackscattering of the helical edge states is possible.rristu
numerical diagonalization of the Hamiltonidd (2) on a stripout that TR symmetry prevents the helical edge states from
of finite width, which can also include the contribution of backscattering. The absence of backscattering reliesen th
the e(k) term [Fig.[4]. The finite decay length of the heli- destructive interference between all possible backsoagte
cal edge states into the bulk determines the amplitude for inpaths taken by the edge electrons.
teredge tunneling (Hoet all, [2009; Strom and Johannesson, Before giving a semiclassical argument why this is so,
[2009:| Tanakat all, 12009: Teo and Kane, 2009; Zheual,  we first consider an analogy from daily experience. Most
|2008; Zyuzin and Fiete, 2010). eyeglasses and camera lenses have an antireflective coating
[Fig.[B(a)], where light reflected from the top and bottom-sur
faces interfere destructively, leading to no net reflectod
thus perfect transmission. However, this effect is not sbpu
as it depends on a precise matching between the wavelength
of light and the thickness of the coating. Now we turn to the
helical edge states. If a nonmagnetic impurity is preseat ne

From the explicit analytical solution of the BHZ model, the edge, it can in principle cause backscattering of thie hel
there is a pair of helical edge states exponentially loedliz cal edge states due to SOC. However, just as for the reflec-
at the edge, and described by the effective helical edge theion of photons by a surface, an electron can be reflected by
ory (I7). In this context, the concept of “helical” edge a nonmagnetic impurity, and different reflection pathsrinte
state , M) refers to the fact that states with op- fere quantum-mechanically. A forward-moving electronhwit
posite spin counter-propagate at a given edge, as we see frapin up on the QSH edge can make either a clockwise or a
the edge state dispersion relation shown in Eig. 4(b), or theounterclockwise turn around the impurity [Fig. 5(b)]. &n
real space picture shown in Fid. 1(b). This is in sharp centra only spin down electrons can propagate backwards, the elec-
to the “chiral” edge states in the QH state, where the edgé&on spin has to rotate adiabatically, either by an angle of
states propagate in one direction only, as shown infrig. 1(a) or —, i.e. into the opposite direction. Consequently, the two

C. Physical properties of the helical edge states

1. Topological protection of the helical edge states
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Kramers' theorem. If we add TR invariant perturbations ® th
Hamiltonian, we can move the degenerate point up and down

a b
in energy, but cannot remove the degeneracy. In this precise
1 sense, the helical edge states are topologically protdsted
TR symmetry.

If TR symmetry is not present, a simple “mass” term can
be added to the Hamiltonian so that the spectrum becomes

whereh.c. denotes Hermitian conjugation, amgi, Y4 are
FIG. 5 (a) On a lens with antireflective coating, light refeetby  creation/annihilation operators for an edge electron of mo

top (blue line) and bottom (red line) surfaces interferestiietively,  mentumk, with + denoting the electron spin. The action of

leading to suppressed reflection. (b) Two possible pattenthl an TR symmetry on the electron operators is given by
electron on a QSH edge when scattered by a nonmagnetic impuri

The electron spin rotates By0° clockwise along the blue curve, and T 71 _ T T-1_ _ 18
counterclockwise along the red curve. A geometrical phaseof Ykt Yk TPr— Yokt (18)
associated with this rotation of the spin leads to destredtiterfer-
ence between the two paths. In other words, electron battksog

Hoes =m0 [ 57 (w0 + e

which implies

on the QSH edge is suppressed in a way similar to how the reflec- TH 71— _[ .
tion of photons is suppressed by an antireflective coatingapted mass mass
from|Qiand Zharig. 2010. ConsequentlyH,,...s iS @ TR symmetry breaking perturba-

tion. More generally, if we define the “chirality” operator

paths differ by a fullr — (—7) = 2x rotation of the electron
spin. However, the wave function of a spin-1/2 particle pick
up a negative sign under a fulir rotation. Therefore, two

backscattering paths related by TR always interfere destru
tively, leading to perfect transmission. If the impurityrigas

dk
C = N+ — N_ = /% (7,D]-L+¢k+ - ’[Z)}E_?ﬁk,) )

any operator that changes by 2(2n — 1), n € Z is
odd under TR. In other words, TR symmetry only allows

a magnetic moment, TR symmetry is explicitly broken, andzn-pamcle backscattering, described by operators such as

Tt _
the two reflected waves no longer interfere destructivety. | wﬂ%#%‘f@— (for n= })' Therefore, the most reI_eva_nt
this way, the robustness of the QSH edge state is protected grturbation); , ¢, is forbidden by TR symmetry, which is
TR symmetry. essential for the topological stability of the edge staifsis
The physical picture described above ag_g(lies onI% to th&dge state effective theory is nonchiral, and is qualiedyiv

case of a single pair of QSH edge sta Meldlifferent from the usual spinless or spinful Luttinger lidu
[2005: [Wuet a lZD%'LXu_and_Mp_ojd,_ZQD(S). If there are theories. It can be considered as a new class of 1D critical

two forward-movers and two backward-movers on a giverfheories, dubbed a “helical liquic” (Wet all, 2006). Specifi-
edge, an electron can be scattered from a forward-moving tally, in the noninteracting case no TR invariant pertutat
a backward-moving channel without reversing its spin. ThigS available to induce backscattering, so that the edge itat
spoils the perfect destructive interference described/@bo obust.
and leads to dissipation. Consequently, for the QSH state to Consider now the case of two flavors of helical edge states
be robust, edge states must consist of an odd number of foRn the boundary, i.e. a 1D system consisting of two left-
ward (backward) movers. This even-odd effect is the key reamovers and two right-movers with Hamiltonian
son why the QSH insulator is characterized W¥-atopolog- dk
ical quantum number (Kane and Mele, 2005; @l [2006; H = /— Z (%Hvka - w;ts_vlﬂﬁks—) :
Xu and Moorg, 2006). 2 S

The general properties of TR symmetry are important for
understanding the properties of the edge theory. The antAmasstermsuchas [ 4% (%Tcuwkz— — Pl rar + h-C-)
unitary TR operatofl’ takes different forms depending on (with 7 real) can open a gap in the system while preserving
whether the degrees of freedom have integer or half-oddime-reversal symmetry. In other words, two copies of the
integer spin. For half-odd-integer spin, we haé = —1 helical liquid form a a topologically trivial theory. More
which implies, by Kramers’ theorem, that any single-pdgtic generally, an edge system with TR symmetry is a nontrivial
eigenstate of the Hamiltonian must have a degenerate paftelical liquid when there is an odd number of left- (right-)
ner. From Fig[¥(b), we see that the two dispersion branchemovers, and trivial when there is an even number of them.
at one given edge cross each other at the TR invakiaat0 ~ Thus the topology of QSH systems are characterized By a
point. At this point, these two degenerate states exadil§fga topological quantum number.
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2. Interactions and quenched disorder K < 3/8 (Giamarchi and Schulz, 1988; Wi all, [2006;
Xu and Moork| 2006). AT = 0, N, ,(x) exhibits glassy
We now review the effect of interactions and quenchedoehavior, i.e. disordered in the spatial direction butistiat
disorder on the QSH edge quuidm, 2006; the time direction. Spin transport is thus blocked and TR
Xu and Moore,| 2006). Only two TR invariant nonchiral symmetry is again spontaneously brokerfat= 0. At low
interactions can be added to Eq] 17, the forward and Umklapput finite 7', the system remains gapped with TR symmetry

scatterings restored.
In the above, we have seen that the helical liquid tan
Hy = g/dx 1/111/1+1/)TJ/L (19)  principle be destroyed. However, for a reasonably weak inter-
acting system, i.eK =~ 1, the one-component helical liquid
Hy, = g4 / dx e—z‘4km¢1 (ff)lﬂ (r +a) remains gapless. In an Ising ordered phase, the low-engfgy e

citations on the edge are Ising domain walls which carry-frac
x_(z +a)p—(x) + h.c., (20)  tional ¢/2 charge , 2008). The properties of multi-
where the two-particle operators’y!, v are point-split componer_lt helical liquids in the presence of disorder hes al
with the lattice constant which plays the role of a short- been StUd'ed-(_xu—an:d-M-o-dm%)' _ )
distance cutoff. The chiral interaction terms only rendinga A magnetic impurity on the edge of a QSH insulator is ex-
the Fermi velocityv, and are thus ignored. It is well known pectqd to act as a local mass term f9r the edge theory, and
that the forward scattering term gives a nontrivial Luténg thuS is expected to lead to a suppression of the edge conduc-

parametefs = /(v — ¢)/(v + g), but keeps the system gap- tance. While this is certainly true for a static magnetic im-

; ity, aquantummagnetic impurity, i.e. a Kondo impurity,
less. Only the Umklapp term has the potential to open up a ga! uri . ) _
at the commensurate fillingr = 7/2. The bosonized form Peads to subtler behavior (Maciejled al, [2009;| Wuet all,

of the Hamiltonian reads 2006). In the presence of a quantum magnetic impurity, due
to the combined effects of interactions and SOC one must

vyl Gu cos V167 also generally consider local two-particle backscattegro-
H= [ des{—(0,0)% + K(0,0)?} + L0V 200 g y P A
/ 9 { K( 0)" + K (0:9) } * 2(ra)? cesses (Meidan and Oreg, 2005) similar to [Eg] (20), but oc-

(21)  curring only at the position of the impurity. At high tem-

. ] ) peratures, both weak Kondo and weak two-particle backscat-
wheres = /v? — g? is the renormalized velocity, and We (ering are expected to give rise to a logarithmic tempera-
define nonchiral bosons = ¢r + ¢ and = ¢r — ér,  ture dependence as in the usual Kondo e ,
respectively, whereor and ¢, are chiral bosons describ- 5009), and their effect is not easily distinguishable. How-
ing the spin up (down) right-mover and the spin down (Up)eyer, at low temperatures the physics depends drastically o
left-mover, respectively. ¢ contains both spin and charge he strength of Coulomb interactions on the edge, parameter
degrees of freedom, and is equivalent to the combinatiom,aq by the Luttinger parametdt. For weak Coulomb in-
¢c — 05 in the spinful Luttinger liquid, withg. andd, the  teractionsikk > 1/4, the edge conductance is restored to the
charge and spin bosons, res_pecﬂth@ZQOS). Winitarity limit 2¢2 /1 with unusual power laws characteristic
is also a compact variable with perigdr. A renormaliza- ¢ 4 “|ocal helical liquid” (Maciejkoet all, [2009:[Wuet all
tion group analysis shows that the Umklapp term is releva). For strong Coulomb interactiofi < 1/4, the con-
for K <1/2 Wilth a pinned value ob. Consequently, a gap qyctance vanishes & — 0, but is restored at lowl’ by
A ~ a~'(g,)?=7% opens and spin transport is blocked. Thea fractionalized tunneling current of chargé2 quasiparti-
mass order parameteds, , the bosonized form of which is  cles (Maciejkeet all, 2009). The tunneling of a chargg2
N, = YL gin /A7¢, N, = “EIL cos\/Amg, are odd un-  quasiparticle is described by an instanton process whitteis
der TR. Forg, < 0, ¢ is pinned at eithed or \/7/2, and the  time counterpart to the stati¢2 charge on a spatial magnetic
N, order is Ising-like. Atl" = 0, the system is in a Ising or- domain wall along the edg, 2008). In addition to the
dered phase, and TR symmetry is spontaneously broken. Qfingle-channel Kondo effect just described, the possjbili

the other hand, whet < T' < A, N, is disordered, the gap an even more exotic two-channel Kondo effect on the edge of
remains, and TR symmetry is restored by thermal fluctuationghe QSH insulator has also been studied rece

A similar reasoning applies to the cage > 0 whereN, is  [2010).
the order parameter.
There is also the possibility of two-particle backscattgri

due to quenched disorder, described by the term 3. Helical edge states and the holographic principle
ull . . L
Hgyis = /dff 2g(7r(a))2 cos V167(p(x, 7) + a(x)), (22) There is an alternative way to understand the qualitative

difference between an even and odd number of edge states
where the scattering strength,(z) and phase«a(z) in terms of a “fermion doubling” theorem (Wt all, 2006).

are Gaussian random variables. The standard replicahis theorem states that there is always an even number of
analysis shows that disorder becomes relevant aKramers pairs at the Fermi energy for a TR invariant, but
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number of Kramers pairs, the coupling between them can only
annihilate arevernumber of Kramers pairs if TR is preserved.
As aresult, at least one pair of gapless edge states canaurvi
This fermion doubling theorem can be generalized to 3D
in a straightforward way. In the 2D QSH state, the simplest
helical edge state consists of a single massless Diracdarmi
in (1 + 1)D. The simplest 3D topological insulator contains
a surface state consisting of a single massless Dirac farmio
in (2 + 1)D. A single massless Dirac fermion would also
FIG. 6 (a) Energy dispersion of a 1D TR invariant system. Theyjo|ate the fermion doubling theorem and cannot exist in a
Kramers degeneracy is requirediat= 0 andk = m, so that the purely 2D system with TR symmetry. However, it can ex-

energy spectrum always crosses times the Fermi levetr. (b) : - . .
Energy dispersion of the helical edge states on one bouradahe ist holographically, as the boundary of a 3D topological in-

QSH system (solid lines). At = 0 the edge states are Kramers sulator. More generica_lly, t_here is a one-to-one correspon
partners, while ak = 7 they merge into the bulk and pair with dence between topological insulators and robust gapless th

the edge states of the other boundary (dash lines). In byptangh  ories in one lower dimension(Freedmetrall, 12010; Kitael,

(b), red and blue lines represent the two partners of a Kripair.  |2009; Teo and Kane, 2010)
From[Kéniget all,2008.

@) (b)

T T

4. Transport theory of the helical edge states

otherwise arbitrary 1D band structure. A single pair of he- ] o )
lical states can occur only “holograhically”, i.e. when the In conventional diffusive electronics, bulk transport-sat

1D system is the boundary of a 2D system. This fermioniSﬁeS_ Ohm’s law. Re_sistance is proportiona_l to the Iength
doubling theorem is a TR invariant generalization of the@nd inversely proportional to the cross-sectional area, im
Nielsen-Ninomiya no-go theorem for chiral fermions on a lat PIying the existence of a local resistivity or conductivity

tice (Nielsen and Ninomiyd, 1981). For spinless fermions{ensor. However, in systems such as the QH and QSH

there is always an equal number of left-movers and rightStates, the existence of edge states necessarily leads1to no
movers at the Fermi level which leads to the fermion doulocal transport which invalidates the concept of local sesi
bling problem in odd spatial dimensions. A geometrical waytlVity- Such nonlocal transport has been experimentally ob
to understand this result is that for periodic functions.(en- ~ Served in the QH regime in the presence of a large mag-
ergy spectra of a lattice model), “what goes up must evelytual Netic field (Beenakker and van Ho ten, 1991), and the non-
come down”. Similarly, for a TR symmetric system with half- local transport is well described by a quantum transport
odd-integer spins, Kramers’ theorem requires that eagineig heory based on the Landauer-Buttiker formalism (Biftik
state of the Hamiltonian is accompanied by its TR conjugat ). A similar transport theory has been developed for
or Kramers partner, so that the number of low-energy channefh® helical edge states of the QSH states, and the nonlo-
is doubled. A Kramers pair of statesiat= 0 must recombine cal transport experiments are in excellent agreement with
into pairs wherk goes from to = and2x, which requires the  the theory ,[2009). These measurements are now
bands to cross the Fermi levet times [Fig[®(a)]. However, W|dely acknowledged as constituting definitive experimen-
there is an exception to this theorem, which is analogoussto t t@l evidence for the existence of edge states in the QSH
reason why a chiral liquid can exist in the QH effect. A hdlica '¢9'M€ Bittikerl 2009). o _

liquid with an odd number of fermion branchean occur if Within the general Landauer-Buttiker formalism (Bieifk

it is holographic, i.e. if it appears at the boundary (edde o 1986), the current-voltage relationship is expressed as

2D system. In this case, the edge states are Kramers partners 2

atk = 0, but merge into the bulk at some finite, such that I; = m Z(TjiVi — T V), (23)

they do not have to be combined/at= w. More accurately, J

the edge states on both left and right boundaries becomles bulyhere; is the current flowing out of thith electrode into the

states fork > k. and form a Kramers pair [Figl 6(b)]. This sample regionV; is the voltage on théth electrode, and; is

is exactly the behavior discussed in Sec.]Il.B in the cordéxt  the transmission probability from thiéh to thejth electrode.

the analytical solution the edge state wave functions. The total current is conserved in the sense fiatl; = 0.
The fermion doubling theorem also provides a physical unA voltage lead; is defined by the condition that it draws no

derstanding of the topological stability of the helicaldid. ~ net current, i.e.; = 0. The physical currents remain un-

Any local perturbation on the boundary of a 2D QSH sys-changed if the voltages on all electrodes are shifted by a con

tem is equivalent to the action of coupling a “dirty surface stant amoun., implying that)". 7;; = > . T;. Ina TR

layer” to the unperturbed helical edge states. Whatever peinvariant system, the transmission coefficients satisfyctim-

turbation is considered, the “dirty surface layer” is alwdyp,  dition73; = T;.

such that there is always an even number of Kramers pairs of For a general 2D sample, the number of transmission chan-

low-energy channels. Since the helical liquid has only ah od nels scales with the width of the sample, so that the trarsmis
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sion matrixT;; is complicated and nonuniversal. However, the voltage leads, they interact with a reservoir contajran

a tremendous simplification arises if the quantum transport large number of low-energy degrees of freedom, and TR sym-
entirely dominated by the edge states. In the QH regime, chimetry is effectively broken by the macroscopic irrevelgipi

ral edge states are responsible for the transport. For desté&in  As a result, the two counter-propagating channels eqaiibr
Hall bar with N current and voltage leads attached, the transat the same chemical potential, determined by the voltage of
mission matrix elements for the = 1 QH state are given the lead. Dissipation occurs with the equilibration praces
by T(QH);41,; = 1, fori = 1,..., N, and all other ma- The transport equatioh_(P3) breaks the macroscopic TR sym-
trix elements vanish identically. Here we periodicallynde metry, even though the microscopic TR symmetry is ensured
tify the = N + 1 electrode withi = 1. Chiral edge states by the relationshif@;; = Tj;. In contrast to the case of the
are protected from backscattering, thereforejtheslectrode  QH state, the absence of dissipation in the QSH helical edge
transmits perfectly to the neighboring{ 1)th electrode on states is protected by Kramers’ theorem, which relies on the
one side only. In the example of current leads on the elecquantum phase coherence of wave functions. Thus, dissipa-
trodesl and4, and voltage leads on the electrode8, 5 and  tion can occur once phase coherence is destroyed in the-metal
6, (see the inset of Fig. 12 for the labeling), one finds thatic leads. On the contrary, the robustness of QH chiral edge

L =1, =14, Vo—Vs=0andV; -V, = 6%114, giving states does not require phase coherence. A more rigorous and
a four-terminal resistance d®14 23 = 0 and a two-terminal microscopic analysis of the different role played by a niietal
resistance oR14 14 = e% lead in QH and QSH states has been perforrm,

The helical edge states can be viewed as two copies of cI@), the result of which agrees with the simple transport
ral edge states related by TR symmetry. Therefore, the-trangquations[(23) and(24). These two equations correctly de-
mission matrix is given byI'(QSH) = T(QH) + TT(QH),  scribe the dissipationless quantum transport inside the QS
implying that the only nonvanishing matrix elements areegiv  insulator, and the dissipation inside the electrodes. Asvsh

by in Sec[I.E4, these equations can be put to more stringent
experimental tests.
T(QSH);11, = T(QSH); ;41 = 1. (24) The unique helical edge states of the QSH state can be
used to construct devices with interesting transport prope
Considering again the example of current leads on the elegies (Akhmerowet all, [2009; i 0; Zharet all,

trodes1 and4, and voltage leads on the electrodes3, 5  [2009). Besides the edge state transport, the QSH state also

and6, one finds thatl, = —Iy = 14, Vo — V3 = %114 leads to interesting bulk transport properties (Naailall,

andV; — Vy = ij—QIM, giving a four-terminal resistance of ).

Ri423 = 5% and a two-terminal resistance Bf4 14 = 2.

Four terminal resistance with different configurations oftv

age and current probes can be predicted in the same wal, Topological excitations

which are all rational fractions df/e?. The experimental data

[Fig.[18] neatly confirms all these highly nontrivial thetical In the previous sections, we discussed the transport prop-

predictions|(Rotfet all, 2009). For two micro Hall bar struc- erties of the helical edge states in the QSH state. Unlike the

tures that differ only in the dimensions of the area betweertase of the QH state, these transport properties are not ex-

the voltage contacts 3 and 4, the expected resistance valupscted to be precisely quantized, since they are not djrectl

Ris03 = % andRis 14 = % are indeed observed for gate related to théZ, topological invariant which characterizes the

voltages for which the samples are in the QSH regime. topological state. In this section, we show that it is possi-
As mentioned earlier, one might sense a paradox betwedpe to measure th&, topological quantum number directly

the dissipationless nature of the QSH edge states and ttee finin experiments. We shall discuss two examples. The first is

four-terminal longitudinal resistanc®, 4 >3, which vanishes the fractional charge and quantized current experimertkgeat

inthe QH state. We can generally assume that the microscop&gge of a QSH syste n(@tall, ). Second, we discuss

Hamiltonian governing the voltage leads is invariant undetthe spin-charge separation effect occurring in the bulkef t

TR symmetry. Therefore, one would naturally ask how suctsample!(Qi and Zhang, 2008; Rahall, [2008).

leads could cause the dissipation of the helical edge states

which are protected form backscattering by TR symmetry? In

nature, TR symmetry can be broken in two ways, either atl.. Fractional charge on the edge

the level of the microscopic Hamiltonian, or at the level of

the macroscopic irreversibility in systems whose micrpsco The first theoretical proposal we discuss is that of a local-

Hamiltonian respects TR symmetry. When the helical edgézed fractional charge at the edge of a QSH sample when

states propagate without dissipation inside the QSH itsula a magnetic domain wall is present. The concept of frac-

between the electrodes, neither forms of TR symmetry brealtional charge in a condensed matter system induced at a mass

ing are present. As a result, the two counter-propagatiagch domain wall goes back to the Su-Schrieffer-Heeger (SSH)

nels can be maintained at two different quasi-chemicalrpote model , @). For spinless fermions, a mass do-

tials, leading to a net current flow. However, once they entemain wall induces a localized state with one-half of the €lec
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tron charge. However, for a real material such as poly- A
acetylene, two spin orientations are present for each elec A = 9,0/2n
tron, and because of this doubling, a domain wall in poly- M m’
acetylene only carries integer charge. The beautiful pro- 444444 X
posal of SSH, and its counterpart in field theory, the Jackiw- rrrrrrr s

Rebbi modell(Jackiw and Rebbi, 1976), have never been ex

perimentally realized. As mentioned earlier, conventidiia B — _5.0/2
electronic systems have four basic degrees of freedom, i.e b J = 10/ 2m
forward- and backward-movers with two spins. However, a D Current Flow g%
helical liquid at a given edge of the QSH insulator has only U "

two: a spin up (down) forward-mover and a spin down (up)

backward-mover. Therefore, the helical liquid hasf the de- o .
grees of freedom of a conventional 1D system, and thus avoidt!G. 7 (a) Schematic picture of the half-charge on a domailh wa
the doubling problem. Because of this fundamental topelogiThe blug arrows show a magnetlc domain wall configurationtaed
cal property of the helical liquid, a domain wall carries e purple line shows the mass kink. The red curve shows the elkg-

" . A . sity distribution. (b) Schematic picture of the pumpinguocdd by
¢/2. In addition, if the magnetization is rotated periodicadly e rotation of magnetic field. The blue circle with arrow sdhe

quantized charge current will flow. This provides a direet re rotation of the magnetic field vector. Adapted fromedall,[2008.
alization of the Thouless topological pump (Thouléss, 1983

We begin with the edge Hamiltonian given in EQ.(17).
These helical fermion states only have two degrees of freewall of ¢ [Fig.[7(a)] (Jackiw and Rebhi, 1976). Similarly, the
dom; the spin polarization is correlated with the direc-charge pumped by a purely time-dependxn} field in a time
tion of motion. A mass term, being proportional to the interval[ti, t2] is AQpumpli> = [0(t2) — 0(t1)] /27. Whend
Pauli matricess»%3, can only be introduced in the Hamil- is rotated from to 27 adiabatically, a quantized chargés
tonian by coupling to a TR symmetry breaking externalpumped through the 1D system [Fig. 7(b)].
field such as a magnetic field, aligned magnetic impuri- From the linear relatiomn, = t.;B;, the angled can be
ties (Gacet all,[2009), or interaction-driven ferromagnetic or- determined for a given magnetic fiel. Independent from
der on the edg av, 2010). To leading order in perthe details of.;, opposite magnetic field8 and—B always
turbation theory, a magnetic field generates the mass terms correspond to opposite mass, so théB) = 6(—B) + .

Thus the charge localized on an anti-phase magnetic domain
Hy = /d:v U ma(a, )oY wall of magnetization field is always/2 mod e, which is a
a=1,2,3 direct manifestation of th&, topological quantum number of
the QSH state. Such a half charge is detectable in a specially
— f B, a
- /dw Zt‘“Bz(x’t)a v, (25) designed single-electron transistor deviceg@all, [2008)

a,i

where¥ = (¢+,¢_)T and the model-dependent coefficient

matrix t,; is determined by the coupling of the edge states t@2. Spin-charge separation in the bulk

the magnetic field. According to the work of Goldstone and

Wilczek {Goldstone and WiIczbk,ﬂBl), at zero temperature In addition to the fractional charge on the edge, there have
the ground-state charge densjty= p and currentj; = j in been theoretical proposals for a bulk spin-charge separati

a background fieldn, (z, t) is given by effect (Qi and Zhang, 2008; Ra all,[2008). These ideas are
L similar to theZ, spin pump proposed in (Fu and Kahe, 2006).
Ju = _ﬁeﬂueaﬁmaaymﬁ, a,f=1,2, We first present an argument which is physically intuitivet, b
2m ymam only valid when there is at leasta(1), spin rotation symme-
with u,v = 0,1 corresponding to the time and spacetry, €.g. whenS. is conserved. In this case, the QSH effect is

components, respectively, and; does not enter the long- Simply defined as two copies of the QH effect, with opposite
wavelength charge-response equation. If we parametéuize t Hall conductances of-e /h for opposite spin orientations.

mass terms in terms of an angular variablei.e. m; = Without loss of generality, we first consider a disk geometry
mcosf, my = msin6, the response equation is simplified With an electromagnetic gauge flux of = ¢, = hc/2e, or
to simply 7 in units of h = ¢ = e = 1, through a hole at the
1 1 center [Fig[8]. The gauge flux acts on both spin orientations
p= %619(:5,&, j= —%8,59(:5,&. (26) and ther flux preserves TR symmetry. We consider adia-

batic processes;(t) and ¢, (t), whereg(t) = ¢,(t) = 0
Such aresponse is topological in the sense that the netehargtt = 0, and¢4(t) = ¢, (t) = £m att = 1. Since the flux
Q in aregion[z, 23] at timet¢ depends only on the boundary of 7 is equivalent to the flux of-x, there are four different
values off(z,t) i.e. Q@ = [#(x2,t) — 0(x1,t)] /27. In par-  adiabatic processes all reaching the same final flux configura
ticular, a half-charge-e/2 is carried by an anti-phase domain tion. In process (ayp1(t) = —¢, () andg+(t = 1) = 7. In
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process (b)p+(t) = —¢,(t) andg4+(t = 1) = —m. Inpro-  and the charge quantum numbers are sharply defined quan-
cess (C)p1(t) = ¢, (t) andgy(t = 1) = 7. In process (d), tum numbers (Kivelson and Schrieffer, 1982). The insuatin
o1(t) = ¢, (t) andpq(t = 1) = —m. These four processes state has a bulk gap, and an associated coherence length

are illustrated in Fig[18. Processes (a) and (b) preserve TR ~ A/A whereA is the Dirac parameter in EQl 1. As long

symmetry at all intermediate stages, while processes @) aras the radius of the Gaussian loap far exceeds the coher-

(d) only preserve TR symmetry at the final stage. ence lengthj.e, r¢ > &, the spin and the charge quantum
We consider a Gaussian loop surrounding the flux. As theumbers are sharply defined with exponential accuracy.

flux ¢4(t) is turned on adiabatically, Faraday’s law of induc-  When the spin rotation symmetry is broken but TR symme-

tion states that a tangential electric fidld is induced along try is still present, the concept of spin-charge separasistill

the Gaussian loop. The quantized Hall conductance implies well defined [(Qi and Zhang, 2008). A spinon state can be de-

radial currenfjy = %z x E4, resulting in a net charge flow fined as a Kramers doublet without any charge, and a holon or

AQ+ through the Gaussian loop: a chargeon is a Kramers singlet carrying chatge By com-
) o bining the spin and charge flux threadiﬁéi%%%iﬁ éﬁa Moore,
AQ; = _/ dt/dn-jT _ _e_/ dt/dl-ET [2007), it can be shown generally that these spin-charge
h Jo separated quantum numbers are localized near & =
2 flux (Qi and Zhang, 2008; Raet all,[2008).
(b e he e 27)
hc (“)t hc2e 27
An identical argument applied to the spin down component, Quantum anomalous Hall insulator
shows thatA@Q; = —e/2. Therefore, this adiabatic process
creates the holon state withQ = AQ+ + AQ, = —e and Although TR invariance is essential in the QSH insulator,
AS. = AQy — AQy =0. there is a TR symmetry breaking state of matter which is

closely related to the QSH insulator: the quantum anomalous
Hall (QAH) insulator. The QAH insulator is a band insula-
tor with quantized Hall conductance but without orbital mag
netic field. Nearly two decades ago, Hald 1988)
proposed a model on a honeycomb lattice where the QH is
realized without any external magnetic field, or the bregkin
of translational symmetry. However, the microscopic mecha
nism of circulating current loops within one unit cell hag no

© (d) been realized in any materials. Qi, Wu and th,
¢ ; ¢ 2006) proposed a simple model based on the concept of the

T i "" 91=9 B QAH insulator with ferromagnetic moments interacting with

0 j t 0 it band electrons via the SOC. This simple model can be real-

P I : __ di=dh ized in real materials. Two recent proposals (etall, [2008;
AS,=1/2 AS,=112 lYu et all, [2010) make use of the properties of TR invariant

topological insulators to realize the QAH state by magnetic

doping. This is not accidental, but shows the deep relation-

. S ship between these two states of matter. Thus we give a brief
FIG. 8 Four different adiabatic processes frgm = ¢, = 0 to

61 — ¢, — L. The red (blue) curve stands for the flvx,, (¢), review of the_ QAH _state in '[.hIS subsection.

respectively. The symboks” (* @”) represents increasing (decreas- ~ AS @ starting point, consider the upgeix 2 block of the
ing) fluxes, and the arrows show the current into and out othes- ~ QSH Hamiltonian[(R):

sian loop, induced by the changing flux. Charge is pumpedén th

processes witkh+ () = —¢, (¢), while spin is pumped in those with h(k) = e(k)Iaxo + dg(k)o®. (28)
¢+(t) = ¢, (t). From.Qi and Zhang, 2008.

If we consider only these two bands, this model describes a
Applying similar arguments to process (b) givAg); = TR symmetry breaking systern (@i al, 2006). As long as

AQ, = ¢/2, which leads to a chargeon state wik) = ¢ there is a gap between the two bands, the Hall conductance of
andAS. = 0. Processes (c) and (d) giveQ; = —AQ, = the systemis quantized (Thoulestsal,[1982). The quantized
e/2andAQ; = —AQ, = —e/2 respectively, which yield the Hall conductance is determined by the first Chern number of
spinon states witlA@ = 0 andAS, = +1/2. The Hamilto-  the Berry phase gauge field in the Brillouin zone, which, for
niansH (t) in the presence of the gauge flux are the same aihe generic two-band modél(28), reduces to the followimg fo
t = 0 andt = 1, but differ in the intermediate stages of the mula:
four adiabatic processes. Assuming that the ground state is
unigue at = 0, we obtain four final states at= 1, which are o = dk, /dk d. 3d 3d (29)
the holon, chargeon and the two spinon states. Both the spin h 47T Bk ’
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which is e?/h times the winding number of the unit vector the Hamiltonian[(R), we see that the mass térhfor the up-
d(k) = d(k)/|d(k)| around the unit sphere. ThEk) vec-  per blockis replaced by/ + (G — G )/2, while that for the
tor defined in Eq.[{3) has a skyrmion structure #dy B > 0 lower blockis replaced by/ — (G —Gg)/2. Therefore, the
with winding numberl, while the winding number i9 for  two blocks do acquire a different mass, which makes it possi-
M/B < 0. Just as in an ordinary QH insulator, the systemble to reach the QAH phase. After considering the effectef th
with nontrivial Hall conductance?/h has one chiral edge identity term(Gr + G rr)/2, the condition for the QAH phase
state propagating on the edge. For the QSH system describélgiven byGpGy < 0. WhenGepGy > 0 andGg # Gy,
by Eq. [2), the lowe? x 2 block has the opposite Hall conduc- the two blocks still acquire a different mass, but the sydtem
tance, so that the total Hall conductance is zero, as gusednt comes metallic before the two blocks develop an opposite Hal
by TR symmetry. The chiral edge state of the QAH and its TRconductance. Physically, we can also understand the hysic
partner form the helical edge states of the QSH insulator. ~ from the edge state picture [FId. 9(b)]. On the boundary of a
QSH insulator there are counter-propagating edge states ca
increasing |G| and |Gyl rying opposite spin. When the spin splitting term increases
> one of the two blocks, say the spin down block, experiences a
topological phase transition &f = (Gg — G)/2. The spin
down edge states penetrate deeper into the bulk due to the de-
creasing gap and eventually disappear, leaving only the spi
up state bound more strongly to the edge. Thus, the system
has only spin up edge states and evolves from the QSH state
to the QAH state [Fig.19(b)]. Although the discussion above
is based on the specific modEl (2), the mechanism to gener-
ate a QAH insulator from a QSH insulator is generic. A QSH
insulator can always evolve into a QAH insulator once a TR
symmetry breaking perturbation is introduced.

Fortunately, in Mn-doped HgTe QWs the condition
GGy < 0 is indeed satisfied, so that the QAH phase ex-
ists in this system as long as the Mn spins are polarized. The
microscopic reason for the opposite sign®@f and Gy is
the opposite sign of the-d and p-d exchange couplings in
FIG. 9 Evolution of band structure and edge states uponasirg  this System ,2008). Interestingly, in another family
the spin splitting. For (afs» < 0 andGy > 0, the spin down ~ Of QSH insulators, BiSe; and BiTey thin films (Liuet all,
states E1, —) andn|H 1, —) in the same block of the Hamiltonian [2010), the conditioi G < 0 is also satisfied when mag-

(@) first touch each other, and then enter the normal regiroe(df  netic impurities such as Cr or Fe are introduced into the sys-
Gp > 0andGpr > 0, gap closing occurs betweei'l, +) and  tem, put for a different physical reason. In HgTe QWs, the
|H1, —_), which belong to dl_fferent bIoc_ks of the Hamiltonian, and two bands in the upper block of the Hamiltonidd (2) have
thus will cross each other without opening a gap. (b) Behafithe . . . - - . .
edge states during the level crossing. Fromefial, 2008, th.e same d|rept|or_1 of spin, but couple Wlth the impurity spin
with an opposite sign of exchange coupling because one band
When TR symmetry is broken, the two spin blocks are nog:g;r;?steslr:r%r_nss-ork;;a:jlst_vglle tgstﬁtgzaggg(;?iaﬁ;g%ﬁ m
longer related, and their charge Hall conductances no fonge | b6 b 1Cs, 9

. . -orbitals, which have the same sign of exchange coupling
cancel exactly. For example, we can consider a differensmag’; . . . . _
with the impurity spin, but the sign of spin in the upper block

M for the two blocks, which breaks TR symmetry. If one . . "
L N is opposite , ). Consequently, the condition
block s in the trivial insulator phasé{/B < 0) and the other GrGr < 0is still satisfied. More details on the properties

block is in the QAH phaseM(/B > 0), the whole system of the BLSe; and B Tes family of materials can be found

become_)s a QAH sta.te with Hall conductan . /h'. Phy§|- in the next section, since as bulk materials they are both 3D
cally, this can be realized by exchange coupling with magnet o
topological insulators.

impurities. In a system doped with magnetic impurities, the
spin splitting term induced by the magnetization is geradijic

written as
F. Experimental results
Gg 0 0 0
0 Gy 0 0 1. Quantum well growth and the band inversion transition
H, = , (30)
0 0 —-Gg O - )
As shown above, the transition from a normal to an in-

0 O 0 -Gy

verted band structure coincides with the phase transitmm f
whereG g andG g describe the splitting of'1 andH1 bands  a trivial insulator to the QSH insulator. In order to cover
respectively, which are generically different. Addiify to  both the normal and the inverted band structure regime, HgTe
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QW samples with a QW width in the range frof5 nm

to 12.0 nm were grown |(Konig, 2007; Koniet all, [2008; 100
Konig et al, [2007) by molecular beam epitaxy (MBE). Sam-
ples with mobilities of several0® cm?/(V-s), even for low
densitiesn < 5 x 10'' cm~2, were available for transport
measurements. In such samples, the mean free path is of the
order of several microns. For the investigation of the QSH
effect, devices in a Hall bar geometry [Figl 12, inset] ofivar
ous dimensions were fabricated from QW structures with well
widths of4.5 nm, 5.5 nm, 6.4 nm, 6.5 nm, 7.2 nm, 7.3 nm,

8.0 nm and12.0 nm.

For the investigation of the QSH effect, samples with a low -100
intrinsic densityn(V, = 0) < 5 x 10'' cm~2 were studied. 0
When a negative gate voltad€, is applied to the top gate
electrode of the device, the usual decrease in electroritdens
is observed. In Fi§. 10(a), measurements of the Hall reista FIG. 11 Landau level dispersion for quantum well thicknesse
R, are presented for a Hall bar with length= 600 pm and  of (a) 4.0 nm, (b) 15.0 nm. The qualitative behavior is indica-
width W = 200 um. The decrease of the carrier density istive for samples with (a) normal and (b) inverted band strect
reflected in an increase of the Hall coefficient when the gaté:romv-
voltage is lowered fron®) V to —1 V. In this voltage range,
the density decreases linearly fréns x 10! cm=2t0 0.5 x
10'* em~ [Fig. [IO(b)]. For even lower gate voltages, the however, a significant change is observed for the LL disper-
sion [Fig.[T1 (b)]. Due to the inversion of electron-like and
hole-like bands, states near the bottom of the conductiond ba
have predominantly character. Consequently, the energy
’ B of the lowest LL decreases with increasing magnetic field.
L m 13 On the other hand, states near the top of the valence band
n have predominantly character, and the highest LL shifts to
. higher energies with increasing magnetic field. This leads t
a crossing of these two peculiar LLs for a special value of
the magnetic field. This behavior has been observed earlier
by the Wirzburg group and can now be demonstrated analyt-

i e ically within the BHZ modell(Koniget all, 2008). The exact
\ R o 0 magnetic field5...ss at which the crossing occurs depends on
\ Vg=-2V thh " dqw. The existence of the LL crossing is a clear signature
-30 - s L N S of an inverted band structure, which corresponds to a negati
o 2 4 & 800 -05-10 15 -20 energy gap withAM//B < 0 in the BHZ model. The cross-
B(M Vg V) ing of the LLs from the conduction and valence bands can
be observed in experiments [F[g.]12(a)]. For gate voltages

FIG. 10 (a) Hall resistancg.., for various gate voltages, indicating ‘_/9 2 -1.0VandV, < -2.0V, Ep is plearly N th,e cor_1duc-
the transition from- to p-conductance. (b) Gate-voltage dependenttion band and valence band, respectively. Whgnis shifted

carrier density deduced from Hall measurements. Fromg towards the bottom of the conduction band, I.< —1.0'V,
[2008. a transition from a QH state with filling factar = 1, i.e.

R.y = h/e? = 25.8 kQ, to an insulating state is observed.
sample becomes insulating, because the Fermi enérgis ~ Such behavior is expected independently of the detailsef th
shifted into the bulk gap. When a large negative voltegec band structure, when the lowest LL of the conduction band
—2 Vis applied, the sample becomes conducting again. It caorossesEr for a finite magnetic field. Whetr is located
be inferred from the change in sign of the Hall coefficient tha within the gap, a nontrivial behavior can be observed for de-
the device i-conducting. ThusEr has been shifted into the vices with an inverted band structure. Since the lowest LL of
valence band, passing through the entire bulk gap. the conduction band lowers its energy with increasing mag-

The peculiar band structure of HgTe QWSs gives rise tonetic field, it will crossE r for a certain magnetic field. Subse-
a unique LL dispersion. For a normal band structure, i.e.quently, one occupied LL is belowg, giving rise to the usual
dqw < d., all LLs are shifted to higher energies for increas-transport signatures of the quantum Hall regime, i&,, is
ing magnetic fields [Fig—11(a)]. This is the usual behaviorquantized at/e? and R, vanishes. When the magnetic field
and can be commonly observed in most materials. When this increased, the LLs from the valence and conduction band
band structure of the HgTe QW is inverted tgw > d., cross. Upon crossing, their "character” is exchangedthe.
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for the existence of the QSH state. In contrast, trivial insu
lating behavior is obtained for devices witlhyw < d.. For

a normal band structure, the energy gap between the lowest
LLs of the conduction and valence bands increases in mag-
netic field [Fig[I1(a)]. Thus, a sample remains insulatimg i
magnetic field, ifEr is located in the gap at zero field. The
details of the physics of this reentrant QH state can be under
stood within the BHZ model with an added orbital magnetic
field (Koniget all, [2008). This nontrivial LL crossing could
also be detected optically (Schmiitall, ' 2009).

2. Longitudinal conductance in the quantum spin Hall state

Initial evidence for the QSH state was revealed when Hall
bars of dimensionéL x W) = (20.0 x 13.3) um? with dif-
ferent thicknesglqw are studied. For thin QW devices with
dow < d. and a normal band structure, the sample shows
trivial insulating behavior [Fig_13]. A resistance of seale
megaohms is measured when the Fermi level lies within the
bulk insulating gap. This value can be attributed to the eois
level of the measurement setup, and the intrinsic conduetan
is practically zero. For a thicker device widhyw > d.

BIT

s f——a5 A’ ' ' '
103504

FIG. 12 (a) Hall resistanc®,,, of a(L x W) = (600 x 200) um?
QW structure with6.5 nm well width for different carrier concen-
trations obtained for different gate voltag®s in the range from

—1Vto —2 V. For decreasing/,, then-type carrier concentration N
decreases and a transitionptdype conduction is observed, passing g
through an insulating regime betweerni.4 V and —1.9 V at zero ac

field. (b) Landau level fan chart of@5 nm quantum well obtained
from an eight-bandk - p calculation. Black dashed lines indicate
the position of the Fermi energy;r, for gate voltages-1.0 V and
—2.0 V. Red and green dashed lines indicate the positioR effor
the red and green Hall resistance traces in (a). The crogsimgs

of E'r with the respective Landau levels are marked by arrows of the A .
same color. From [2007. -2.0 -1.5 -1.0 -0.5 0.0

vV /V
9

level from the valence band turns into a conduction band LLFIG. 13 Longitudinal resistance of45 nm QW [dashed (black)]

and vice versa. The lowest LL of the conduction band nowand a8.0 nm QW [solid (red)] as a function of gate voltage.

rises in energy for larger magnetic fields. Consequently, iFromKoniget all,[2008.

will cross theFEr for a certain magnetic field. Sindéx will

be located within the fundamental gap again afterwards, thand an inverted band structure, however, the resistance doe

sample will become insulating again. Such a reentnatype  not exceedl00 k2. This behavior is reproduced for vari-

QH state is shown in Fig12(a) féf, = —1.4 V (greentrace). ous Hall bars with a QW width in the range froftb nm to

For lower gate voltages, a corresponding behavior is okserv 12.0 nm. While devices with a normal band structure, i.e.

for ap-type QH state (e.g. red trace fof, = —1.8 V). As  dqw < d. = 6.3 nm, show trivial insulating behavior, a finite

Fig.[12(b) shows, the experimental results are in good agreeonductance in the insulating regime is observed for sasnple

ment with the theoretically calculated LL dispersion. Thewith an inverted band structure.

crossing point of the LLs in magnetic field.,.ss, can be The obtained finite resistande ~ 100 k2 is significantly

determined accurately by tunirgr through the energy gap. higher than the four-terminal resistankg(2¢?) ~ 12.9 kQ

Thus, the width of the QW layer can be verified experimen-one anticipates for the geometry used in the experiments.

tally (Konig et all, [2007). The enhanced resistance in these samples with a length of
The observation of a reentrant QH state is a clear indicatiod. = 20 um can be understood as a consequence of inelas-

of the nontrivial insulating behavior, which is a preredggis tic scattering. While, as discussed above, the helical edge
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states are robust against single-particle elastic battksca 3. Magnetoconductance in the quantum spin Hall state
ing, inelastic mechanisms can cause backscattering.n¥or
doped HgTe quantum wells, the typical mobility of the or- Another indication that the observed nontrivial insulgtin
der of10° cm?/(V-s) implies an elastic mean free path of the state is caused by the QSH effect is obtained by measure-
order of 1 ym (Daumeret all, 2003). Lower mobilities can ments in a magnetic field. The following experimental result
be anticipated for the QSH regime. The inelastic mean freavere obtained on a Hall bar with dimensios x W) =
path, which determines the length scale of undisturbedtran (20.0 x 13.3) um? in a vector magnet system at a temperature
port by the QSH edge states, can be estimated to be severdl1.4 K (Konig, 2007; Koniget al,, [2007). When a magnetic
times larger due to the suppression of phonons and the rdield is applied perpendicular to the QW layer, the QSH con-
duced electron-electron scattering at low temperaturbas,;T  ductance decreases significantly already for small fields. A
the inelastic scattering length is of the order of a few nmisto  cusp-like magnetoconductance peak is observed with a full
width at half-maximumBewnuy Of 28 mT. Additional mea-

For the observation of the QSH conductance, the samplsurements show that the width of the magnetoconductance
dimensions were reduced below the estimated inelastic megreak decreases with decreasing temperature. For example,
free path. When Hall bars with a length= 1 um are stud- Bpwuym = 10 mT is observed at 30 mK. For various devices
ied, a four-terminal resistance close/tg(2¢?) is observed. of different sizes, a qualitatively similar behavior in nnagjc
The threshold voltag®,, is defined such that the QSH regime field is observed.
is in the vicinity of V;, = V;,. The slight deviation ofR
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P ' 6 ' 1 ' 2 FIG. 15 Four-terminal magnetoconductan€g, s in the QSH
regime as a function of tilt angle between the QW plane andfhe
(Vg'vﬂ, MV plied magnetic field for & = 7.3 nm QW structure with dimensions

(L x W) = (20 x 13.3) um* measured in a vector field cryostat at
FIG. 14 Longitudinal resistance as a function of gate valtagtwo 3 temperature of.4 K. From
devices with = 1 pm. The widthW is 1 um [solid (black) and
dotted (blue)] an@.5 um [dashed (red)]. The solid and dashed traces

were obtained at a temperaturelof K, and the dotted one dt2 K. When the magnetic field is tilted towards the plane of the
From[Kéniget all,2008. QW, the magnetoconductance peak arotthd= 0 widens

steadily [Fig.[1b]. For a tilt anglex = 90°, i.e. when

the magnetic field is in the QW plane, only a very small
from the quantized valug/(2¢?) can be attributed to some decrease in the conductance is observed. The decrease of
residual scattering. This is an indication that the lendtthe  the conductance for an in-plane field can be described by
edge states still exceeds the inelastic mean free path.efFhe rBrwunm = 0.7 T for any in-plane orientation. From the re-
sults presented in Fif._l14 provide evidence that transport isults shown in Fig.15, it is evident that a perpendiculadfiel
the QSH regime indeed occurs due to edge states. The twwas a much larger influence on the QSH state than an in-plane
devices withiW = 1.0 yum andW = 0.5 um were fab- field. The magnetoresistance in the QSH regime has been in-
ricated from the same QW structure. The resistance of theestigated theoretically (Chet all, [2009] Koniget all, [2008;
two devices differ significantly in the-conducting regime, [Maciejkoet all, 2009 Tkachov and Hankiewldz, 2010). The
where transport is determined by bulk properties. In the QSHarge anisotropy can be understood by a slightly modified ver
regime, however, both devices exhibit the same resistancsjon of the BHZ model with the inclusion of BIA terms and
even though the width of the devices differs by a factor ofanisotropy in thg-factor (Koniget all,[2008] Maciejkcet all,
two. This fact clearly shows that the conductance is duedo tf’@). The cusp behavior in the magnetoconductance is pos-
edge states, which are independent of the sample width.  sibly due to the presence of strong disorder; numerical simu
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FIG. 16 Experimental measurements of the four- and twoteat
resistance: (a)Ri4,23 (red line) andRi4,14 (green line) and (k
Ri3,56 (red line) andR, 3,13 (green line). The dotted blue lines in VE(V)
cate the expected resistance value from the theory of theshetige

states. Frorn Rotht all,[2009.
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FIG. 17 Nonlocal four-terminal resistance and two-terrhiesis-
tance measured on an H-bar devidgis 23 (red line) andR14,14
(green line). The dotted blue line represents the thealbtiex-

pected resistance. Fram Rathall,[2009.

lations (Maciejkeet all,2009) are in good agreement with the

experimental results.

nal tends to zero. In the QSH regime, however, the nonlo-
4. Nonlocal conductance cal resistance signal increases06.5 k2, which again fits

] ) ] perfectly to the result of Laudauer-Buttiker consideras:
Further confidence in the helical edge state transport CaR , ,3 = h/4e® ~ 6.45 k(2. Classically, one would expect

be gained by performing more extended multi-terminal expergnyy 4 minimal signal in this configuration (from Poisson’s
iments (Rottetal, [2009). The longitudinal resistance of a gqyation, assuming diffusive transport, one estimategrabi
device was measured by passing a current through contac apouti0 ©2), and certainly not one that increases so strongly
1 and 4 [Fig[1b] and by detecting the voltage between conghen the bulk of the sample is depleted. The signal measured
tacts 2 and 3R14,23). For this case, aresult similar to the re- pere js fully nonlocal, and can be taken (as was done twenty
sults found previously, i.e. a resistarigg(2¢) when the bulk  years ago for the QH regime) as definite evidence of the exis-

of the device is gated into the insulating regime [Eid. 16(a) tence of edge channel transport in the QSH regime.
However, the longitudinal resistance is significantly efiff

ent in a slightly modified configuration, where the current is
passed through contacts 1 and 3 and the voltage is measurgd THREE-DIMENSIONAL TOPOLOGICAL INSULATORS
between contacts 4 and %3 45) [Fig. 8(b)]. The result
iS Ri3,45 ~ 8.6 k2, which is markedly different from what The model Hamiltonian for the 2D topological insulator in
one would expect for either QH transport, or purely diffesiv HgTe QWSs also gives a basic template for generalization to
transport, where this configuration would be equivalenb® t 3D, leading to a simple model Hamiltonian for a class of mate-
previous one. However, the application of the transporaequ rials: Bi,Se;, Bi;Tes, and ShTe; (Zhanget all,'2009). Sim-
tions [23) and(24) indeed predicts that the observed behaviilar to their 2D counterpart the HgTe QWSs, these materials
is what one expects for helical edge channels. One easily finccan be described by a simple but realistic model, where SOC
that this resistance value can be expressed as an integer fralrives a band inversion transition at thepoint. In the topo-
tion of the inverse conductance quaetdh: Ri3 45 = h/3¢%. logically nontrivial phase, the bulk states are fully gaghpe
This result shows that the current through the device is-influbut there is a topologically protected surface state ctingis
enced by the number of ohmic contacts in the current path. Asef a single massless Dirac fermion. The 2D massless Dirac
discussed earlier, these ohmic contacts lead to the equilib fermion is “helical”, in the sense that the electron spimp®i
tion inside the contact of the chemical potentials of the twoperpendicularly to the momentum, forming a left-handed he-
counter-propagating helical edge channels. lical texture in momentum space. Similarly to the 1D helical
Another measurement that directly confirms the nonlocakdge states, a single massless Dirac fermion state is “holo-
character of the helical edge channel transport in the QSkraphic”, in the sense that it cannot occur in a purely 2D sys-
regime is shown in Fid.17. This figure shows data obtainedem with TR symmetry, but can exist as the boundary of a 3D
from a device in the shape of the letter “H”. In this four- insulator. TR invariant single-particle perturbationsieat in-
terminal device the current is passed through contacts 1 artdoduce a gap for the surface state. A gap can open for the
4 and the voltage is measured between contacts 2 and 3. surface state when a TR breaking perturbation is introduced
the metallicn-type regime (low gate voltage) the voltage sig- on the surface. Moreover, the system becomes full insglatin
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both in the bulk and on the surface. In this case, the topolog Tc:‘: =
ical properties of the fully gapped insulator are charaoter (a) ﬁ-o ZZ’ (b)
by a novel topological magnetoelectric effect. x

Soon after the theoretical prediction of the 3D topologi-
cal insulator in the BiTe;, Sh,Te; (Zhanget al, [2009) and Quintuple
Bi,Se; (Xia et all, 2009; Zhanget all, [2009) class of materi- layer
als, angle-resolved photoemission spectroscopy (ARPES) o
served the surface states with a single Dirac ¢
12009; | Hsielret all, [2009; | Xiaet all, [2009).  Furthermore,
spin-resolved ARPES measurements indeed observed tl
left-handed helical spin texture of the massless Dirac

e Bi
fermion (Hsiehet al,,[2009). These pioneering theoretical and © Set
experimental works inspired much of the subsequent develog < Se2

ments which we review in this section.
We take advantage of the model simplicity of the 88,
Bi>Tes, ShyTe; class of 3D topological insulators and give

a pedagogical Introducthn based on thls particular meiteri ¢\ 1g (a) Crystal structure of Bbe; with three primitive lattice
system. In the next section, we shall introduce the generglectors denoted bt » 5. A quintuple layer with S&-Bi1-Se2-Bi1’-
theory of the topological insulators. The electronic stloe  Sel’ is indicated by the red box. (b) Top view along thadirec-
of the Bk Se;, BixTes, ShyTes class of topological insulators tion. Triangular lattice in one quintuple layer has threecuiva-
is simple enough to be captured by a simple model Hamillent positions, denoted by A, B and C. (c) Side view of the quin
tonian. However, more powerful methods are needed to ddUPle layer structure. Along the direction, Se and Bi atomic lay-
termine the topological properties of materials with a morefz\IrS are stacke,d In the sequence-C(Sel’)-A(Sel)-B(Bi1)-C(Se)-
. . (Bi1')-B(Sel’)-C(Sd)----. The Sa (Bil) layer is related to the
complex ellectronlc structure. In this regard, the TBT hasgy’ (Bi1") layer by inversion,where Seatoms play the role of in-
played an important role (Fet al, 2007; Moore and Balents, version center. Adapted from Zhaggal, 2009.
2007;[Roly[ 2009). In particular, a method due to Fu and
Kane (Fu and Kamné, 2007) gives a simple algorithm to de-
termine the topological properties of an arbitrarily coexypl and a bisectrix axis (in the reflection plane) defined asjthe
electronic structure with inversion symmetry. This methodaxis. The material consists of five-atom layers stackedgalon
predicts that BiSb, . is a topological insulator for a certain thez direction, and known as quintuple layers. Each quintuple
range of composition. ARPES measuremenm, layer consists of five atoms per unit cell with two equivalget
M) have indeed observed topologically nontrivial stefa atoms denoted by $eand Sé’ in Fig.[18(b), two equivalent
states in this system, giving the first example of a 3D topo-Bi atoms denoted by Biand Bil’ in Fig.[18(b), and a third Se
logical insulator. The topological properties of this mi&tk  atom denoted by Rdn Fig.[18(b). The coupling between two
have been further investigated both theoretically and expe atomic layers within a quintuple layer is strong, while that
mentally (Nishideet all, 2010; Tecet all, (2008, Zhangtal,  tween quintuple layers is much weaker, and predominantly of
). however, the surface states in. 8l _, are rather the van der Waals type. The primitive lattice vectors 3 and
complicated, and cannot be described by simple model Hamikhombohedral primitive unit cells are shown in Higl 18(aheT
tonians. For this reason, we focus on the®%, Bi,Te;, Se site plays the role of an inversion center. Under inversion,
Sh, Te; class of topological insulators in this section. Bil is mapped to Bi’ and Sé is mapped to SE.
To get a better understanding of the band structure and or-
bitals involved, we start from the atomic energy levels and
A. Effective model of the three-dimensional topological then consider the effects of crystal field splitting and S@C o
insulator the energy eigenvalues at thepoint in momentum space.
This is summarized schematically in three stages (l), @it a
In this review we focus on an effective model for 3D topo- (Ill) [Fig. [9fa)]. Since the states near the Fermi level are
logical insulators|(Zhanat all, [2009) which, simply by ad- primarily from p-orbitals, we will neglect the-orbitals and
justing parameters, is valid for studying the properties ofstart from the atomip-orbitals of Bi (electronic configuration
Bi,Se;, BisTes, and SbTe;. Bi,Se;, BisTes, and ShTe; 6526p®) and Se 4s%4p*). In stage (l), we consider chemical
share the same rhombohedral crystal structure with spad®onding between Bi and Se atoms within a quintuple layer,
group D3, (R3m) and five atoms per unit cell. For exam- which corresponds to the largest energy scale in this pnoble
ple, the crystal structure of BSe; is shown in Fig[ IB(a), and First, we can recombine the orbitals in a single unit cell ac-
consists of a layered structure where individual layermfar  cording to their parity. This results in three states (twal,0d
triangular lattice. The important symmetry axes are atrajo one even) from each Sgorbital and two states (one odd,
axis (three-fold rotation symmetry) defined as thexis, a bi-  one even) from each Bi-orbital. The formation of chemical
nary axis (two-fold rotation symmetry) defined as thaxis, = bonds hybridizes the states on the Bi and Se atoms, and pushes
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down all the Se states and lifts all the Bi states. In[Eig. 1.9(a b
these five hybridized states are labeledras?, ), | P25, .) (a) ritorst,, (B)

x,y,z P1=

T2

and\PO;yMZ), where the superscripts stand for the parity of pidy /Pty P,
the corresponding states. In stage (ll), we consider thexeff B_I/\Pﬁﬁy

of crystal field splitting between differeptorbitals. Accord-

ing to the point group symmetry, the orbital is split from

thep, andp, orbitals while the latter two remain degenerate. e
After this splitting, the energy levels closest to the Feem

ergy turn out to be thg, levels|P1}) and|P27). In the last
stage (l1l), we take into account the effect of SOC. The atomi
SOC Hamiltonian is given byiso = AL - S, with L, S the (N (1 (1)

orbital and spin angular momentum, respectively, aritie

strength of SOC. The SOC Hamiltonian mixes spin and or-

bital angular momenta while preserving the total angular moFIG. 19 (a) Schematic picture of the evolution from the awmi
mentum. This leads to a level repulsion betwéen;, 1) De.y,- Orbitals of Bi and Se into the conduction and valence bands

and|P1},, .|), and between similar combinations. Conse-°f BizSe; at thel” point. The three different stages (1), (I1) and
zry (1) represent the effect of turning on chemical bondingystal field

quently, the energy of the”11, 1 (1)) state is pushed down splitting, and SOC, respectively (see text). The blue dasihe rep-
by the effect of SOC, and the energy of fie2 ", 1 (])) state  resents the Fermi energy. (b) The energy ley#ls!) and |P27)

is pushed up. If SOC is larger than a critical value> X.,  of Bi,Se; at thel" point versus an artificially rescaled atomic SOC
the order of these two energy levels is reversed. To illtstra A(Bi) = zXo(Bi) = 1.252 [eV], A(Se) = zXo(Se) = 0.22z [eV]
this inversion process explicitly, the energy levePd ) and  (see text). A level crossing occurs between these two stdtes
|P2-) have been calculatem ) for a model @ = & = 0.6. Adapted from Zhanet all, 2009.

Hamiltonian of By Se; with artificially rescaled atomic SOC

arameters\(Bi) = z A (Bi), \(Se) = 2)\;(Se), as shown in - . .
P (BI) = 220(Bi), A(S = 22o(S§ W ants (Winkler| 2003) at a finite wavevector The important

Fig.[19(b). Here\o(Bi) = 1.25 eV and)y(Se) = 0.22 eV : . .
are the actual values of the SOC strength for Bi and Se atomgymmetnes of the system are TR symmélirynversion sym-

respectivelyl(Wittel and Manhe, 1974). From Higl 19(b), oneMetry 7, and thr_ee-folfi rotation symmeti% aroung the:

can clearly see that a level crossing occurs betwédr) axis. In the ba3|_s{|Plz 1,122, 1), IPLE ), |Pzz ’¢.>}’ .
and|P2; ) when the SOC strength is about 60% of its actual® represgntaﬂon of these symmetry operations is given
value. Since these two levels have opposite parity, therinve ™ * ~ “’}'Iylc ® ]I2hx2- HI = ]Izhxz) © 73 ,‘3nd Cs =

sion between them drives the system into a topological insu? (230 ®l>x2), where nxn 1S Tem x 7 | e”“t{ ma
lator phase, similar to the case of HgTe QWs (Bernexigl, "> X IS the complex conjugation operator, and~ and
M). Therefore, the mechanism for the occurrence of a 361,7,.; denote the Pauli matrices in the spin and orbital space,

topological insulating phase in this system is closely anal respectively. By requiring these three symmetries andikgep

gous to the mechanism for the 2D QSH effect (2D topolog—only terms up to quadratic order ky we obtain the following

ical insulator) in HgTel(Bernevigt al,, [2006). More pre- generic form of the effective Hamiltonian:

otin P2y 02 04 06 08 10

cisely, to determine whether or not an inversion-symmetric H (k) = eo(k)Lixq +

crystal is a topological insulator, we must have full knowl-

edge of the states ail of the eight TR invariant momenta M(k) Ak, 0 Agk—

(TRIM) (Fuand Kankl, 2007). The system is a (strong) topo- Ark, —M(k) Ak 0 (31)
logical insulator if and only if the band inversion between 0 Asky M(k) —Aik. ’

states with opposite parity occurs at odd number of TRIM. Aok 0 —Ark, —M(k)

The parity of the Bloch states at all TRIM have been studied
by ab initio methods for the four materials $8e;, BisTe;,  With ki = k, +iky, eo(k) = C+D1k2+Dok? andM (k) =
Sh,Se;, and ShTe; (zhangetal, 2009). Comparing the M — B;k2— Byk? . The parameters in the effective model can
Bloch states with and without SOC, one conclude thaSsp  be determined by fitting the energy spectrum of the effective
is a trivial insulator, while the other three are topologinau- ~ Hamiltonian to that ofb initio calculations|(Livet al,, [2010;
lators. For the three topological insulators, the bandrisioa Mﬂ,mmz. The fitting leads to the parameters
only occurs at thé& point. displayed in TablE]I ,2010).

Except for the identity terma, (k), the Hamiltonian[(31) is

Since the topological nature is determined by the physicsimilar to the 3D Dirac model with uniaxial anisotropy along

near thd” point, it is possible to write down a simple effective the z direction, but with the crucial difference that the mass
Hamiltonian to characterize the low-energy, long-wavgten term is k-dependent. From the fact that, B;, B, > 0
properties of the system. Starting from the four low-lyingwe can see that the order of the banda;, 1 (J)) and
states|P17,1 (1)) and |[P27,1 (})) at theT point, such |T27,1 ({)) is inverted aroundk = 0 compared with large
a Hamiltonian can be constructed by the theory of invari-k, which correctly characterizes the topologically noniiv
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Consider the model Hamiltonian (31) on the half-space

TABLE Il The parameters in the model Hamilto- 0. In the same way as in the 2D case, we can divide the model

nian [31) obtained from fitting tab initio calculation.

Adapted from[(Livet all, 2010). Hamiltonian into two parts,
BiySes BisTes ShyTes H = Ho + H, (32)
A(eV-A) 226 030 084 M(k,) Ak, 0 0
Ay(eV-A) 333 287 340 o = &) + Ak, —M(k)) 0 0
C(eV) -0.0083 -0.18 0.001 0= Pz 0 0 M(k) —Ak, |
Di(eV-A?) 574 655 -12.39 0 0  —MAk, —M(k.)

o

Da(eV-A?) 304 4968 -10.78
M(eV 028 030 0.22
Bi(eV-A%) 686 279 19.64 H, = Dok +

o

2(eV-A%) 445 57.38 4851

—Bok? 0 0 Agk_
0  Bok? Ak 0
0 Agky —Bok® 0
Agky 0O 0  Bok?

~

o)

, (33)

o5

i =~ _ 2 Y _ 2 ]
nature of the system. In addition, the Dirac magsi.e. the W'tg e(ké) N dCE+ %’;Z and{\(;[(ki) I_ Mth_tflkz. Ho ‘
bulk insulating gap, isv 0.3 eV, which allows the possibil- Q qu L% ?\2 . g [B) arell eg 'ga’ vg c %pa]\r;me ers
ity of having a room-temperature topological insulatorcisu Et’q @S fher(l,?oreq.the)sL?'Faigestaté%;t’: kl’ _ 0 ils’ dettlar;

. H . . ’ Yy -
an effective model can be used for further theoretical safdy mined by the same equation as that for the OSH edge states. A

the BLSe; system, as long as low-ener roperties are con- . X
cerne% &Sy 9 gy prop surface state solution exists féf/B; > 0. In the same way

Corrections to the effective Hamiltoniafi{31) that are of &S in thg 2D case, the surface state has a helicity dete(mined
higher order ink can also be considered. To cubic®) by the sign ofd, /B;. (Here and below we always consider
order, some new terms can break the continuous rotatiof€ ase With31 B, > 0, A, 4; > 0.) .
symmetry around the axis to a discrete three-fold rotation In analogy to the 2D QSH case, the surface effective model

symmetryCs. Correspondingly, the Fermi surface of the can be obtained by projecting the bulk Hamiltonian onto

¢ it . h | sh (Ful 2009). whi Iﬂe _surface states. .To _the leading orderkin ky, the ef.-
surtace siate acquires a hexagona’ s @em ), W I$ect|ve surface Hamiltoniart/,,,s has the following matrix

leads to important consequences for experiments on topQ- - )
logical insulators such as surface state quasipartickefart orm (Liu etal, 2010; Zhangt al, 2009):
ence [(Alpichsheet al, [2010; Leeet al,, [2009; Zhangt all, Hant (ks ky) = C + Ay (0%ky — 0¥k,) . (34)
2009 Zhowet all,[2009). A modified version of the effective _

model [31) taking into account corrections upkfohas been Higher order term_s such &s terms break the _aX|aI symme-
obtained for the three topological insulators 8@, Bi>Te;, Y _around the: axis d_own toa tr_lree-fold rotation symmetry,
and ShTe; based orab initio calculations[(Litet all, 2010). ~ Which has been studied in the Ilte(at@(lm .
In this same work! (Litet all, [2010), an eight-band model is 2010). Ford, = 4.1 eV-A, the velocity of the surface states is

also proposed for a more quantitative description of this-fa 9iven byv = Az /h ~ 6.2 x 10> m/s, which agrees reasonably
ily of topological insulators. with ab initio results [Figl2D ~ 5.0 x 10° m/s.

To understand the physical properties of the surface states
we need to analyze the form of the spin operators in this
B. Surface states with a single Dirac cone system. By using the wave function froab initio calcu-
lations and projecting the spin operators onto the subspace
The existence of topological surface states is one of thepanned by the four basis states, we obtain the spin opgrator
most important properties of topological insulators. The s for our model Hamiltonian, with matrix elements between sur
face states can be directly extracted fraim initio calcula-  face states given by, | S, |¥s) = S.002?, (V,|S,|¥s) =
tions by constructing maximally localized Wannier funatio Syoo—;ﬁ and(¥,|S.|¥gs) = S.00%%, with Sz(y,2)0 SOME pos-
and calculating the local density of states on an open boundtive constants. Therefore, we see that the Paulinatrix
ary (Zhanget al,, [2009). The result for the BSe; family of  in the model Hamiltonian{34) is proportional to the physi-
materials is shown in Fig.20(a)-(d), where one can clearlycal spin. As discussed above, the spin direction is detexthin
see the single Dirac-cone surface state for the three topdoy the sign of the parametel; / B1, which depends on mate-
logically nontrivial materials. However, to obtain a bette rial properties such as the atomic SOC. In the3g family
understanding of the physical origin of topological suefac of materials, the upper Dirac cone has a left-handed hglicit
states, it is helpful to show how the surface states emeoge fr when looking from above the surface [Fig] 20(e),()].
the effective mode[(31) (Lindest al, [ 2009; Liuet all, From the discussion above, we see that the surface state
Lu et all, 2010; Zhanget all, [2009). The surface states can beis described by a 2D massless Dirac Hamilton[ad (34). An-
obtained in a similar way as the edge states of the BHZ modeaidther well-known system with a similar property is graphene

(Sec[LB). a single sheet of graphite (Castro Netal, [2009). However,
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Topological insulators

FIG. 20 (a)-(d) Energy and momentum dependence of the lecel d
sity of states for the BiSe; family of materials on th¢l11] surface.
A warmer color represents a higher local density of state=d iRe-
gions indicate bulk energy bands and blue regions indicdialla
energy gap. The surface states can be clearly seen afopoiht
as red lines dispersing inside the bulk gap. (e) Spin patade of
the surface states on the top surface, wher&tﬂleectlon is the sur-
face normal, pointing outwards. Adapted fr
and Liuet al,
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wardly generalized to the interface states between two-insu
lators (Fradkiret all, [1986; Volkov and Pankratoy, 1985). In
these pioneering works, the interface states between Ridle a
SnTe were investigated. The interface states consist af fou
Dirac cones. Therefore, they are topologically trivial arod
generally stable under TR invariant perturbations. Théaser
states of topological insulators are also similar to the aiom
wall fermions of lattice gauge theol92). Intfac
domain wall fermions are precisely introduced to avoid the
fermion doubling problem on the lattice, which is similar to
the concept of a single Dirac cone on the surface of a topolog-
ical insulator.

The helical spin texture described by the single Dirac cone
equation[(34) leads to a general relation between charge cur
rent densityj(x) and spin density(x) on the surface of the

topological insulatorl (Raghet all, [2010)
ix) = v[T(x)oip(x) x 2] = vS(x) x 2. (35)

In particular, the plasmon mode on the surface generally car

ries spinl(Burkov and Hawthdrn, 2010; Ragétall, 12010).

C. Crossover from three dimensions to two dimensions

From the discussion above, one can see that the models
describing 2D and 2D topological insulators are quite simi-
lar. Both systems are described by lattice Dirac-type Hamil
tonians. In particular, when inversion symmetry is present
the topologically nontrivial phase in both models is charac
terized by a band inversion between two states of opposite
parity. Therefore, it is natural to study the relation betwe
these two topological states of matter. One natural questio
is whether a thin film of 3D topological insulator, viewed as
a 2D system, is a trivial insulator or a QSH insulator. Be-
sides theoretical interest, this problem is also relevargx:
periments, especially in the B¢ family of materials. In-
deed, these materials are layered and can be easily grown as

thin films either by MBE (Liet all, mmgt%,
there is a key difference between the surface state theory f2009), catalyst-free vapor-solid growth (Koagall, ),
3D topological insulators and graphene or any 2D Dirac syser by mechanical exfoliation (Honet all, [2010{ Shahikt all,
tem, which is the number of Dirac cones. Graphene has fou010; Teweldebrhaet all, [2010). Several theoretical works
Dirac cones at low energies, due to spin and valley degenestudied thin films of the BiSe; family of topological insu-

acy. The valley degeneracy occurs because the Dirac conéstors (Linderet all, [2009;! Liuet all, [2010;:| Luet al,, [2010).

are not in the vicinity ok = 0 but rather near the two Bril-
louin zone cornerdd and K. This is generic for a purely 2D

Interestingly, thin films of proper thicknesses are prestidb

form a QSH insulator (Lieet al,[2010] Luet all,[2010), which

system: only an even number of Dirac cones can exist in a Thhay constitute an approach for simpler realizations of the 2
invariant system. In other words, a single 2D Dirac cone with QSH effect.

out TR symmetry breaking can only exist on the surface of a Such a crossover from 3D to 2D topological insulators can

topological insulator, which is also an alternative way o u

be studied from two points of view, either from the bulk ssate

derstand its topological robustness. As long as TR symmetrgf the 3D topological insulator or from the surface states.
is preserved, the surface state cannot be gapped out becawge first consider the bulk states. A thin film of 3D topo-

no purely 2D system can provide a single Dirac cone. Such fgical insulator is described by restricting the bulk miode

surface state is a “holographic metal” which is 2D but deter{31)) to a QW with thicknesd, outside which there is an in-

mined by the 3D bulk topological property.

finite barrier describing the vacuum. To establish the con-

In this section we discussed the surface states of an insulaection between the 2D BHZ mod¢ll (2) and the 3D topo-
tor surrounded by vacuum. This formalism can be straightforlogical insulator model[(31), we start from the special case
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A; = 0 and consider a finitel; later on. ForA; = 0 and  Therefore, the complete effective Hamiltonian is given by
k, = k, = 0, the Hamiltonian[(31) becomes diagonal and the

Schrodinger equation for the infinite QW can be easily shlve 0 k- O 0

The Hamiltonian eigenstates are simply givenby(H,,)) = Huoust (o, ky) = A —iky 0 0 0

V/Zsin (222 4 12) |A), with [A) = [P1F,1 (1)) for elec- 0 0 0 —ik

tron subbands and) = |P2;,1 (})) for hole subbands. The 0 0 4k O

corresponding energy spectrumfis(n) = C'+ M + (D1 —  When a slab of finite thickness is considered, the two surface

B1) (%)2 andEj(n) = C— M + (D1 + By) (%)2, respec-  states start overlapping, such that off-diagonal termgre-
tively. We assumé/ < 0 andB; < 0 so that the system duced in the effective Hamiltonian. An effective Hamiltani
stays in the inverted regime. The energy spectrum is shown inonsistent with inversion and TR symmetry and incorpogatin
Fig.[2Z1(a). When the widthd is small enough, electron sub- inter-surface tunneling is given by

bandsFE,, have a higher energy than the hole subbaHgs

due to quantum confinement effects. Because the bulk bands 0 k- Myp 0

are inverted at th& point (M < 0), the energy of the elec- Haowet (ki ) = A —iky 0 0  Msp (36)
tron subbands will decrease with increasihgpwards their o Mop 0 0 —ik_ |’
bulk value M < 0, while the energy of the hole subbands 0 Myp iky 0

will increase towards-M > 0. Therefore, there must exist a

crossing point between the electron and hole subbands. whereMsp is a TR invariant mass term due to inter-surface
tunneling, which generally depends on the in-plane momen-

tum. Equation[(3B) is unitarily equivalent to the BHZ Hamil-

When a finiteA4; is turned on, the electron and hole bandsignian [2) for HgTe QWs. Whether the Hamiltonian corre-
are hybridized so that some of the crossings between the QWhonds to a trivial or QSH insulator cannot be determined
levels are avoided. However, as shown in Eig. 21(b), som@ithout studying the behavior of this model at large momenta
level crossings cannot be lifted, which is a consequenae-of i |ndeed, we are missing a regularization term which would
version symmetry. When the band indes increased, the play the role of the quadratic ter@%? in the BHZ model
parity of the wave functions alternates for both electrod an (Sec[IL.A). However, the transitions between trivial ammhs
hole subbands. Moreover, the atomic orbitals forming elecyyjyial phases are accompanied by a sign chang®ip, in-
tron and hole bands a1, 1 (1)) and|[P27,1 (1)) re-  dependently of the regularization scheme at high momenta.
spectively, which have opposite parity. Consequentl,)  Upon variation ofd, the sign of the inter-surface coupling
and|H,) with the same index have opposite parity, so that j, oscillates because the surface state wave functions os-

their crossing cannot be avoided by tHe term. When a illate [Fig.[Z1(b)]. Therefore, we reach the same conolusi
finite k., k, is considered, each level becomes a QW subys in the bulk approach.

band. The bottom of the lowest conduction band and the top The results above obtained from calculations using an ef-

of the highest valence band are indicatedsiy and S, in  fective model are also confirmed by first-principle calcula-
Fig.[21(b). Since these two bands have opposite parity, eaqfhns. The parity eigenvalues of occupied bands have been
level crossing between them is a t0P0|09'"5't' calculated as a function of the thickness of the 3D topologi-
between trivial and QSH insulator phases (Bernetigl,  cal insulator film [(Liuet all,[2010), from which the topologi-
2006;| Fu and Kane, 2007). Since the system must be trivea| nature of the film can be inferred. The result is shown in
ial in the limit d — 0, we know that the first QSH insulator  Fig.[77(d), which confirms the oscillations found in the effe
phase occurs between the first and second level crossing. {jye model. The first nontrivial phase appears at a thickoéss
the A; — 0 limit, the crossing positions are given by the crit- tree quintuple layers, i.e. abatihm for Bi,Se;.

ical well thicknessed,., = nr %. In principle, there is

an infinite number of QSH phases betwekn,,_; andd. 2.
However, as seen in Fi§. 21(b), the gap betwegh) and
|S5 ) decays quickly for largd. In the 3D limitd — oo, the
two states become degenerate and actually form the top aqg
bottom surface states of the bulk crystal [figl 21(c)].

D. Electromagnetic properties

In previous subsections, we have reviewed bulk and sur-
ce properties of 3D topological insulators, as well asrthe
relation to 2D topological insulators (QSH insulators)séad
on a microscopic model. From the effective model of surface
This relation between the QW valence and conductiorstates, one can understand their robustness protected by TR
bands and the surface states in the> oo limit suggests an  symmetry. However, similarly to the quantized Hall respons
alternative way to understand the crossover from 3D to 2Din QH systems, the topological structure in topologicalins
i.e. from the surface states. In the 3D limit the two surfacedators should not only lead to robust gapless surface states
are decoupled and are the only low-energy states. The tep susut also to unique, quantized electromagnetic responde coe
face is described by the effective Hamiltoniénl(34) while th ficients. The quantized electromagnetic response of 3D-topo
bottom surface is obtained from the top surface by inversionlogical insulators turns out to be a topological magneieie
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(a) (b) coupling between the cones can be introduced, which leads to
: the gapped TR invariant Hamiltonian

(k) = < Ao (a””lky —o¥k,) —imo* ) .

surf
s imo* Ao (0%ky — oVky)

From such a difference between an even and an odd number
of Dirac cones, one sees that the stability of the surfaaaryhe
(34) is protected by &, topological invariant.

Although the surface state with a single Dirac cone does
not remain gapless when a TR breaking mass teryg? is
added, an important physical property is induced by such a
mass term: a half-integer quantized Hall conductance. As

S 0 0 2 fhickness (Quailayesy © 2 discussed in Se¢_TIIE, the Hall conductance of a generic
z (nm) two-band Hamiltonian(k) = d,(k)o® is determined by
Eqg. (29), which is the winding number of the unit vector
d(k) = d(k)/|d(k)| on the Brillouin zone. The perturbed
surface state Hamiltonian

~
=
>
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@

e
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FIG. 21 Energy levels versus quantum well thickness forAa)=

0 eV-A, (b) A1 = 1.1 eV-A. Other parameters are taken from
,12009. Shaded regions indicate the QSH regime. The . .

blue dashed line in (b) shows how the crossing betwdari [ )) Hourt (k) = A20"ky — As0¥ky +m.07, (37)

and |H2(E-)) evolves into an anti-crossing wheft; # 0. (c)

Probability density in the statgs;") (same for|S;)) for A; = corresponds to_ a vectqi(k) = (A2ky, _A2kwvm%)' At

1.1 eV-A andd = 20 nm. (d) Band gap and total parity frosb ~ k = 0, the unit vectord(k) = (0,0, m./|m.|) points to-

initio calculations on BiSe;, plotted as a function of the number of wards the north (south) pole of the unit spheres#for > 0

quintuple layers. From Liet all, 2010. (m. < 0). For|k| > |m.|/As, the unit vectord(k) ~

As(ky, —ks, 0)/|k| almost lies in the equatorial plane of the

: ) unit sphere. From such a “meron” configuration one sees that

effect (TME) [Qiet al, (2008, 2009), which occurs when TR q(k) covers half of the unit sphere, which leads to a winding

TME effect is a generic property of 3D topological insula-

tors, which can be obtained theoretically from generic nide _om, e
and from an effective field theory approam, ; aH = Im.| 2h°
[Fu and Karle, 2007; Git all, 2008), independently of micro- _ _
scopic details. However, in order to develop a physical-intu From this formula, it can be seen that the Hall conductance
ition for the TME effect, in the section we review this effect "émains finite even in the limit. — 0, and has a jump at
and its physical consequences based on the simplest surfage = 0- AS a property of the massive Dirac model, such a
effective model, and postpone a discussion in the frameworRalf Hall conductance has been studied a long time ago in high
of a general effective theory to SEC]IV. We shall also discus €Nergy physics. In that context, the effect is termed the-“pa

various experimental manifestations of the TME effect. ity anomaly” (Redlich| 1964; Semenoff. 1984), because the
massless theory preserves parity (and TR) but an infinigdsim
mass term necessarily breaks these symmetries.

The analysis above only applies if the continuum effec-
tive model [3%) applies, i.e. if the characteristic momemtu

We start by analyzing generic perturbations to thel™=|/A2 is much smaller than the size of the Brillouin zone

effective surface state Hamiltoniar 134). The only 27/a with a the I_attlce constant. Since dewgtlons_ from this
momentum-independent perturbation one can adH is— Dirac-type effective model at large momenta is not incluited

e the above calculation of the Hall conductar‘lc_e_LT_an_d_kane
_ .0% and the perturbed Hamiltonian has the : - '
Lams.: Ma? P 2007{ Lekl 2009), one cannot unambiguously predict the Hall

spectrumbEy = i\/(Agky + mm)2 + (Agk, — my)2 +m2. conductance of the surface. In fact, if the effective thedmy
Thus, the only parameter that can open a gap and destalsieribes a 2D system rather than the surface of a 3D system,
lize the surface states is., and we will only consider this additional contributions from large-momentum correcsiom
perturbation in the following. The mass temm,c* is odd the effective model are necessary, since the Hall condatanc
under TR, as expected from the topological stability of sur-of any gapped 2D band insulator must be quantizedtgger

face states protected by TR symmetry. By comparison, if thainits ofe2/h (Thoulest al,, 11982). For example, the QAH
surface states consist of even number of Dirac cones, one camsulator [Eq.[[2B)] with mass terd/ — 0 is also described
check that a TR invariant mass term is indeed possible. Fdoy the same effective theory &s137), but has Hall conduetanc
example, if there are two identical Dirac cones, an imaginar 0 or 1 rather thant1/2 (Eradkinet all,[1986).

2

(38)

1. Half quantum Hall effect on the surface
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Interestingly, the surface of a 3D topological insulator is On the contrary, with TR symmetry breaking disorder,
different from all 2D insulators, in the sense that such gent the system belongs to the unitary class, which exhibits lo-
butions from large momenta vanish due to the requirement ofalization for arbitrarily weak disorder strength. While
TR symmetry ,). This fact is discussed more the longitudinal resistivity flows to infinity due to local-
rigorously in Sed_1V based on the general effective field theization, the Hall conductivity flows to the quantized value
ory. Here we present an argument based on the bulk to surfacee? /2h (Nomuraet al,, [2008). Therefore, the system enters
relationship. To understand this, consider the jump in Halla half QH phase once an infinitesimal TR symmetry break-
conductance at, = 0. Although deviations from the Dirac ing perturbation is introduced, independently of the dethi
effective model at large momenta may lead to corrections tdorm of the TR breaking perturbation. Physically, TR break-
the Hall conductance for a given,, the change in Hall con- ing disorder is induced by magnetic impurities, the spin of
ductance\oy = oy (m. — 0T)—og(m. = 07) = o % which not only contributes a random TR breaking field, but
is independent of the large-momentum contributions. Idgee also has its own dynamics. For example, the simplest ex-
the effect of the mass term. o= on the large-momentum sec- change interaction between impurity spin and surface state
tor of the theory is negligible as long @s, — 0. Therefore, Can be written adf,, = -, J;S; - ¥ o v (R;) with S; the
any contributions terz; from large momenta should be con- impurity spin, :'a/(R;) the spin density of surface elec-
tinuous functions ofn., and thus cannot affect the value of trons at the impurity positiol;, and.J; the exchange cou-
the discontinuityAc;. On the other hand, since the surface Pling. To understand the physical properties of the topelog
theory withm. = 0is TR invariant, TR transforms the system cal insulator surface in the presence of magnetic impusritie

with massn. to that with mass-m.. Consequently, from TR is instructive to study the interaction between impuritinsp
symmetry we have mediated by the surface electro, ). Asina
usual Fermi liquid, if the surface state has a finite Fermiavav
vectorkr, a Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
Together with the conditiotho; = %% we see that the action between the impurity spins is introduced, the sign of
half Hall conductance given by EG_{38) is robust, and the conwhich oscillates with wave lengtix 1/2kr(Liu et all, 2009;
tribution from large-momentum corrections must vanish. BylYe etal,[2010). If the Fermi level is close to the Dirac point,
comparison, in a 2D QAH Hamiltonian discussed in $ec] I.Ej.€. kr — 0, the sign of the RKKY interaction does not
i.e. the uppe® x 2 block of Eq. [2), the Hamiltonian with oscillate but is uniform. The sign of the resulting uniform
massM is not the TR conjugate of that with mass\/, and ~ Spin-spin interaction is determined by the coupling to te s
the above argument does not apply. Therefore, the half HafRce electrons, which turns out to be ferromagnetic. Phys-
conductance is a unique property of the surface states of 3@ally, the interaction is ferromagnetic rather than aerti-
topological insulators which is determined by the bulk tepo Magnetic, because a uniform spin polarization can maximize
ogy. This property distinguishes the surface states of pp-to the gap opened on the surface, which is energetically favor-

logical insulators from all pure 2D systems, or topolodical able. Due to this ferromagnetic spin-spin interaction sy
trivial surface states. tem can order ferromagnetically when the chemical potentia

The analysis above has only considered translationally iniS near the Dirac point (Lietall, 2009). This mechanism is
variant perturbations to the surface states, but the cencl®f great practical importance, because it provides a way to
sions remain robust when disorder is considered. A 2[Cgenerate a surface TR symmetry breaking field by coating the
metal without SOC belongs to the orthogonal or unitarysurface with magnetic impurities and tuning the chemical po
symmetry classes of random Hamiltonians, the eigenfunctential near the Dirac point (Chet al, [2010; Chen and Wan,
tions of which are always localized when random disorde2010; Fencet al, [2009] Tran and Kifrl, 2010; Zitko. 2010).
is introduced. This effect is known as Anderson localiza-
tion (Abrahamst all,[1979). Anderson localization is a quan-
tum interference effect induced by constructive interfiee2 2. Topological magnetoelectric effect
between different backscattering paths. By comparisoysa s
tem with TR invariance and SOC belongs to the symplec- As discussed above, the surface half QH effect is a unique
tic class, where the constructive interference becomes dgroperty of a TR symmetry breaking surface, and is deter-
structive. In that case, the system has a metallic phase atined by the bulk topology, independently of details of the
weak disorder, which turns into an insulator phase by gosurface TR symmetry breaking perturbation. A key differ-
ing through a metal-insulator transition at a certain disor ence between the surface half QH effect and the usual inte-
der strength|(Evers and Mirlin, 2008; Hikaetiall, [1980). ger QH effect is that the former cannot be measured by a dc
Naively, one would expect the surface state with nonmagnetitransport experiment. An integer QH system has chiral edge
disorder to be in the symplectic class. However, Nomurastates which contribute to the quantized Hall current wihde
Koshino, and Ryu showed that the surface state is metallimg connected to leads. However, as one can easily convince
even for an arbitrary impurity strength (Nomuwetall, [2007),  oneself, it is a simple mathematical fact that the surface of
which is consistent with the topological robustness of tire s finite sample of 3D topological insulator is always a closed
face state. manifold without an edge. If the whole surface of a topolog-

op(m, —07) = —og(m, —07).




ical insulator sample is gapped by magnetic impuritiesiethe EM
are no edge states to carry a dc transport current. If the me (@) (b) A
netic impurities form a ferromagnetic phase and there is-a d S A It 17
main wall in the magnetic moment, the Hall conductance he @ TI"

a jump at the domain wall due to the formul@](38). In this =
case, the jump of Hall conductance:%/h across the domain Tt VTt M ]

wall, so that a chiral gapless edge state propagates aleng- = —
domain wall [Fig.IIlZ(a)], 2008). This mechanism e
provides another route towards the QAH effect without an
external magnetic field and the associated LLs. This is vel
mglcl:r(]:c?rl:lt;ict:?:nt():c;l;:;ﬁrggzwe—?—nlt;! S /c;;dl_?ﬁ;yv?;/:t?lﬁi_wn lator with a magnetic qlomain wall, along which a chiral edgees
. . T propagates. (b) Relation between surface half QH effecthaki
tion for an edge state along a straight domain wall can also | {gnqogical magnetoelectric effect. A magnetization idticed by

solved for analytically following the same procedure ad thaan electric field due to the surface Hall current. Frone€all,[2008.
used in Sed_II.B. Interestingly, if one attaches voltagd an

current leads to the domain wall in the same way as for an

ordinary Hall bar, one should observe a Hall conductance ofesponse of the system is described by the following modified
e? /h rather thare? /2h, since the domain wall chiral state be- constituent equations,

haves in the same way as the edge stateqf a= ¢?/h QH

FIG. 22 (a) Ferromagnetic layer on the surface of topoldditau-

system. Thus again we see that from dc transport measure- H =B — 47M + 2P3aE,

ments, one cannot observe the half Hall conductance. D = E + 47P — 2P;0B, (40)
Such a difference between integer QH effect and surface

half QH effect indicates that the surface half QH effect iswith o« = ¢2/hc the fine structure constant, ang =

actually a new topological phenomenon which, in terms ofm/2|m| = +1/2 the quantum of Hall conductance. A de-
its observable consequences, is qualitatively differeninf tailed explanation of the coefficie and the effective field
the usual integer QH effect. Alternatively, the proper de-theory description of the TME effect is discussed in $e¢. IV.
tection of this new topological phenomenon actually probegsn this section we focus on the physical consequences of the
a unique electromagnetic response property of the bulk, th€ME effect. We simply note the fact that more generally, for
TME (Essinet al, [2009] Qiet all, [2008). A magnetoelectric topological insulator$’; can take the value -+ 1/2 with arbi-
effect is defined as a magnetization induced by an electritrary integem, since the number of Dirac cones on the surface
field, or alternatively, a charge polarization induced byagm can be any odd integer.

netic field. To understand the relation between surface half

QH effect and magnetoelectric effect, consider the configu-

ration shown in Fig[22(b), where the side surface of a 3D3. Image magnetic monopole effect

topological insulator is covered by magnetic impuritieshwi

ferromagnetic order, so that the surface is gapped andiéxhib  One of the most direct consequences of the TME effect is
a half quantized Hall conductance. When an electric field the image magnetic monopole effect @iall, [2009). Con-

is applied parallel to the surface, a Hall currgris induced  sider bringing an electric charge to the proximity of an erdi
[Eq. (39)], which circulates along the surface. This swefac nary 3D insulator. The electric charge will polarize the e
current perpendicular t& will then induce a magnetic field tric, which can be described by the appearance of an image
parallel toE, so that the system exhibits a magnetoelectricelectric charge inside the insulator. If the same thing isedo

response. The Hall response equation is written as with a topological insulator, in addition to the image etict
m e2 charge an image magnetic monopole will also appear inside
ji= Wﬁﬁ x E, (39) theinsulator.

This image magnetic monopole effect can be studied
with i a unit vector normal to the surface, and the sign ofstraightforwardly by solving Maxwell's equations with the

the massn/|m| is determined by the direction of the surface modified constituent equatiorls {40), in the same way as the
magnetization. Such a Hall response is equivalent to a magmage charge problem in an ordinary insulator. Consider the

netization proportional to the electric field: geometry shown in Fig.23(a). The lower half-space: 0
2 is occupied by a topological insulator with dielectric ctamt
m e . . .
M; = €2 and magnetic permeability., while the upper half-space

[m| 2he z > 0 is occupied by a conventional insulator with dielec-
This magnetization is a topological response to the etectritric constante; and magnetic permeability;. An electric
field, and is independent of the details of the system. Simipoint charge; is located a{0, 0, d) with d > 0. We assume
larly, a topological contribution to the charge polaripatcan  that the surface states are gapped by some local TR symmetry
be induced by a magnetic field. The complete electromagnetioreaking fieldmn, so that the surface half QH effect and TME
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exist. The boundary of the topological insulator acts as-a do
main wall wherePs; jumps from1/2 to 0. In this semi-infinite
geometry, an image point magnetic monopole with #uxs
located at the mirror positiof0, 0, —d), together with an im-
age electric point chargg. Physically, the magnetic field of
such an image monopole configuration is induced by circu
lating Hall currents on the surface, which are induced by the
electric field of the external charge. A similar effect hasibe
studied in the integer QH effeat (Haldane and Chen, 1983)
Conversely, the electromagnetic field strength insidedpe-t
logical insulator is described by an image magnetic mormpol
g1 and electric charge, in the upper half-space, at the sameFIG. 23 (a) Image electric charge and image magnetic mogopol
point as the external charge. The image magnetic monopokiie to an external electric point charge. The lower haltepa
flux and image electric charg@, g1) and (g2, g2) are given occupied by a topological insulator (TI) with dielectricrstante:

z

by and magnetic permeability.. The upper half-space is occupied by
a topologically trivial insulator (e.g. vacuum) with dietec con-
1 (€1 —e2)(1/py + 1/ p2) — 4a2P32 stante; and magnetic permeability;. An electric point charge
Q1 =4q2 = — 4, is located at(0,0,d). Seen from the lower half-space, the image
1 1 402 P? . o .
€1 (61 +e2)(1/m +1/p2) + 40P electric chargey; and magnetic monopolg, are at(0,0, d). Seen
4a Py from the upper half-space, the image electric chaygand mag-

= —gy = — .(41
o 92 (€1 +€)(1/pu1 + 1/p2) + 42 P2 ¢-(41) netic monopoley, are at(0, 0, —d). The red (blue) solid lines repre-

. . . . . sent the electric (magnetic) field lines. The inset is a toydview
Interestingly, by making use of electric-magnetic duaigse  gnoying the in-plane component of the electric field on théase
expressions can be simplified to more compact fo

archyed arrows) and the circulating surface current (blackle). (b) Il-
). lustration of the fractional statistics induced by the imagonopole
Moreover, interesting phenomena appear when we consideffect. Each electron forms a “dyon” with its image monopaMéhen
the dynamics of the external charge. For example, consider @0 electrons are exchanged, a Aharonov-Bohm phase fecti-i
2D electron gas at a distandeabove the surface of the 3D fained, which is deter- mined by half of the image monopole, flu
topological insulator. If the motion of the electron is slow Ndependently of the exchange path, leading to the phenomeh
. ) ) statistical transmutation. Frdm @t all, .
enough (with respect to the time scélén corresponding to
the TR symmetry breaking gap), the image monopole will
follow the electron adiabatically, such that the electromfs  may occur for light reflected by a TR symmetry breaking
an electron-monopole composite, i.e. a dyon (Witten, 1979)surface, which is known as the magneto-optical Kerr ef-
When two electrons wind around each other, each electrofect (Landau and Lifshitz, 1984). Since the bulk of the topo-
perceives the magnetic flux of the image monopole attachefgical insulator is TR invariant, no Faraday rotation void-
to the other electron, which leads to statistical transtiata  cur in the bulk. However, if TR symmetry is broken on the
The statistical angle is determined by the electron chande a surface, the TME effect occurs and a unique kind of Kerr and
image monopole flux as Faraday rotation is induced on the surface. Physically, the
2 plane of polarization of the transmitted and reflected light
o= _ 2070y 5. (42)  rotated because the electric fidd(r, t) of linearly polarized
2he (vt )1/ +1/n2) + 4Py light generates a magnetic fieRi(r, ¢) in the same direction,
The image monopole can be detected directly by locatlue to the TME effect. Similarly as for the image monopole
probes sensitive to small magnetic fields, such as scareffect, the Faraday and Kerr rotation angles can be cakmlilat
ning superconducting quantum interference devices (scarby solving Maxwell’s equations with the modified constittien
ning SQUID) and scanning magnetic force microscopyequations[(40). In the simplest case of a single surface be-

(scanning MFM) , ). The current due to tween a trivial insulator and a semi-infinite topologicasin
the image monopole can also be detected in princiator [Fig.[24(a)], the rotation angle for light incidenbfn
ple (Zang and Nagaadsa, 2010). the trivial insulator is given by (Karch, 2009; Maciejkoall,

2010; Qiet all, |2008] Tse and MacDonald, 2010)
40&P3\/61/,u1 (43)

4. Topological Kerr and Faraday rotation

ta 0 = )
. noK €2/ 2 — €1/ + 402 P§
Another way to detect the TME effect is through the 2a.P;
transmission and reflection of polarized light. When lin- tan Op = ; (44)
Ve + e/

early polarized light propagates through a medium which
breaks TR symmetry, the plane of polarization of the transwheree,, 11; are the dielectric constant and magnetic perme-
mitted light may be rotated, which is known as the Fara-ability of the trivial insulator, ands, 1> are those of the topo-

day effect [(Landau and Lifshitz, 1984). A similar rotation logical insulator.
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T so that the monopole carries an electric charge (Wittendy97
q = egs4= with o = he/e the flux quanta. Such a com-
posite particle carries both magnetic flux and electric gbar
and is called a dyon. In principle, the topological insula-

= “‘T— 5 Fin Br =0k tor provides a physical system which can detect a magnetic

TT1T ™ t11 . \{/ o monopole through this effect (Rosenberg and Franz, |2010).
Tl % T'b‘”"z ¢ " For a topological insulator, we hawe = 7« which corre-
T sponds to a half charge = ¢/2 for a monopole with unit

flux. Such a half charge corresponds to a zero energy bound

E¢ =0y state induced by the monopole. The charge of the monopole

) _ is e/2 when the bound state is occupied, and/2 when it
FIG. 24 (a) lllustration of the Faraday rotation on one st&faf i\ noccupied. Such a half charge and zero mode is similar
topological insulator. (b) A more complicated geometryiterr charge fractionalization in 1D systems (&uall,1979). If

and Faraday rotation on two surfaces of topological insuldn this . o
geometry, the effect of non-universal properties of theamiatcan be (& monopole passes through a hole in the topological insula

eliminated and the quantized magnetoelectric coefficightcan be  tor, the charge will follow it, which corresponds to a charge
directly measured. From @i all,[2008 and Maciejket all,[2010. pumping effect.(Rosenbest all, 2010).
All effects discussed up to this point are consequences of

. ._the TME in a topological insulator with surface TR symmetry
Although the surfa_ce Faraday and Kerr rotations are In'breaking. No effects of electron correlation have beenrtake
duced by the topological property of the bulk, and are deter

. X . . into account. When the electron-electron interaction is-co
mined by the magnetoelectric response with quantized eoeff]

, . : . sidered, interesting new effects can occur. For example, if
cientaPs, the rotation angle is not universal and depends o

th terial ¢ du. The TME | ) topological insulator is realized by transition metal eom
€ matenial parameteesandy. The response aiways pounds with strong electron correlation effects, antderag-
coexists with the ordinary electromagnetic response, fwhic

e . o netic (AFM) long-range order may develop in this material.
makes it difficult to observe the topological quantizatidrep ince the AFM order breaks TR symmetry and inversion sym-
nomenon. However, recently new prqposals have_been ma etry, the magnetoelectric coefficieRt defined in Eq.[(400)
to avoid the dependence on non-universal material paramer, . >ias from its quantized valuer 1 /2. Denoting byn(r, £)
ters | : lZD_lﬂ) X IIg_L_2£blO) Th(_a the AFM Néel vector, we havB;(n) = P;(n = 0) + 0 P;(n)
key idea is to consider a slab of topological insulator of f"whereP (n — 0) is the quantized value oP; in the ab-
nite thickness with two surfaces, with vacuum on one side., | . 0;’ AFI\; order. This change in the maénetoelectric co-
and a substrate on the other [Fig] 24(b)]. T.h.e Compmat'o%fﬁcient has interesting consequences when spin-waviexci
of Kerr and Faraday angles measugdeflectivity minima

i hinf tion to determine th tized tions are considered. Fluctuations of the Néel veétdir, ¢)
provides enough Informaton o determine the quantizet-coe; e in general fluctuations éf;, leading to a coupling

- l ol i . .
ficienta P, 12010), between spin-waves and the electromagnetic f ,
cot O + cot Ok 2010). In high-energy physics, such a particle coupled to
——— = 2aPs, (45) . A . : )
1+ cot?Op theE - B term is called an “axion’l (Peccei and Quinn, 1977;

,). Physically, in a background magnetic field
such an “axionic” spin-wave is coupled to the electric field
tized coefficientvP; is expressed solely in terms of the mea- with a coupling constant tunable by the magnetic_figld._Con-
surable Kerr and Faraday angles. This enables a direct-exp que_ntly, a polariton can b(_e f_ormed by the h_ybr|d|zat|on of

the spin-wave and photon, similar to the polariton formed by

imental measurement d?; without a separate measurement ™ . ! :
of the non-universal optical constanrts: of the topological optical phonons (Mills and Bursteln, 1974). The polaritapg

insulator film and the substrate. If the two surfaces have difis °°””‘?”ed by the magnetic field, which may realize a tun-
ferent surface Hall conductances, it is still possible ttede able opt|ca! modulgtor.
mine them separately through a measurement of the Kerr and Another interesting effect emerges from electron correla-

Faraday angles at reflectivitgaxima(Maciejkoet all, 2010). tions when_a thin fi!m of topological insulator is con_sidered
When the film is thick enough so that there is no direct tun-

neling between the surface states on the top and bottom sur-
5. Related effects faces, but not too thick so that the long-range Coulomb-inter
action between the two surfaces are still important, a 4inter
The TME has other interesting consequences. The TME efsurface particle-hole excitation, i.e. an exciton, canibpe i
fect corresponds to a terfiis - B in the action (see Sdc. 1V for  duced |(Seradjedt all, [2009). Denoting the fermion annihi-
more details), which mediates the transmutation betwesm el lation operator on the two surfaces by, -, the exciton
tric field and magnetic fiel, ). In the presence creation operator iﬂziwz. In particular, when the two sur-
of a magnetic monopole, such an electric-magnetic transmuaces have opposite Fermi energy with respect to the Dirac
tation induces an electric field around the magnetic morgpol point, there is nesting between the two Fermi surfaces,whic

provided that both top and bottom surfaces have the same s
face Hall conductancey = Pse?/h. In Eq. [45), the quan-
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leads to an instability towards exciton condensation. B th from bulk samples!(Hongt all, [2010; Shahiet all, [2010;
exciton condensate phase, the exciton creation operator g€eweldebrhaet all, 2010). The stoichiometric compounds
quires a nonzero expectation Val(lﬂ-[1/)2> # 0, which cor-  BisSe;, BixTes, ShyTes are not extremely difficult to grow,
responds to an effective inter-surface tunneling. Interes which should allow more experimental groups to have access
ingly, one can consider a vortex in this exciton condensateto high-quality topological insulator sampldm,
Such a vortex corresponds to a complex spatially-depende@010;| Zhanget al,, [2009). due to intrinsic doping from va-
inter-surface tunneling amplitude, and is equivalent toagm cancy and anti-site defects, J3e; and Bi Tes dm
netic monopole. According to the Witten effect mentioned2009;:| Hsielet all, [2009; Xiaet all, [2009) are shown to con-
above ((Rosenberg and Franz, 2010), such a vortex of the efain n-type carriers while Shre; (Hsiehet all, [2009) isp-
citon condensate carries chartje/2, which provides a way type. Consequently, controllable extrinsic doping is re-
to test the Witten effect in the absence of a real magnetiquired to tune the Fermi energy to the Dirac point of
monopole. the surface states. For example,, B} can be doped
Besides the effects discussed above, there are many othaith Sn [Cheret all, [2009) and BjSe; can be doped with
physical effects related to the TME effect, or surface ha#f Q Sb (Analytiset all,[2010) or Cal(Hoet al,[2010; Wanget all,
effect. When a magnetic layer is deposited on top of the topa2010). Furthermore, it is found that doping,Be; with
logical insulator surface, the surface states can be gaped Cu can induce superconductivity (Heral, ), While
a half QH effect is induced. In other words, the magneticFe and Mn dopants may yield ferromagneti '
moment of the magnetic layer determines the Hall responé@Ql!b;LQh_e_Ee_t_aﬂ, 12010;| Horet all, [2010; Wrayet all, [2010;
of the surface states, which can be considered as a coupli, ).
between the magnetic moment and the surface electric cur-
rent [Qiet all, 2008). Such a coupling leads to the inverse
of the half QH effect, which means that a charge current ore. Angle-resolved photoemission spectroscopy
the surface can flip the magnetic moment of the magnetic
layer (Garate and Fradnz, 2010). Similar to such a couplingbe ARPES experiments are uniquely positioned to detect the
tween charge current and magnetic moment, a charge densiiypological surface states. The first experiments on topo-
is coupled to magnetic textures such as domain walls and votegical insulators were ARPES experiments carried out on
tices (Nomura and Nagaosa, 2010). This effect can be usetie Bi_,Sh, alloy (Hsiehetall, [2008). The observation
to drive magnetic textures by electric fields. These effents of five branches of surface states, together with the re-
a topological insulator surface coupled with magnetic taye spective spin polarizations determined later by spinivesb
are relevant to potential applications of topological lasars ~ ARPES , @), confirms the nontrivial topologi-
in designing new spintronics devices. cal nature of the surface states of BjSh,.
ARPES work on BiSeg (Xiaet aIL ) and
Bi, Te; (Chenet all, 2009] Hsietet all, [2009) soon followed.

E. Experimental results Unlike the multiple branches of surface states observed for
Bi;_,Sh,, these experiments report a remarkably simple
1. Material growth surface state spectrum with a single Dirac cone locateceat th

I" point and a large bulk band gap, in accordance with the

There have been many interesting theoretical proposals faheoretical predictions. For Bbe;, a single Dirac cone with
novel effects in topological insulators, but perhaps thestmo linear dispersion is clearly shown at tiepoint within the
exciting aspect of the field is the rapid increase in expemime band gap in Fid. 25(a) and (b). Figlird 25(d) showstlkem-
tal efforts focussed on topological insulators. High-iyal ponent of the spin polarization along the (I' — M) direction
materials are being produced in several groups around thaeasured by spin-resolved ARPES (Hsilall, [2009). The
world, and of all different types. Bulk materials were first opposite spin polarization in thg direction for oppositek
grown for experiments on topological insulators in the Cavaindicates the helical nature of the spin polarization fofate
group at Princeton University including the 1Bi.Sh, al- states. As discussed above, 8@ has a finite density of
loy (Hsiehet al,, [2008) and BiSe;, Bi;Te;, ShyTe; crys-  n-type carriers due to intrinsic doping. Therefore, the abov
tals (Hsiehet al,, [2009; Xiaet al,, 2009). Crystalline sam- ARPES data [Fig_25(a),(b)] shows that the Fermi energy is
ples of BLTes have also been grown at Stanford Univer- above the conduction band bottom and the sample is, in fact,
sity in the Fisher groupl (Cheetall, 2009). In addition a metal rather than an insulator in the bulk. To obtain a true
to bulk samples, BiSe; nanoribbons|(Hongtal, [2010; topological insulating state with the Fermi energy tuned in
Konget al,, [2010;/ Penet all, [2010) have been fabricated the bulk gap, careful control of external doping is required
in the Cui group at Stanford University, and thin films of Such control was first reported by Chenal. [Fig.[28] for a
Bi,Se; and BiTe; have been grown by MBE by the Xue sample of BjTe; with 0.67% Sn do in, 2009).

roup at Tsinghua University (ldt al, [2009; Zhangtal, ~ Some recent work on Shie; (Hsiehet all, 2009) supports the
19@9), as well as other groups (&iiall, [2010; . theoretical prediction that this material is also a topalah
[2009). Thin films can also be obtained by exfoliationinsulator (Zhangt all, [2009). This family of materials is
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FIG. 25 ARPES data for the dispersion of the surface states 0% os

Bi.Se;, along directions (a]) — M and (b)T' — K in the surface £ :

Brillioun zone. Spin-resolved ARPES data is shown albrgM for R R T S S

a fixed energy in (d), from which the spin polarization in maortugn .

space (c) can be extracted. From Xteall, 2009 and Hsielet all, FIG. 27 ARPES data for BBe; thin films of thickness (a) 1QL (b)

2009. 2QL (c) 3QL (d) 5QL (e) 6QL, measured at room temperature (QL
stands for quintuple layer). Fram Zhaagal.,|2009.
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moving to the forefront of research on topological insulato . . .
due to the large bulk gap and the simplicity of the surface3. Scanning tunneling microscopy
state spectrum.

Although the simple mode[ID1) captures most of the In addition to the ARPES characterization of 3D topolog-
surface state physics of these systems, experiments repé??l m_sulators, scanning tunneling microscopy (STM) ar_1d
a hexagonal surface state Fermi surface [Eid. 26], whileanning tunnell|r_19 spectrqscopy (STS) provide anot.hefr i
Eq. (101) only describes a circular Fermi surface suffityent of surface-sensitive technlqug to probe the tc_)pologlcaJ sU.
close to the Dirac point. However, such a hexagonal warpin a_l(ff/llsst?tses' A _set c;f.mat_erlsals hsve tr)]eent w;ve;(t;ggted n
effect can be easily taken into account by including an addiB_ Ter (A e_xrr)]e;:me:] SI Eéi()'bIZIEI oust ‘Te 2%6() ‘)(’j
tional term in the surface Hamiltonian which is cubiddgFu, lTe; (Alpichshevet al, ' angtat, 9), an

2009). The surface Hamiltonian for Bie; can be written S.b.“‘G(.)meEt al, .2009)' .(AlthOUQh Sb is topologically non-
trivial, it is a semi-metal instead of an insulator.) The @an

ison between STM/STS and ARPES was first performed for
H(k) = Ey(k) + vk (ky0o? — kyo™) + é(ki +k%)o*, (46)  BiaTes (Alpichshevet all,[2010), where it was found that the
2 integrated density of states obtained from ARPES [Eiy. 28(a
agrees well with the differential conductant®/ dV obtained
whereE (k) = k?/(2m*) breaks the particle-hole symmetry, from STS measurements [FIg28(b)]. From such a compar-
the Dirac velocityn, = v(1 4 ak?) acquires a quadratic de- json, different characteristic energiegs, E, Es, Ec and
pendence ok, and\ parameterizes the amount of hexagonal g, in Fig.[28) can be easily and unambiguously identified.
warping (Ful 2009). Besides the linear Dirac dispersion which has already been
In addition to its usefulness for studying bulk crystalline well established by ARPES experiments, STM/STS can pro-
samples, ARPES has also been used to characterize the thiide further information about the topological nature of th
films of BioSe; and B Tes (Li et all, [2009; Sakamotet all,  surface states, such as the interference patterns of impuri
2010; Zhanget all, [2009). The thin films were grown to initi- ties or edges| (Alpichsheat all, 12010;| Gomesgt all, 12009;
ate a study of the crossover (Lét al,, [2010) from a 3D topo- |Rousharet all, [2009;| Zhanget al,, 2009). When there are
logical insulator to a 2D QSH state (Séc.lI.C). In Hig] 27, impurities on the surface of a topological insulator, the su
ARPES spectra are shown for several thicknesses 0£&88i  face states will be scattered and form an interference pat-
thin film, which show the evolution of the surface states. tern around the impurities. Fourier transforming the inter
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i ; » impurities on the surface of B6b,_,. (b) Pattern calculated from

o yolge: (mV) ARPES data on BiSb, _.., which agrees well with the interference

pattern in (a). (c) Similar interference pattern and (d)siide scat-
tering wave vectors for Bife;. From|Roushaet all, 2009 and

FIG. 28 Good agreement is found between (a) the integrated de- 5008
sity of states from ARPES and (b) a typical scanning tungedimec- Zhanget al, 2009.

troscopy spectrum.Er is the Fermi level,E 4 the bottom of the
bulk conduction bandiZ; the point where the surface states become ) . ]
warped, Ec the top of the bulk valence band, atfh, the Dirac IS the observation of surface state LLs in a magnetic

point. From_ Alpichsheet all,[2010. field (Chencet al, [2010;| Hanaguret all, [2010). As shown

in Fig.[30(a) and (b), discrete LLs appear as a series of peaks
in the differential conductance spectrudi (dV), which sup-

ference pattern into momentum space, one can quantitativePorts the 2D nature of the surface states. Further analysis o
extract the scattering intensity for a fixed energy and spatt the dependence of the LLs on the magnetic figlshows that
ing wave vector. With such information one can determinethe energy of the LLs is proportional ign B wheren is the
what types of scattering events are suppressed. F@r@ zg(handau level index, instead of the usual linearBrndepen-
and (c) shows the interference pattern in momentum space félence. This unusual dependence provides additional eseden
Bi,Sb_, (Rousharetall, [2009) and BiTe; , for the existence of surface states consisting of masslieas D
), respectively. In order to analyze the interferencdermions. Furthermore, the narrow peaks in the spectrum als

pattern [(Leeet all, [2009), we take BiTe; as an example indicate the good quality of the sample surface.
[Fig.29(c),(d)]. The surface Fermi surface ofBe; is shown
in Fig.[29(d), for which the possible scattering events amad
inated by the wave vectotg along thef( direction,qz along 4. Transport
the M direction andqs between thekX and M directions.
However, from Fig[2B(c) we see that there is a peak along |n addition to the above surface-sensitive techniques,
thel" — M direction, while scattering along the — K di-  a large effort has been devoted to transport measure-
rection is suppressed. This observation coincides with thenents including dc transport| (Analyes all, [2010;
theoretical prediction that backscattering betwkesand -k [Butchetall, [2010; [Cheretall, [2010:; |Etoetall, 2010;
is forbidden due to TR symmetry, which supports the topoiSteinbercet all, [2010; , 12010) and measure-
logical nature of the surface states. Other related theoretments in the microwavel (Analytitall, [2010) and in-
cal analysis are also consistent (Biswas and Balatsky.;201@rared regimes [ (Butchtal, 2010; [LaForgetal, [2010;
Guo and Franz, 2010; Zhei al,, 2009). A similar analysis [Sushkowet all, [2010), which are necessary steps towards
can be applied to the surface of,Bib, ., and the obtained the direct measurement of topological effects such as the
pattern [Fig[2D(b)] also agrees well with the experimentalrME, and for future device applications. However, transpor
data [Fig[ZB(a)] (Roushaet al, 2009). More recently, STM  experiments on topological insulators turn out to be much
experiments have further demonstrated that the topolbgicanore difficult than surface-sensitive measurements such
surface states can penetrate barriers while maintainieig th as ARPES and STM. The main difficulty arises from the
extended natur, 2010). existence of a finite residual bulk carrier density. Materia

Another important result of STM/STS measurementssuch as Bi_,Sh, or BixSe; are predicted to be topological
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FIG. 30 Tunneling spectra for the surface of8& in a magnetic ~ FIG. 31 Angular dependence of the cyclotron resonance feeld f
field, showing a series of peaks attributed to the occurrefiserface 71 GHz microwave. The inset shows examples of transmissica dat

Landau levels. Frofn Chered all, 2010 and Hanagust all,[2010. offset for clarity (top to bottom:90° to 0° in steps 0f10°). From
Avala-Valenzuelat all,[2010.

insulators if they are perfectly crystalline. However, Irea
materials always have impurities and defects such as tesi-s fects (Checkelsket all, [2010;/ Cheret all, [2010). However,

and vacancies. Therefore, as-grown materials are not trulpesides the experiments mentioned above with positive ev-
insulating but have a finite bulk carrier density. As diseass idence for the existence of topological surface states,esom
in Sec.[TI.E.2, such a residual bulk carrier density is alsoexperiments show that the transport data can be entirely ex-
observed in ARPES for BSe; and BiTe; (Chenetal,  plained by bulk carriers (Butott all, 2010 Etoet all, [2010).
[2009:| Hsietet all, [2009). From the ARPES results it seems The resolution of this controversy requires further imgrov
that the residual carrier density can be compensated for bjents in experiments and sample quality.

chemical dopingl(Cheet all, ). Nevertheless, in trans-  To reach the intrinsic topological insulator state without
port experiments the compensation of bulk carriers apgears bulk carriers, various efforts have been made to reduce the
be much more difficult. Even samples which appear as bulkulk carrier density. One approach consists in compensat-
insulators in ARPES experiments still exhibit some finitékbu ing the bulk carriers by chemical doping, e.g. doping®s;

carrier density in transport measureme, with Sb (Analytiset all, [2010), Cal(Hoet all, [2009), or dop-
2010), which suggests the existence of an offset betweeimg Bi,Te; with Sn , ). Although chem-

bulk and surface Fermi levels. Another difficulty in trangpo ical doping is an efficient way to reduce the bulk carrier
measurements is that a cleaved surface rapidly becomekensity, the mobility will be usually reduced due to foreign
heavily n-doped when exposed to air. This leads to furtherdopants. However, we note that the substitution of the isova
discrepancies between the surface condition observed ient Bi with Sb can reduce the carrier density but still keep
transport and surface-sensitive measurements. high mobilities (Analytiset all, [2010). Also, it is difficult

In spite of the complexity described above, the signaturéo achieve accurate tuning of the carrier density by chem-
of 2D surface states in transport experiments has been réal doping, because each different chemical doping level
cently reported (Analytist all, 2010{ Avala-Valenzuelat all, needs to be reached by growing a new sample. The sec-
). For example, Figl_B1 shows results obtainecnd method consists in suppressing the contribution of bulk
by microwave spectroscopy (Avala-Valenzuetal, [2010)  carriers to transport by reducing the sample size down to
on Bi;Se, where it is found that the cyclotron res- the nanoscale, such as quasi-1D nanoribbons (l€bag),
onance frequency only scales with perpendicular mag2010:; E%g%gg % ), or quasi-2D
netic field B;, suggesting the 2D nature of the reso- thin film (Checkelskyet 12010; Liet all,
nance. Similarly, the dependence of Shubnikov-de Ha@). In Fig.[3R, the magnetoresistance of a nanorib-
oscillations on the angle of the magnetic field can helpbon exhibits a primary:c/e oscillation, which corresponds
to distinguish the 2D surface states from the 3D bulkto Aharonov-Bohm oscillations of the surface state around
states, both for BiSe; (Avala-Valenzuel®tall, [2010) and the surface of the nanoribboh (Peeicall, [2010). This
Bi,Sh,_, (Taskin and Ando, 2009). Signatures of the topo-oscillation also indicates that the bqu carrier densitys ha
logical surface states have also been searched for in tHeeen reduced greatly so that the contribution of the surface
temperature dependence of the resista, states can be observed. The Aharonov-Bohm oscillation has
2010; [Checkelsket all, 2010, [2009), the magnetoresis- also been investigated theoretically (Bardarsball, [2010;
tance |(Tangtal, 2010), and weak antilocalization ef- Zhang and Vishwanath, 2010). An important advantage of
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trast to the layered tetradymite compounds. These meagerial
E:Iniﬁc fig/llggr;?t\?vr;iistagﬁed;?/glgefds rggisﬁtﬁfngé ;e”‘:t"g‘;g have recently been experimentally observed to be topabgic
ser\g/ed. Right inset: fast Fourier tranpsform of the resistagteriva- msulatolr Smﬁﬂmm lZQl!b)I .
tive dR/dB, where peaks correspond/te/e andhc/2e oscillations A typical material of the _-‘3900”9' group 1s d'St_0rted bulk
are labeled. Froi Peret all, 2010. HgTe. In contrast to conventional zincblende semicondscto
HgTe has an inverted bulk band structure with theband
being higher in energy than th& band. However, HgTe by
a sample of mesoscopic size is the possibility of tuning thdtself is a semi-metal with the Fermi energy at the touching
carrier density by an external gate voltage. Gate control opoint between the light-hole and heavy-hblgbands. Con-
the carrier density is rather important because it can thee t sequently, in order to get a topological insulator, the <rys
bulk carrier density continuously while preserving thelgya tal structure of HgTe should be distorted along thet] di-
of the sample. Gate control of the carrier density has beergection to open a gap between the heavy-hole and light-hole
indeed observed in nanoribbons of,Be; (Steinbergetal,  bandsl(Dagt al, 2008). A similar band structure also exists
2010), mechanically exfoliated thin films (Checkelgtall,  in ternary Heusler compounds (Chadehall,2010! Linet all,
2010), or epitaxially grown thin film¢ (Cheet all, 2010). In  [2010), and around fifty of them are found to exhibit band in-
particular, tuning of the carrier polarity fromtype top-type  version. These materials become 3D topological insulators
has been reported (Checkelsiyal, '2010), where the change upon distortion, or they can be grown in quantum well form
in polarity corresponds to a sign change of the Hall reststan similar to HgTe/CdTe to realize the 2D or the QSH insula-
R,, in a magnetic field [Fid.33(b)]. tors. Due to the diversity of Heusler materials, multifunc-
tional topological insulators can be realized with additib
properties ranging from superconductivity to magnetisit an
F. Other topological insulator materials heavy-fermion behavior.
Besides the above two large groups of materials, there are
The topological materials HgTe, £$e;, Bi,Tes and  also some other theoretical proposals of new topologisalin
Sh,Tes not only provide us with a prototype material for 2D lator materials with electron correlation effects. An exéden
and 3D topological insulators, but also give us a rule of thum is the case of Ir-based materials. The QSH effect has been pro
to search for new topological insulator materials. The nonposed in NalrO; (Shitadeet all, )2009), and topological Mott
trivial topological property of topological insulatordginates  insulator phases have been proposed in Ir-based pyrochlore
from the inverted band structure induced by SOC. Thereforepxides Lnlr,O; with Ln = Nd, Pr (Guo and Frahz, 2009;
it is more likely to find topological insulators in materials Pesin and Balents, 2010; Wahall, 12010; | Yang and Kim,
which consist of covalent compounds with narrow band gap@010). Furthermore, a topological structure has also been
and heavy atoms with strong SOC. Following such a guidingonsidered in Kondo insulators, with a possible realizatio
principle, a large number of topological insulator matsria SmB; and CeNiSnl(Dzeret all, [2010).
have been proposed recently, which can be roughly classified
into several different groups.
The first group is similar to the tetradymite semiconduc-IV. GENERAL THEORY OF TOPOLOGICAL INSULATORS
tors, where the atomig-orbitals of Bi or Sb play an essential
role. Thallium-based I1I-V-V4 ternary chalcogenides, includ-  The TFT (Qiet all, 2008) and the TBT (Fu and Kare, 2007;
ing TIBiQ, and TISbQ with Q = Te, Se and S, belong to this [Fuet al, 12007; | Kane and Mele, 2005; Moore and Balents,
classl(Linet all,[2010] Yanet all,[2010). These materials have [2007;[Roy, 2009) are two different general theories of the
the same rhombohedral crystal structure (space gibyypas  topological insulators. The TBT is valid for the non-
the tetradymite semiconductors, but are genuinely 3D, im co interacting system without disorder. The TBT has given sim-
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ple and important criteria to evaluate which band insukator can be calculated explicitly from a single Feynman diagram
are topologically non-trivial. The TFT is generally validrf  [Fig. B4(a)] (Goltermaret al,, [1993; | Niemi ff,
interacting systems including disorder, and the it ideggithe  11983:| Qiet all, [2008; Volovik,[2002), and one obtaik as
physical response associated with the topological ordef. R given in Eq. [48), but withG replaced by the noninteract-
markably, the TFT reduces exactly to the TBT in the non-ing Green’s functiorGy. Carrying out the frequency integral
interacting limit. In this section, we review both genefa@do-  explicitly, one obtains the TKNN invariant expressed as an

ries, and also discuss their connections. integral of the Berry curvature (Thoulessall, [1982),
Cy = L /dkz /dkyfzy(k) €Z, (50)
A. Topological field theory 2m
with
We are generally interested in the long-wavelength and low- day (k) Day (k)
energy properties of a condensed matter system. In this case fay(k) = ;k — ;k ,
the details of the microscopic Hamiltonian are not impatan * Y
and we would like to capture essential physical properties i a;(k) = —i Z (k| 0 lak), i =z,y.
terms of a low-energy effective field theory. For convendion e oce Ok;

broken-symmetry states, the low-energy effective fieldihe
is fully determined by the order parameter, symmetry and di
mensionalitymmﬂ. Topological states of quan
tum matter are similarly described by a low-energy effertiv
field theory. In this case, the effective field theory gergral
involve topological terms which describe the universabtop
logical properties of the state. The coefficient of the togel
ical term can be generally identified as the topological orde N S

? Ju=—€""0,A;. (51)
parameter of the system. A successful example is the TFT 27
of the QH effect((Zhand, 1952), which captures the univer-The spatial component of this current is given by
sal topological properties such as the quantization of thké H o
conductance, the fractional charge and statistics of tlasigu ji = —¢IE;, (52)
particles and the ground state degeneracy on a topologicall 2 '
nontrivial spatial manifold. In this section, we shall délse ~ While the temporal component is given by

Under TR, we havedy — Ag, A — —A, from which we
see that thé2 + 1)D CS field theory in Eq.[{47) breaks TR
symmetry. All the low-energy response of the QH system can
be derived from this TFT. For instance, from the effective La
grangian in Eq.[(47), taking a functional derivative with re
spective toA,,, we obtain the current

the TFT of the TR invariant topological insulators. Cy .. C
jo = —1€U(r“)iAj = —IB (53)

27 ' 2T
1. Chern-Simons insulator in 2 + 1 dimensions This is exactly the QH response with Hall conductange=

C4/(2w), implying that an electric field induces a transverse
We start from the previously mentioned QH systenidn-  current, and a magnetic field induces charge accumulation.

1)D, the TFT for which is given a$ (Zhaldg, 1992) The Maxwell term contains more derivatives than the CS term
o and is therefore less relevant at low energies in the renerma
Soff = s /dzx/dt A€o, Ay, (47) ization group sense. Therefore, all the topological respon
Am of the QH state is exactly contained in the low-energy TFT of
where the coefficien€; is generally given byl (Wangtal,  Eq. [@T).
2010)
3
C, = Z/ (d ];3 Tr[e"GD,G G, G~ Gd,G~1](48) 2. Chern-Simons insulator in 4 4 1 dimensions
3 27 ! v
and G(k) = G(k,w) is the imaginary-time single-particle The TFT of the QI—_| effgct does not only capture the univgr—
Green’s function of a fully interacting insulator, andy, p —  Sal low-energy physics, it also points out a way to genegaliz

0,1,2 = t,z,y. For a general interacting system, assuming_the TR symmetry breaking QH state to TR invariant topolog-

thatG is nonsingular, we have a map from the three dimenical states. The CS field theory can be generalized to all odd
sional momentum space to the space of nonsingular Greenimensional spacetimes (Nakahiara, 1990). This observatio

functions, belonging to the grou@L (n, C), whose third ho- lead Zhang and Hu to discover a generalization of the QH in-

motopy group is labeled by an integer (Waetgal, 2010): sulator state (Zhang and Hu, 2001) which is TR invariant, and

defined in(4 + 1)D. It is the fundamental TR invariant in-

m3(GL(n,C)) = Z. (49)  sulator state from which all the lower-dimensional cases ar
The winding number for this homotopy class is exactly meaderived, and is described by the TFT (Bernest 1,2002)
sured byC, defined in Eq.[(48). Here > 3 is the num- Cs

Seff

/¢MWW”@@&@m.(M)

ber of bands. In the noninteracting limi¢; in Eq.(4T) )



36

T wherez, y, z, w are spatial coordinates ang time. The only
nonvanishing components of the field strength Brg = B.

andF,; = —E.. According to Eq.[(BB), this field configura-
ﬂ \/\AQ\M T tion induces the current
Cs

jw = —BzEz-
u o 472

(a) b) If we integrate the equation above over the, dimensions,
with periodic boundary conditions and assuming thiatloes

FIG. 34 Fermion loop diagrams leading to the Chern-Simoms.te not depend o, y, we obtain
(a) The(2 + 1)D Chern-Simons term is calculated from a loop dia-

gram with two external photon lines. (b) Thé+1)D Chern-Simons . Oy _ 3Ny,
term is calculated from a loop diagram with three externaitph dxdy ju, = ) drdyB, | E, = o E.,(60)
lines.

where N,, = fd:z:dsz/zw is the number of flux quanta
through thery plane, which is always quantized to be an in-
teger. This is exactly the 4D generalization of the QH effect

pressed in terms of the Green’s function of an interactirsg sy ;nxzr;gg{;e\?v:igﬁ u: nder sgt and the phygélc)él-rrgiigggz far;):)é?;t ed
tem as|(Wangt all, 2010) with a nonvanishing second Chern number. f@da 1)D in-
w2 d°k TP GO G-1GH.G-1CH. G- sulator with second Chern numb@s, a quantized Hall con-
~ 15 / (27)5 rle n v ’ ?Iur:dtancﬁ*ﬁ]\fzy/%r in thﬁzw planedis ir]dlkz:ye)d Iby amagnetic
1 1 ield with flux 27 N, in the perpendicularnfy) plane.
xG0,G GO, G, (55) We have discussed the CS insulators(ih+ 1)D and
which labels the homotopy group (Wargall, 2010) (4+1)D. Actually, these discussions can be straightforwardly
- generalized to higher dimensions. In doing so, it is worth
m5(GL(n, C)) = Z, (56) noting that there is a even-odd alternation of the homotopy
similarly to the case of thé2 + 1)D CS term. For a nonin- groups ofGL(n, C): we haveray1(GL(n, C)) = Z, while
teracting system(s can be calculated from a single Feynman72x(GL(n,C)) = 0. This is the mathematical mechanism
diagram [Fig[34(b)] and one obtaifs as given in Eq.[(35), underlying the fact that CS insulators of integer classteris
with G replaced by the noninteracting Green’s functigg. even spatial dimensions, but do not exist in odd spatial di-
Explicit integration over the frequency gives the secondi@h mensions. Reduced to noninteracting insulators, thisrineso

Under TR, we haved;, — Ay, A — —A, and this term is
explicitly TR invariant. Generally, the coefficient, is ex-

2

number ,@i;), the alternation of Chern numbers. As a number characteristi
1 of complex fiber bundles, Chern numbers exist only in even
Cy = 5 /d4keijkftr[fijfkg], (57) spatial dimensions. This is an example of the relationship
32m between homotopy theory and homology theory. We shall
with see another example of this relationship in the following se

tion: both the Wess-Zumino-Witten (WZW) terms and the CS

af _ g aff _ o af | o1 4B ; )
fii” = 045" = 0507 +ilai, a7 terms are well-defined only modulo an integer.

200 = =i (o K - 15,

3. Dimensional reduction to the three-dimensional Z»

wherei, j, k. £ =1,2,3,4 = 2,y, 2, w). topological insulator

Unlike the(2 + 1)D case, the CS term is less relevant than

th? non-_topological Maxwell term ity T 1)D, but ?S still of The 4D generalization of the QH effect gives the fundamen-
primary importance when understanding topological phenom,| 1R jnvariant topological insulator from which all lower

ena such as the chiral anomaly iBa-1)D system, whichcan - ginensional topological insulators can be derived systema
be regarded as the boundary of&a+ 1)D system (Qetal, g by a procedure called dimensional reduct,
2008). Similar to thé€2 + 1)D QH case, the physical response 2008). Starting from theld + 1)D CS field theory in

of (44 1)D CS insulators is given by Eq. (54), we consider field configurations whetg(z) =
A, (20,1, 22,23) is independent of the “extra dimension”
x4 = w, for p = (x9,21,22,23), and A4, = A,, depending

272
which is the nonlinear response to the external fi¢Jd To on at” Cozrd'n?;eifo’txl’(f?’x3’ ?4);, ]\cNe con3|der”th_e ?e'
understand this response better, we consider a special ﬁerdne_ryw ere he "extra dimensiony Torms a smal circle.
configurationKQT_aﬂ m): n this case, the;, integral in Eq.[(B%) can be carried out ex-

plicitly. After restoring the unit of electron chargeand flux
A, =0, Ay =B,x, A, = —E;t, A, = A, =0, (59) hc/e following the convention in electrodynamics, we obtain

= &e“”””&,APBUAT, (58)
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an effective TFT in(3 + 1)D: X123
@ vpT \
Sp = 3973 /d?’:z:dt@(x,t)e“ PTEwFp (x,t), (61) / \'

wherea = e?/hc ~ 1/137 is the fine structure constant and | ' &

O(x,t) = Cag(x,t) = Cs ]{dm Ay(z,t,xq), (62)

. ) . FIG. 35 Dimensional reduction frorfl 4+ 1)D to (3 + 1)D. The
which can be interpreted as the flux due to the gauge field, girection is compactified into a small circle, with a finitexfig
Ay(z,t,x4) through the compact extra dimension [Higl 35]. threading through the circle due to the gauge fidld To preserve
The fieldd(x, t) is called the axion field in the field theory lit- TR symmetry, the total flux can be eith@ror =, resulting in aZ.
erature/(Wilczek,_1987). In order to preserve the spatidl an classification of 3D topological insulators.
temporal translation symmeti(, t) can be chosen as a con-
stant parameter rather than a field. Furthermore, we already
explained that the origindlt + 1)D CS TFT is TR invariant. Momentum-space is analogous to the real-space WZW term.
Therefore, it is natural to ask how can TR symmetry be preSimilar to the WZW term /s is only well-defined modulo an
served in the dimensional reduction. If we chogse— 1,  integer, and can only take the quantized va%ofm
thend — ¢ is the magnetic flux threading the compactified Modulo an integer for an TR invariant insulator (Waetgl.,
circle, and the physics should be invariant under a shift of ).
by 2. TR transform# to —6. Therefore, there are two and ~ Essential for the definition of; in Eq. (€3) is the TR in-
only two values of) which are consistent with TR symmetry, variance identity (Wanet al,[2010):
namelyd = 0 andd = «. In the latter case, TR transforms
0 = wto 6§ = —m, which is equivalent t@ = = mod2x. We
therefore conclude that there are two different classesRof T
invariant topological insulators in 3D, the topologicatiyial
class withd = 0, and the topologically nontrivial class with

0= be clearly seen from the viewpoint of the topological order

As just seen, it is most natural to view the 3D topological o :
. . . . parameter. In fact, the quantization Bf is protected by TR
insulator as a dimensionally reduced version of the 4D topo-S mmetry. In other words, if TR symmetry in EG164) is bro-
logical insulator. However, for most physical systems in 3D y Y- ' Y y

. ; . o ken, thenPs can be tuned continuously, and can be adiabati-
we are generally given an interacting Hamiltonian, and woul o .
. : . cally connected from /2 to 0. This is fundamentally differ-
like to define a topological order parameter that can be eval- . ; -
. o : ent from the CS insulators, for which the coefficient of the
uated directly for any 3D model Hamiltonian. Since the

angle can only take the two valuesindr in the presence of CS term given by EQL(35) is always quantized to be an inte-

TR symmetry, it can be naturally defined as the topologicaper’ regardless of the presence or absence of symmetriss. Th

. . . . integer, if nonzero, cannot be smoothly connected to zero pr
order parameter itself. For a generally interacting systeis . , .
. vided that the energy gap remains open. There exists a more
given by (Wanget all,[2010):

): exhaustive classification scheme for topological insutaio
0 x [ dh 3 _,  various dimensions (Kitakl, 2009; @t al,[2008] Rytet all
Py=g-= g/o du/ @) Tre®??(Go,.G™ GO, G [2010) which takes into account the constraints imposed by
1 = 1 various symmetries.
xGO,G™GO,GT GO.GT], (63) For a noninteracting system, the full Green’s functi®im

where the momenturk = (ky, ks, k3) is integrated over the  the expression faP; [Eq. (63)] is replaced by the noninteract-
3D Brillouin zone and the frequendy, is integrated over iNg Green's functiortzy. Furthermore, the frequency integral
(=00, +00). G(k,u = 0) = G(ko k,u = 0) = G(ko,k)  can be carried out explicitly. After some manipulationse on
is the imaginary-time single-particle Green’s functionte¢  finds a simple and beautiful formula

fully interacting many-body system, ar@(k, «) for u # 0 1 - 9

is @ smooth extension @¥(k, v = 0), with a fixed reference  P; = o3 /dSk EIRTH{[fi5(k) — gz’ai(k)aj (k)]ax (k(85)
valueG(k,u = 1) corresponding to the Green’s function of a T

topologically trivial insulating statet(k,u = 1) can be cho-  which expresse®; as the integral of the CS form over the 3D
sen as a diagonal matrix with., = (iko — A)~" forempty  momentum space. For explicit models of topological insula-
bandsa andGgs = (iko + A)~" for filled bandss, where  tors, such as the model by Zhaegal. (Zhanget al,, 2009)

A > 0 is independent ok. Even thoughP; is a physical  discussed in SeE_TITIA, one can evaluate this formula expli
quantity in 3D, a WZW|(Witten, 1983) type of extension pa- itly to obtain

rameteru is introduced in its definition, which plays the role

of k4 in the formula[(5b) defining the 4D TI. The definition in Py=0/2r=1/2 (66)

G ko, —k) = TG (ko, k)T T, (64)

which is crucial for the quantization af;. Therefore, we
see that unlike the integer-class CS insulatorsZh@asula-
tors aresymmetry-protectetbpological insulators. This can
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in the topologically nontrivial state_ (it all, [2008). Es- in phase space can be also be performed(@il,2008). The

sin, Moore and Vanderbilt also calculatét] for a variety  physical consequences EQ.J(69) can be understood by study-
of interesting model, ). In a generic sys- ing the following two cases.

tem without time-reversal or inversion symmetry, there mayl. Half-QH effect on the surface of a 3D topological insula-
be non-topological contributions to the effective acti®d)( tor. Consider a system in whicR; = P3(z) only depends
which modifies the formula of?; given in Eq. [65). How- onz. For example, this can be realized by the lattice Dirac

ever, such corrections vanishes when time-reversal symm, M) withd = 6(z) (Fradkinet all, 11986;
Wilczek

try or inversion symmetry is present, so that the quantize ,11987). In this case, Eq. (69) becomes

value P; = 1/2 (mod1) in topological insulator remains ro- o.P

bust (Essiret al,, [2010] Malashevickt all, [2010). gt = ;—36“””&,AP, v, p=txy,
m

Similar to the case dft+1)D CS insulators, there is also an
important difference between theéerm for(3+1)D topologi- ~ which describes a QH effect in the; plane with Hall con-
cal insulators and th@+1)D CS term for QH systems, which ductivity o, = 9. Ps/27. A uniform electric fieldE, along
we shall briefly discuss (Maciejlket al, [2010). In(2 + 1)D,  the z direction induces a current density along thelirec-
the topological CS term dominates over the non-topologicalion j, = (0. P;/2m)E,, the integration of which along the
Maxwell term at low energies in the renormalization groupdirection gives the Hall current
flow, as a simple result of dimensional analysis. However, in 2 1 2
(3 + 1)D, thed term has the same scaling dimension as the JP = / dzj, = — </ dPg) E,,

Maxwell term, and is therefore equally important at low ener z 2m \Jz

gies. The full set of modified Maxwell's equations including which corresponds to a 2D QH conductance
the topological tern{{@2) is given by

1

zZ2
o2 = / dPs/27. (70)
zZ1

1 1
9 FM 4 9, P 4 Loty (P, ) = it (67)
47 47 c

which can be written in component form as For a interface between a topologically nontrivial insatat

with P; = 1/2 and a topologically trivial insulator with
V-D =4mp+2a(VP; - B), P3; = 0, which can be taken as the vacuum, the Hall conduc-
10D 4w, 1 tance iscy = AP; = £1/2. Aside from an integer ambi-
VxH- AT 2a <(VP3 < E) + c (0 Fs) B) » guity, the QH conductance is exactly quantized, indepeinden
1B of the details of the interface. As discussed in sedfioDIl,
V xE+ P T 0, the half quantum Hall effect on the surface is a reflection of
V-B=0, (68) the bulk topology withP; = 1/2, and can not be determined

purely from the low energy surface models.

whereD = E + 47P andH = B — 47M only include the 2. Topological magnetoelectric effect induced by a tempora
non-topological contributions. Alternatively, one caredBe  gradient of ;. Having considered a time-independéht we
ordinary Maxwell's equations with modified constituentagu now consider the case whéfy = P3(t) is spatially uniform,
tions [40). These set of modified Maxwell equations are dalle but time-dependent. Equatidn {69) now becomes
the axion electrodynamics in field theoMlz@QB?). 9P

Even though the conventional Maxwell term and the topo- §i= =R Ay iy Gk =Ly, 2,
logical term are both present, there exist experimentaddes 2m '
which can in principle extract the purely topological contr which can be simply written as
butions (Maciejkeet all,'2010). Furthermore, the topological 0,P,

response is completely captured by the TFT, which we shall j= 5 B. (72)
discuss. Starting from the TFT [Hg.l61], we take a functional 4
derivative with respect tal,,, and obtain the current as Because the charge polarizatiBnsatisfiesj = 0,P, we can
1 integrate Eq_71 in a static, uniform magnetic figdto get
Gt = 2_6#1'073”13330/17, (69) 0P = —0,(P3B/27), so that
™
which is the general topological respons€®ft 1)D insula- P = _2E (Ps + const.) . (72)
Y

tors. It is worth noting that we do not assume TR invariance

here, otherwisd’; should be quantized to be integer or half- This equation describes the charge polarization inducea by
integer. In fact, here we assume a inhomogendaus, t). magnetic field, which is a magnetoelectric effect. The promi
It is interesting to notice that this electromagnetic rem@ nentfeature here is that it is exactly quantized to a hatfgar
looks very similar to the 4D response in [Eq] 58, with the onlyfor a TR invariant topological insulator, which is calleceth
difference thatd, is replaced by?; in Eq. [69). Thisisaman- topological magnetoelectric effe, ) (TME).
ifestation of dimensional reduction at the level of the &lec Another related effect originating from the TFT is the Wit-
magnetic response. A more systematic treatment on this topien effectl(Qiet all, 2008 Witteh| 1979). For this discussion,
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we assume that there are magnetic monopoles. For a uniforen General phase diagram of topological Mott insulator and

P3, Eq. [71) leads to topological Anderson insulator
V.j= _8tp3v.]3. (73) So far, we have introduced topological order param-
2m eters for TR invariant topological insulators in 4D, 3D
Even if magnetic monopole does not exist as elementary paand 2D. These topological order parameters are defined in
ticles, for a lattice system, the monopole dengify = V - terms of the full single-particle Green's function. A cau-
B/2r can still be nonvanishing, and we obtain tion in order is that these topological order parameters are
- not applicable to fractional states with ground state de-
Orpe = (OiFs) prn- (74) generacyl (Bernevii and Zhang, 2006: Levin and Stern,|2009;
Therefore, whenPs is adiabatically changed from zero to IMaciejkoet all,[2010; Swingleet all, [2010), for which a TFT

© /27, the magnetic monopole will acquire an electric chargeapproach is still possible, but simple topological order pa
of rameters are harder to find. In 3D, fractional topological in
o sulators are characterized by a topological order paramete
Qe = 5 Qm, (75) P that is a rational multiple of /2 (Maciejkoet all, [2010;
_ en _ Swingleet al,, [2010). Such states are consistent with TR
where Q.,, is the magnetic charge. Such a relation wassymmetry if fractionally charged excitations and grouratest

first derived by Witten in the context of the topological gegeneracies on spatial manifolds of nontrivial topology a
term in quantum chromodynamids (Witten, 1079), and latelresent. When TR symmetry is broken on the surface, a frac-

discussed in the context of topological insulators €Qal,  tional TME gives rise to half of a fractional QH effect on the
MiROLnbe_rthz,_Zk)lO). ThIS effec_t could also apyrface (Maciejket all, 2010{ Swinglest all, 2010).
pear under a different guise in topological exciton condens et we shall discuss the physical consequences implied
X ! ), where a/2 c_harge is induced E’y by the topological order parameter suchiasand P;. The
avortex in the e”xcnon condensate, which serves as the “magi<.,ssion we shall present is very general and its applica-
netic monopole”. bility does not depend on the spatial dimensions. Further-
more, since the topological order parameters are expressed
4. Further dimensional reduction to the two-dimensional Z» in terms of the full Green's functlo_n of an interacting sys-
topological insulator tem, they can be useful to general interacting systems. Sup-
pose we have a family of Hamiltonians labeled by several
Now we turn our attention t¢2 + 1)D TR invariantZs, parameters. To be specific, we consider a typical phase dia-
topological insulators. Similar ?o the \)NZW-type topologic  gram (Wanget all, 2010) [Fig. [38)] for an interacting Hamil-
order parametePs in (3 + 1)D, there is also a topological tonian ' = Ho(\) + Hi(g), where Hy is the noninter-
order parameter defined f62 + 1)D TR invariant insulators. ~ acting part including terms such agc|c;, and H; is the
The main difference betweé + 1)D and(3 4+ 1)Dis thatin  €lectron-electron interaction part including terms sushhe
(2+1)D we need two WZW extension parameterandv, in ~ Hubbard interactiogn; n;+. These two parts are determined
contrast to a single parametein (3 + 1)D, which is a man- by single-particle paramete’s= (A, A2, - - - ) and coupling
ifestation of the fact that both descend from the fundanienteconstants) = (g1, g2, - - - ). When(}, g) are smoothly tuned,
(4 4+ 1)D topological insulator (Zhang and Hu, 2001). For athe ground state also evolves smoothly, as long as the energy
general interacting insulator, tgé + 1)D topological order ~gap remains open and the topological order parameters such a

parameter is expressed ) P, and P; remain unchanged. Only when the gap closes and
L L 5 the full Green’s functionG becomes singular, these topolog-
P, = Leuupar/ du/ dv / ﬁTr[Ga a1 ical order parameters have a jump, as indicated by the curve
120 -1 Ja (27)° g ab in Fig. (38). The most important point in Fig.]36 can be il-
xGo,G1Go,G 1 Go,G 1 GO.G! lustrated by considering the vertical lidgF'. Starting from a

noninteracting staté’, one adiabatically tunes on interactions,
and eventually there is a phase transitiofvab the topolog-
wheree”vr°7 is the totally antisymmetric tensor in five di- ical insulator (TI) state. The interacting staBe which is an
mensions, taking valué when the variables are an even interaction-induced topological insulator state, hasfedint
permutation of(ko, k1, k2,u,v). The casesP, = 0 and topological order parameter from the corresponding nemnint
P, = 1/2 modulo an integer correspond to topologically triv- acting normal insulator (NI) staté’. The difference in the
ial and nontrivial TR invariant insulators i2 + 1)D, respec-  topological order parameter thus provides a criterion fer d
tively. This topological order parameter is valid for irget-  tinguishing topological classes of insulators in the pneseof
ing QSH systems irf2 + 1)D, including states in the Mott general interactions.

regime (Raghet al, [2008). P, can be physically measured  There have already been several theoretical proposals of
by the fractional charge at the edge of the QSH SM‘., strongly interacting topological insulators, i.e. topglkal

2008). Mott insulators ((Raghet all, 2008). 2D topologically non-

=0or1/2 (modZ), (76)




40

g4 5 B. Topological band theory

We shall now give a brief introduction to TBT. Even though
this theory is only valid for non-interacting systems, itsha
become an important tool in the discovery of new topo-
logical materials. Unfortunately, evaluating te invari-
ants for a generic band structure is in general a difficult
A problem. Several approaches have been explored in the lit-

erature including spin Chern numbers (Fukui and Hatsugai,
FIG. 36 Phase diagram in th@, g) plane. The dark curveb is  [2007; Prodan, 2009; Sheegall, [2006), topological invari-
the phase boundary separating normal insulators (NI) apoldg-  ants constructed from Bloch wave functiorﬁﬂmkane,
ical insulators (TI). All phases are gapped, excepubn The true M,M&Mﬂ|w5‘wm@ Roy,

parameter space is in fact infinite dimensional, but this #yhm @) and discrete indices calculated from single-partic

Hlustrates the main features. Fr states at TRIM in the Brillouin zonm 007). We
will focus on the last method for its simplicit ne,
2007).

This basic quantity in this approach is the matrix element of

trivial insulating states have been obtained from the comy TR operatof’ between states with TR conjugate momenta

bination of a trivial noninteracting band structure and in-
teraction terms| (Guo and Franz, 2009; Raghal, [2008; k and—k (Fu and Karie, 2006),

Weeks and Franz, 2010). Such topological insulators can be Bus(k) = (—k, o|T|k, ). (77)
regarded as topologically nontrivial states arising from d

namically generated SOC (Wi all, [2007;|Wu and Zhang, SinceB, is defined as a matrix element between Bloch states
). The effect of interactions on the the QSH state has alsat TR conjugate momenta, it is expected that this quantity
been recently studied (Rachel and Hur, 2010). In 3D, strongontains some information about the band topology of TR
topological insulators with topological excitations hden  invariant topological insulators. At the TRIMI;, B(k =
obtained|(Pesin and Balents, 2010; Zhangl,2009). Topo- T;) is antisymmetric, so that the following quantity can be
logical insulators have been suggested to exist in tramsiti defined(Fu and Kahe, 2006):

metal oxides|(Shitadet all, [2009), where the correlation ef-

fect is strong. It was also proposed that one could achieve th 5=V de{B(I")] (78)
topological insulator state in Kondo insulators (Dzetall, ! Pf[B(T;)]

). All these topological Mott insulator states can be un. hich Pf stands for the Pfafi ¢ " i
derstood in the framework of the topological order paramete" WN'C Stands forne Fiatian ot an antisymmetric ma-
, , trix. SincePf[B(I;)]?> = de{B(T;)], we haves; = +1. It
expressed in terms of the full Green’s function (Wast@ll, : S ) Y g '
@). Interaction-induced topological insulator ststesh as should be noticed that the wavefunctighsa) must be cho-

. . . sen continuously in BZ to avoid ambiguity in the definition
the topological Mott insulators proposed in R' of §;. In 1D the)rle are only two TRIMgan(}j/ a “TR polariza-

) correspond to regions represented by the ir'rm . '
Fig.[38, which has a trivial noninteracting unperturbed Ham tion” (Fu.and Kanke, 2006) can be defined as the product of

tonian Hy(B) but acquires a nontrivial topological order pa-
rameter due to the interaction pdi (B) of the Hamilto- 7= (1) = 6,6, (79)
nian. The previously discussed topological order pararaete

are useful for determining the phase diagrams of intergctinwhich is a 7Z, analog to the charge polariza-
systems. tion  (King-Smith and Vanderbilt, |_1993;| Resta, 1994;
Thouless| 1983, zaK, 1989). A further analogy between

For disordered systems, the topological order parameter]aI L o
are still applicable, provided that we use the disorderayed the charge polarization and the TR polarization suggests
pp P the form of theZ, invariant for TR invariant topological

Grgen’s functions_. In this case, FIg.136 can be re_garded 3Rsulators. If an angular parameteis tuned fromo0 to 27
a simple phase_ diagram of disordered systems, _wrthte_r- the change in the charge polarizatibrafter such a cycle is
preted as the disorder strength. The representative poisit expressed as the first Chern numbrin the (k, 8) space. In
a disorder-induced topological insulator state. The disor fact, the same’; would gives the TKNN invarién@ss
. . oy th 3 ) 1 -l
|nduc.ed Tl state(}has beenl stud|el _d recen,. ) if & were regarded as a momentum. By analogy with
— T : — = ' P, theZ, invariant for(2 + 1)D topological insulators can be
Jianget all, 2009 Liet all, 2009 and Hastinfys, 2010;

=2}

(2]

Obuseet all 2008. Olshanetsket al, 2010! Ostrovsket al,  2cimed as
[2009] Shindou and Murakami, 2009). Therefore, the topolog- (10 — (1)Folha=0)-Potia=r), &0

ical order parameters previously discussed have theatulit
describe both interacting and disordered systems. wherePy(ks) = 6162, ¢; is defined at the TRIM;; = Oor,
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FIG. 37 The 2D bulk Brilloui jected onto the 1@ed
(a) The ulk Brillouin zone projected onto the 1@e A, Ay A, Ay

Brillouin zone. The two edge TRIM\; and A. are projections of
pairs of the four bulk TRIMI';_(,,). (b) Projection of the TRIM
of the 3D Brillouin zone onto a 2D surface Brillouin zone. &ro

& 2007 FIG. 38 Schematic representation of the surface energysiefe

crystal in either 2D or 3D, as a function of surface crystahmatum
on a path connecting TRIM,, andA;. The shaded region shows the

. . . bulk continuum states, and the lines show discrete surfacedge)
andk; is regarded as a parameter. Expanding Ed. (80) 9IV€Shands localized near one of the surfaces. The Kramers degene

4 surface states at, and A, can be connected to each other in two
(—1)72p = H 5, (81) possible ways, shown in (a) and (b), which reflect the changeRi
polarizationA P, of the cylinder between those points. Case (a) oc-
curs in topological insulators, and guarantees the sulfands cross
wherei = 1,2,3,4 labels the four TRIM in the 2D Bril- any Fermi energy inside the bulk gap. Fromé%all, [2007.
louin zone. (—1)*>» = +1 implies a trivial insulator while

(=1)2r = —1 implies a topological insulator. Furthermore,

as a TR polarizationy,p also determines the way in which Wheny, = 0, states are classified according@,, and are

Kramers pairs of surface states are connected [Fig. (38)Lalledweaktopological insulatord (Fat al, [2007) when the

which suggests that bulk topology and edge physics are intiweak indices/,, are odd.

mately related. This is another example of the “holographic Heuristically these states can be interpreted as stackedd QS

principle” for topological phenomena in condensed matterstates. As an example, consider planes of QSH stacked in the

physics. z direction. When the coupling between the layers is zero, the
We now discuss 3D topological insulators. It is interestingband dispersion will be independent/of. It follows that the

to note thatin TBT the natural route is “dimensional incefas  four §,'s associated with the plarie = 7/a will have prod-

in contrast to the “dimensional reduction” procedure of TFT uct —1 and will be the same as the four associated with the

From this dimensional increase, the 3D (strong) topoldgicaplanek. = 0. The topological invariants will then be given

invariant is naturally defined as (Fu and Kane, 2007efal, by vy = 0 andG, = (27/a)z. This structure will remain

2007) when hopping between the layers is introduced. More gener-
g ally, when QSH states are stacked in thedirection the in-
(—1) = Hé" (82) variant will beG,, = G mod 2. This implies that QSH states
P ! stacked along different directios; and G, are equivalent
if G; = G, mod 2 (Fuand Kane, 2007). As for the sur-

In addition to the strong invariant, it has been shown thatace states, when the coupling between the layers is zeso, it
the product of any fous;’s for which thel’; lie in the same  clear that the gap in the 2D system implies there will be no
plane is also gauge invariant, and defines topological ivar syrface states on the top and bottom surfaces; only the side
ants characterizing the band structure (Fu and Kane.! 20073yrfaces will have gapless states. We can also think abeut th
This fact leads to the definition of three additional invats&an  stability of the surface states for the weak insulators.aft, f

3D known as weak topological invariariwmm?weak topological insulators are unstable with respect $o di
[Fuet all, 2007] Moore and Balents, 20 oy. 2009). Theseprder. We can heuristically see that they are less stabfe tha
Zs invariants can be arranged as a 3D vector with elements  the strong insulators in the following way. If we stack an odd

given by number of QSH layers, there would at least be one delocalized
surface branch. However, the surface states for an even num-
(=)™ = H Oi=(ninans)s (83)  perof layers can be completely localized by disorder onyert
me=ling =01 bations. Despite this instability, it has been shown (Baall,

where(v; 1, 13) depend on the choice of reciprocal lattice vec-2009) that the weak topological invariants guarantee tie ex
tors and are only strictly well defined when a well-defined lat ©€Nce Of gapless modes on certain crystal defects. Fora dis|
tice is present. It is useful to view these invariants as apmp C&tion with Burgers vectdb it was shown that there will be
nents of a mod 2 reciprocal lattice vector, gapless modes on the dislocatior@{, - b = (2n + 1) for
integern.
G, = v1b; + 1nbs 4 v3bs. (84) Similar to the 2D topological insulator, there are connec-
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FIG. 39 Diagrams depicting four different phases indexed by

vo; (1ivevs). The top panel depicts the signsdfat the pointd;

on the vertices of a cube. The bottom panel characterizelahe
structure of @01 surface for each phase. The solid and open circle
depict the TR polarizatiorr, at the surface moment®,, which are
projections of pairs of"; which differ only in theirz component.
The thick lines indicate possible Fermi arcs which enclgseziic

A,. From Fuet all,[2007.

tions between the bulk invariants of 3D topological insoifat
and the corresponding 2D surface state spectrum. As a sa
ple, Fig. [39) shows four different topological classes3br
band structures labeled with the corresponding v1v5v3).

The eightl’; are represented as the vertices of a cube in mo

mentum space, with the correspondiighown ast signs.
The lower panel shows a characteristic surface Brillouimezo
for a001 surface with the four\, labeled by either filled or
solid circles, depending on the valuemf = 6;—(41)0i—(a2)-
Generically it is expected that the surface band structuite w

resemble Fig._38(b) on paths connecting two filled circles or

Fig.138(a) on paths con-
necting a filled circle to an empty circle (Fu and Kane, 2007).

This consideration determines the 2D surface states gualitBy some topological argument,

two empty circles, and will resemble

tively.
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C. Reduction from topological field theory to topological
band theory

We now briefly discuss the relation between the TFT and
TBT. On the one hand, the TFT approach is very powerful to
reveal various aspects of the low-energy physics, andat als
provide a deep understanding of the universality among dif-
ferent systems. Furthermore, in contrast to TBT, TFT isdvali
for interacting systems. On the other hand, from a practical
viewpoint, we also need fast algorithms to calculate togolo
ical invariants, which is the goal of TBT. An intuitive under
standing of the TBT o¥., topological insulators is as follows.
For integer-class CS topological insulators, the topaalgn-
variantC,, is expressed as the integral of Green’s functions

Jor Berry curvature, in the noninteracting limit). Therefp

the knowledge of Bloch states over the whole Brillouin zone
is needed to calculat€,,. For TR invariantZ, topological
insulators, the TR symmetry constraint enables us to deter-
mine the topological class of a given insulator with less in-
formation: we do not need the information over the entire
Brillouin zone. For insulators with inversion symmetrygth
arity at several high-symmetry points completely detegsi
rﬂw topological class (Fu and Kane, 2007), which explaias th
success of TBT. As naturally expected, the TBT approach is
related to the TFT approach. In fact, it has been recently
proved (Waneet all, [2010) that the TFT description can be
exactly reduced to the TBT in the noninteracting limit. We
now outline this proofl(Wanet all, 2010). Starting from the
expression foP; in Eq. (63) and Eq[{85), one can show that

1
2472
x (BOxB")] (mod2).

2P;(mod2) =

/ d*k 7% Tr[(BO; B")(Bo; BT)
(86)

this expression for
P; is shown to give the degreelegf of certain

If an insulator has inversion symmetry, there is a simplemap (Dubroviretal, [1985) from the Brillouin zone

algorithm to calculate th&, invariant (Fu and Kane, 2007):
indeed, the replacement in EG.{81) and Eq] (82); dfy

N
0; = H Eom (L), (85)
m=1

gives the correcZ, invariants. Heres,,(I';) = +1 is the
parity eigenvalue of th@mth occupied energy band &
[Fig. [34], which shares the same eigenvalug = &,

three-torusr™ to the SU(2) group manifold. There are two
seemingly different expressions fdeg f, one of which is

of integral form as given by Eq[(86), while the other is
of discrete form and given simply by the number of points
mapped to a arbitrarily chosen imageSi/(2). Due to TR
symmetry, if we choose the image point as one of the two
antisymmetric matrices iU (2) (e.g. io,), we have an
interesting “pair annihilation” of those points other thite
eight TRIM (Wanget al,, [2010). The final result is exactly

with its degenerate Kramers partrier (Fu and Kane,2007). ThéeZ, invariant from TBT. The explicit relation between TFT

product is only over half of the occupied bands. Since theand TBT is (Wanget all,

definition of thed, relies on parity eigenvalues, thg are

only well-defined in this case when inversion symmetry is

present/(Fu and Kahe, 2007). However, for insulators with

out inversion symmetry, this algorithm is very useful. lotfa

2010)

(=1)* = (=1)". (87)

V. TOPOLOGICAL SUPERCONDUCTORS AND

if we can deform a given insulator to an inversion-symmetricSUPERFLUIDS
insulator and keep the energy gap open along the way, the
resultantZ, invariants are the same as the initial ones due Soon after their discovery, the study of TR invariant topo-

to topological invariance, but can be calculated from par

ity (Fu.and Kane, 2007).

Jogical insulators was generalized to TR invariant topélog
cal superconductors and superfluids (Kitdev, 2 '
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@;@/,LZD_GSLS_QI:LM_&L&H, [2008). There is a direct physical degrees of freedom, each chiral Majorana edge stat
analogy between superconductors and insulators becagise thas half the degrees of freedom of the chiral edge state of a
Bogoliubov-de Gennes (BdG) Hamiltonian for the quasipar-QH system. Therefore, the chiral superconductor is the “min
ticles of a superconductor is analogous to the Hamiltonfan oimal” topological state in 2D. The analogy between a chiral
a band insulator, with the superconducting gap correspgndi superconductor and a QH state is illustrated in the upper pan
to the band gap of the insulator. els of Fig[40. Following the same analogy, one can consider
3He-B is an example of such a topological superfluid statethe superconducting analog of QSH state — a “helical” su-
This TR invariant state has a full pairing gap in the bulk, perconductor in which fermions with up spins are paired in
and gapless surface states consisting of a single Majorarihe p,. + ip, State, and fermions with down spins are paired
cone (Chung and Zhahnf, 2009; @iall, [2009;/Roy, 2008; in thep, — ip, state. Such a TR invariant state has a full gap
Schnydeet al, [2008). In fact, the BdG Hamiltonian for in the bulk, and counter-propagating helical Majoranaestat
3He-B is identical to the model Hamiltonian of a 3D topo- at the edge. In contrast, the edge states of the TR invariant
logical insulator|(Zhanet all, [2009), and investigated exten- topological insulator are helicddirac fermions with twice
sively in Sec[TII.A. In 2D, the classification of topologica the degrees of freedom. As is the case for the QSH state, a
superconductors is very similar to that of topological iasu mass term for the edge states is forbidden by TR symmetry.
tors. TR breaking superconductors are classified by an inteFherefore, such a superconducting phase is topologicaily p
ger (Read and Green, 2000:; Volovik, 1988), similar to quantected in the presence of TR symmetry, and can be described
tum Hall insulators (Thoulesst all,[1982), while TR invariant by aZ, topological quantum number (Kitaev, 2009; Qiall,
superconductors are classified (Kitaev, 2009etl, [2009; &M,M). The four types of 2D
[Roy, [2008; Schnydest all, [2008) by aZ, invariant in 1D  topological states of matter discussed here are summarized
and 2D, but by an integefZj invariant in 39; Fig.[40.
Schnydeket all, ' 2008). As a starting point, we first consider the Hamiltonian of the
Besides the TR invariant topological superconductorssimplest nontrivial TR breaking superconductor,gheip su-
the TR breaking topological superconductors have also aperconductor (Read and Gre 000) for spinless fermions:
tracted a lot of interest recently, because of their rela- 1 A
tion with non-Abelian statistics and their potential apph H = 5 Z (CI,,c_p) ( ip D+ ) ( CTp ) , (88)
tion to topological quantum computation. The TR break- » A'p. —€p C-p
ing topological superconductors are described by an inte- .

) _ _ :
ger . The vortex of a topological superconductor with Wlt.h. ‘° =P /2.m pandpy P i ipy. In the weak
odd topological quantum numbeéy” carries an odd num- pairing phase witf > 0, thep,. + ip, chiral superconductor

) o : is known to have chiral Majorana edge states propagating on
Eg;jb'!ﬁ;%rzgégéo m:| odemz 301 mE 9| 9). gl ':V'rng rIStgeotgoeach boundary, described by the Hamiltonian

which could provide a platform for topological quantum com- Hedge = Z vrky g, Yk, , (89)
puting (Nayaket al,[2008). The simplest model for avi = 1 ky>0

chiral topological superconductor is realized in fhe+ ip, ) S _

pairing state of spinless fermions (Read and Green,/2000). wherey_, = le is the quasiparticle creation opera-
spinful version of the chiral superconductor has been pretor (Read and Green, 2000) and the boundary is taken parallel
dicted to exist in SfRuO; (Mackenzie and Maehb, 2003), but 0 they direction. The strong pairing phage < 0 is triv-

the experimental situation is far from definitive. Recently ial, and the two phases are separated by a topological phase
several new proposals to realize Majorana fermion states ifansition ay: = 0.

conventional superconductors have been investigated ky ma I the  BHZ model for the QSH state in

ing use of strong SOC _(Fu and Kane, 2008;eDall, [2010; HgTe (Berneviget all, 2006), if we ignore the coupling
mam)'

terms between spin up and spin down electrons, the system is
a direct product of two independent QH systems in which spin
up and spin down electrons have opposite Hall conductance.
A. Effective models of time-reversal invariant In th? same yvay,_the simplest model_for th.e t(_)pologically
superconductors nontrivial TR invariant superconductor in 2D is given by the
following Hamiltonian:

The simplest way to understand TR invariant topological

. . . .. €p Apy 0 0
superconductors is through their analogy with topologital 1 ~ AF . 0 0 5
sulators. The 2D chiral superconducting state is the soperc H=- Z i b= P " U(90)
ductor analog of the QH state. A QH state with Chern num- 29 0 0 S
ber N hasN chiral edge states, while a chiral superconductor 0 0 —-Apy —¢6

with topological quantum numbéy” hasA chiral Majorana L ; ; T
edge states. Since the positive and negative energy sfatesWith ¥(p) = (CTpv%_p,Cip,%_p) . From Eq. [(9D) we
the BAG Hamiltonian of a superconductor describe the samsee that spin up (down) electrons fogm + ip, (pz — ipy)
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5 — — £ (Yr,t, ¥—k,,) transforms under TR as a Kramers doublet,

oK K which forbids a gap in the edge state spectrum when TR
E Chiale & E is preserved by preventing the mixing of spin up and spin
W o o K down modes. To see this explicitly, notice that the okjy

independent term that can be added to the edge Hamiltonian
@1) isim Zk Y_k, 1%k, ., With m real. However, such a
term is odd under TR, which implies that any backscattering
] heisle 0 G between quasiparticles is forbidden by TR symmetry. The dis
22 ®— NG cussion above is exactly parallel to the topological charac-
terization of QSH system. In fact, the Hamiltoni@n](90) has
exactly the same form as the four-band effective Hamiltonia
FIG. 40 (Top row) Schematic comparison of 2D chiral supedema ~ of the QSH effect in HgTe quantum wells g
tor and QH state. In both systems, TR symmetry is broken amd th2006). The edge states of the QSH insulator consist of an
edge states carry a definite chirality. (Bottom row) Sch&m@im-  odd number of Kramers pairs, which remain gapless un-
paron 20Tt oy sperito SO Gt any sl T . peruiaton Oaie
; Y preserve TR symmetry and have a heéita ;"o ' vio ok 2006).  Such a “helical liquid” with an odd

of edge states, where opposite spin states counter-prigpadae . .
dashed lines show that the edge states of the supercorslactova-  number of Kramers pairs at the Fermi energy cannot be real-

jorana fermions so that the < 0 part of the quasiparticle spectrum ized in any bulk 1D system, and can only appealograph-
is redundant. In terms of the edge state degrees of freederhave  ically as the edge theory of a 2D QSH |nsula
symbolically QSH = (QH)* = (Helical SC)* = (Chiral SC)*.  [2006). Similarly, the edge state theory Hg.(91) can bedalle
From(Qiet al,2009. a “helical Majorana liquid”, and can only exist on the bound-
ary of aZ, topological superconductor. Once such a topolog-

Cooper pairs, respectively. Comparing this model Hamilto_|cal phase is established, it is robust under any TR invarian

nian [90) for the topological superconductor with the BHZ perturbations such as Rashba-type SOC amawve pairing,

model of the HgTe topological insulator [Hd. 2], we first seeiﬂvsgrgnsfll? L?;agfnnb?ggfé{é/ (;Sbbgl;i?r}c-{rgised(?r? tgre[ilsal
that the term proportional to the identity matrix in the BHZ J q Y P

model is absent here, reflecting the generic particle-hote s a quantum point contact between two topological supercon-

ductorsl(Asanet al,, [2010).

metry of the BdG Ham|Iton|a_n for supercond_uctors. On the The 2D Hamiltonian[{90) describes a spin-triplet pairing,
other hand, the terms proportional to the Pauli matriceare

the spin polarization of which is correlated with the orbita
identicalin both cases. Therefore, a topological superconduc

angular momentum of the pair. Such a correlation can be nat-

tor can be viewed as a topological insulator with partiajeh urally generalized to 3D where spin polarization and otbita

symmetry. The topological superconductor Hamiltoniao als

angular momentum are both vectors. The Hamiltonian of such
has half as many degrees of freedom as the topological insu

& 3D superconductor is given by

lator. The model Hamiltoniar (90) is expressed in terms o
the Nambu spinoW (p) which artificially doubles the degrees - Z ot ( eplaxe 1020 A%,

m
m

o) oY

2 —
&

pd

®
N
=~

SN m

/i
/=

of freedom as compared to the topological insulator Hamilto
nian. Bearing these differences in mind, in analogy with the _
QSH system, we know that the edge states of the TR invariaffthere ~ we  use 2 different  basis ¥(p) =
system described by the Hamiltonidn](90) consist of spin uF(CTpv%p,CLp,CI_p) . A% is a3 x 3 matrix with
and spin down quasiparticles with opposite chiralities:

) U, (92)

—eplaxo

a=1,2,3andj = z,y, z. Interestingly, an example of such
a Hamiltonian is given by the well-knowtHe-B phase, for

_ _ which the order parameteéx®’ is determined by an orthogo-
Heage = D, orky (k191 = Ykyih) - (O) nal matrix A% = Au®, u € SO(3) (Vollhardt and Walfle,
@). Here and below we ignore the dipole-dipole inter-
The quasiparticle operatots,, 1, v,, can be expressed in action term [(Leggétt, 1975), since it does not affect any
terms of the eigenstates. (), vy, (x) of the BAG Hamilto-  essential topological properties. Performing a spin ioat

ky>0

nian as A% can be diagonalized tA® = A§*J, in which case the
, . Hamiltonian [92) can be expressed as:
Vot = / @ (un, (@)er(@) + v, (00l @) e 0 Ap —Ap
* * 1 O € —A 2 —A _
ooy = / P (uy, 2y (o) + 07, ()] (@) = / eeut| 0 e —ei Nl

from which the TR transformation of the quasiparti- —A'p. —A'py 0 —‘p
cle operators can be determined to ﬁéﬂkyTT‘l = Compared with the model Hamiltonian Ef.131) for the sim-
Yopyy Toe, T~ = —t¢_p,s.  In other words, plest 3D topological insulators (Zhaegal, [2009), we see
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that the Hamiltoniar{{93) has the same form as that fo8Bj

(up to a basis transformation), but with complex fermions
replaced by Majorana fermions. The kinetic energy term
p?/2m — p corresponds to the momentum dependent mass
termM (p) = M — B1p? — ngﬁ of the topological insulator. pr
The weak pairing phasg > 0 corresponds to the nontriv- <
ial topological insulator phase, and the strong pairingsgha bezsm
1 < 0 corresponds to the trivial insulator. From this analogy, i
we see that the superconductor Hamiltonian in the weak pair-
ing phase describes a topologisaperconductowith gapless
surface states protected by TR symmetry. Different from the
topological insulator, the surface states of the topoklga-
perconductor are Majorana fermions described by

2R =4.7nm £=237am

Hopr = % Z Uszk (kyoy — kyoy) Uk, (94) FIG. 41 Setting for detecting the Majorana surface statéisesfHe-

k B phase, which consist of a single Majorana cone. When elestr
are injected intdHe-B, they exist as “bubbles”. If the injected elec-
trons are spin-polarized, the spin will relax by interactigith the

. . . o T
Wl.th the _MaJ(_)rana condition) T Oalyc - We see that surface Majorana modes, and this relaxation is stronglsodrapic.
this Hamiltonian for the surface Majorana fermions of a topo FromChung and Zhahg. 2009.

logical superconductor takes the same form as the surface

Dirac Hamiltonian of a topological insulator in this spécia

basis. However, because of the generic particle-hole Symm%pace as

try of the BdG Hamiltonian for superconductors, the possi-

ble particle-hole symmetry breaking terms for surface ©ira 1 o7
fermions such as a finite chemical potential is absent for sur H=Y" |:1/11T<hk1/1k +3 (wlAkwfk + h~C-)] ;
face Majorana fermions. Because of the particle-hole sym- k

metry and TR symmetry, the spin lies strictly in the plane

perpendicular to the surface normal, and the integer windln @ different basis we havél = -, W H\ Wy with
ing number of the spin around the momentum is now a well-

defined quantity. This integer winding number gives elas- 1 < Uk — iszik )

sification of the 3D topological superconductor (Kitdev090 Ve = V2 \ e+ iTol
Schnydeet all,'2008). The surface state remains gapless un- -

der any small TR invariant perturbation, since the onlylavai He — 1 0 hy + iTAL (95)

able mass termn Y, ¥7, 0¥y is TR odd. The Majorana K72 hyx — z’TAL 0 '

surface state is spin-polarized, and can thus be detectitsl by

special contribution to the spin relaxation of an electran o In generaly)y is a vector withV components, antly, andA

the surface ofHe-B, similar to the measurement of electron are N x N matrices. The matrif is the TR matrix satisfying
spin correlation in a solid state system by nuclear magnetigth, 7 = Ty, T2 = -1 and 77 = I, with T the iden-
resonance (Chung and Zhang, 2009). tity matrix. We have chosen a special basis in which the BdG
HamiltonianHy has a special off-diagonal form. It should be
noted that such a choice is only possible when the system has
both TR symmetry and particle-hole symmetry. These two
symmetries also requil‘EAL to be Hermitian, which makes

From the discussion above, we see that the model Hamilt_he matrixhy + 17 A, generically non-Hermitian. The matrix

tonian for the topological superconductor is the same as thd + iTA}, can be decomposed by a singular value decompo-
for the topological insulator, but with the additional pel-  Sition ashi + iTAL = Uy Dy Vi with U, Vi unitary matri-
hole symmetry. The simultaneous presence of both TR anées and)y a diagonal matrix with nonnegative elements. One
particle-hole symmetry gives a different classificationtfe ~ can see that the diagonal elementdxgfare actually the pos-
2D and 3D topological superconductors, in that the 3D TR indtive eigenvalues offx. For a fully gapped superconductor,
variant topological superconductors are classified bygiete Dx is positive definite, and we can adiabatically deform it to
(z) classes, and the 2D TR invariant topological superconthe identity matrixl without closing the superconducting gap.
ductors are classified by t1#%, classes. To define an integer- During this deformation, the matrik. + iTA] is deformed
valued topological invariant (Schnydetall, [2008), we start  to a unitary matrixQy = Ulin € U(N). The integer-valued
from a generic mean-field BAG Hamiltonian for a 3D TR in- topological invariant characterizing topological superduc-
variant superconductor, which can be written in momentuntors is defined as the winding number@g ,

B. Topological invariants
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Cy = +1[Fig.[42(a),(b)]. If we choosé\y = iAgc¥, which

k.

(@) « N (b) ’ N0 has the samé, for both Fermi surfaces, we obtai¥y = 0

[Fig.[42(b)]. If we instead choosAy, = iAgo¥c - k, we ob-
l ! tain Ny = 1 [Fig.[42(a)]. In the latter case, if we take the

a — 0 limit, we arrive at the resultvy,, = 1 for the®He-B

) ‘ phase, which indicates thdHe-B is topologically nontriv-

K, f v K, + ’ ial (Volovik, [2003).

For 2D TR invariant superconductors, a procedure of di-
(c) R d) ¢ mensional reduction leads to the following simple Fermi sur

0=o2r face topological invariant:

3 Hy 9.=0 m
| i<y Nap = [ (sen(6,))™ . (99)
0=m s
Ko

413 e The criterion [[9D) is quite simple: a 2D TR invariant super-
0 n conductor is topologically nontrivial (trivial) if thersian odd

(even) number of Fermi surfaces, each of which encloses one
. B . TR invariant point in the Brillouin zone and has negativapai
FIG. 42 (a,b) SUperCOﬂdUCtlng pairing on two F.ermll surfan‘ga |ng As an example’ see F42(C), where Fermi surfaces 2
3D superconductor. (c) An example of 2D TR invariant topélog gnq 3 have negative pairing. Fermi surfaces 3 and 4 enclose
cal superconductor. (d) 1D TR invariant topological supadzictor. . . .

an even number of TR invariant momenta, which do not affect

Adapted from Qi al, 2010. theZs topological invariant. There is only one Fermi surface,
surface 2, which encloses on odd number of TR invariant mo-
2008): menta and has negative pairing. As a resultZhéopological
invariantis(—1)* = —1.
Ny — 1 /dgkeijkTr {QlaiQleanleaka49'6) For 1D TR invariant superconductors, a further dimensional
242 reduction can be carried out to give
We note that the topological invariaht {96) is expressed as
an integral over the entire Brillouin zone, similar to itsuoe Nip = H (sgn(ds)) (100)

S

terpart for topological insulators. However, there is a key
difference. Whereas the insulating gap is well defined ovewheres is summed over all the Fermi points betweeand

the entire Brillouin zone, the superconducting pairing @ap . In geometrical terms, a 1D TR invariant superconductor is
the BdG equation is only well defined close to the Fermi surnontrivial (trivial) if there is an odd number of Fermi paoént
face. Indeed, superconductivity arises from a Fermi serfacbetweerh andx with negative pairing. We illustrate this for-
instability, at least in the BCS limit. Therefore, one would mula in Fig[42(d), where the sign of pairing on the red (blue)
like to define topological invariants for a topological stpe Fermi point is—1 (+1), so that the number of Fermi points
conductor strictly in terms of Fermi surface quantities.eTh with negative pairing id if the chemical potentiglk = ; or
desired topological invariant can be obtained by redudiegt 1 = o, and0 if 4 = us. The superconducting states with
winding number in Eq[({96) to a integral over the Fermi sur-ix = p; andu = pe can be adiabatically deformed to each

face (Qiet all,[2010): other without closing the gap. However, the superconductor
1 with 1 = us can only be obtained from that wifh, through
Ny = - Z sgn(ds)Chs, (97) atopological phase transition, where the pairing ordeamar

24 eter changes sign on one of the Fermi points. It is easy to see

gom this example that there are two classes of 1D TR invari-

wheres is summed over all disconnected Fermi surfaces an
ant superconductors.

sgn(d,) denotes the sign of the pairing amplitude on e
Fermi surface(' is the first Chern number of theh Fermi
surface (denoted blyS;):

1

Cis = o s Qv (Oiasj(k) — djasi(k)),  (98) 1. Majorana zero modes in p + ip superconductors

C. Majorana zero modes in topological superconductors

with ay; = —i (sk|9/0k; |sk) the adiabatic connection de-  Besides the new TR invariant topological superconductors,
fined for the bandsk) which crosses the Fermi surface, andthe TR breaking topological superconductors have atteete
dQ¥ the surface elementform of the Fermi surface. lot of interest because of their relevance to non-Abeliatist

As an example, we consider a two-band model with nonintics and topological quantum computation. Ip & ip super-
teracting Hamiltoniarky, = k?/2m — u + ok - o, for which  conductor described by E@.(88), it can be shown that the core
there are two Fermi surfaces with opposite Chern numbeof a superconducting vortex contains a localized quasgbart
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with exactly zero energ@img). The correspond-2. Majorana fermions in surface states of the topological
ing quasiparticle operatoy is a Majorana fermion obeying insulator
[v,H] = 0 andy" = ~. When two vortices wind around

each other, the two Majorana fermions, - in their cores Fu and Kane!(Fu and Karle, 2008) proposed a way to real-
transform nontrivially. Because the phase of the chaxge- ize the Majorana zero mode in a superconducting vortex core
order parameter winds by around each vortex, an elec- by making use of the surface states of 3D topological insula-
tron acquires a Berry phase sfwhen winding once around tors. Consider a topological insulator such as3#, which

a vortex. Since the Majorana fermion operator is a superpd?as a single Dirac cone on the surface with Hamiltonian from
sition of electron creation and annihilation operatorsglso Eq.[33:

acquires ar phase shift, i.e. a minus sign when winding

around another vortex. Consequently, when two vortices are H=> 4 [v(e xp)-2—ple, (101)
exchanged, the Majorana operatgis v, must transform as p

Y1 — Y2, 72 — —71. The additional minus sign may be as- T ) )
sociated withy; or ~s, but not both, so that after a full wind- Wherey = (¢, ¢,)" and we have taken into account a fi-
ing we havey;2) — —71(2). Since two Majorana fermions _nlte Che_mlf:al potentiaf. Con5|d_er now the superconduct-
~1 and v, define one complex fermion operater + i, ing proximity effect of a convent!onai-wave supercqnduc-
the two vortices actually share two internal states labbjed tor on the ZTD Tsurface states, which leads to the pairing term
im72 = £1. When there aréN vortices in the system, the Ha = A¢i¢) + h.c. The BAG Hamiltonian is given by
core states span’-dimensional Hilbert space. The braid- Hpac = %Zp \I/THP\I/, wherel = ( ot o ) and

ing of vortices leads to non-Abelian unitary transformasio

in this Hilbert space, implying that the vortices in this tgys < w(o X p)-&—p iV A )

obey non-Abelian statistics_(lvariov, 2001; Read and Green, — Hp =

M). Because the internal states of the vortices are caltlo

ized on each vortex but shared in a nonlocal fashion betweefine vortex core of such a superconductor has been shown to
the vortices, the coupling of the internal state to the emAr 5. 5 single Majorana zero mode, similar to & ip super-
ment is exponentially small. As a result, the superpositionsgnductor (Fu and Kahk, 2008; Jackiw and Rdssi, 1981). To
of different internal states is immune to decoherence, Wwhic \,nqerstand this phenomenon, one can consider the case of fi-
is ideal for the purpose of quantum computation. Quantuny;ie 11, and introduce a TR breaking mass temw* in the
computation with topologically protected g-bits is gefigra gy rface state HamiltoniaR (101). As discussed in Beclill.B
known_ as _topological quantum computation, and is currentlyp;s opens a gap of magnitudie| on the surface. Consider-

an active field of research (Nayakal, 2008). ing the case:, > m > 0, u —m < m, the Fermi level in the

normal state lies near the bottom of the parabolic dispeysio

_ _ and we can consider a “nonrelativistic approximation” te th
Several experimental candidates fewave superconduc- massive Dirac Hamiltonian,

tivity have been proposed, among which, BuOy, which

—ioY A* —v(eXp)-z+p

is considered as the most promising candidate for 2D chi- H = ZW [v(e xPp)-z2+mo* — puly

ral superconductivityl (Mackenzie and Maeho, 2003). How- P

ever, many properties of this system remain unclear, such as 2 .t p?

whether this superconducting phase is gapped and whether = /d Ty (% +m-= “) U+ (102)

there are gapless edge states. _ N
wheret, is the positive energy branch of the surface states.

In momentum spacey,p, = upi¥r + vpy, With up =
Fortunately, there is an alternate route towards topotdgic /3 + Q\/ﬁ andv, = 7 /5 — Q\/ﬁ- Consider-

superconductivity withoup-wave pairing. In 1981, Jackiw ing the projection of the pairing terti o onto thes, band,
and Rossi (Jackiw and Rdssi, 1981) showed that adding a Maye obtain

jorana mass term to a single flavor of massless Dirac fermions

in (2+ 1)D would lead to a Majorana zero mode in the vortex Hp ~ Z ¢17p¢17_pAupvp +h.c.

core. Such a Majorana mass term can be naturally interpreted P

as the pairing field due to the proximity coupling to a conven- Apy + 4

tional s-wave superconductor. There are now three different - Z o YL ot _p t+hec (103)
P

proposals to realize this route towards topological sup®erc

ductivity: the superconducting proximity effect onthe 2b-s  We see that in this limit, the surface Hamiltonian is the same
face state of the 3D topological insulator (Fu and Kane, 2008 as that of a spinlegs+ ip superconductor [EqL(88)]. When
on the 2D TR breaking topological insulat, . the massn is turned on from zero to a finite value, it can be
and on semiconductors with strong Rashba Smﬁ shown that as long as < u, the superconducting gap near
M). We shall review these three proposals in the follgwin the Fermi surface remains finite, so that the Majorana zero
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mode we obtained in the limlt < © — m < m must re-
main at zero energy for the original = 0 system. Once we
have shown the existence of a Majorana zero mode at finite
taking thep — 0 limit for a finite A also leaves the super-
conducting gap open, so that the Majorana zero mode is still
present af, = 0.

From the analogy with the + ip superconductor shown
above, we also see that the non-Abelian statistics of \estic
with Majorana zero modes apply to this new system as well. A
key difference between this system and a chirad ip super-
conductor is that the latter necessarily breaks TR symmetry
while the former can be TR invariant. Only a conventional
s-wave superconductor is required to generate the Majorana  (b)
zero modes in this proposal and in the other proposals dis-
cussed in the following subsection. This is an important ad-
vantage compared to previous proposals requiring an uncon-
ventionalp + ip pairing mechanism.

There is also a lower dimensional analog of this nontrivial
surface state superconductivity. When the edge states of 2D
QSH insulator are in proximity with agwave superconduc- ~
tor and a ferromagnetic insulator, one Majorana fermion ap- n
pears at each domain wall between ferromagnetic region and
superconducting region ((Fu and Kane, 2009)). The Majo-
rana fermion in this system can only move along the 1D QSH-IG. 43 (a) Phase diagram of the QAH-superconductor hylysd s
edge, so that non-Abelian statistics is not well-defined: Betem foru = 0. m is the mass parametel is the magnitude of the
cause an electron cannot be backscattered on the QSH edgépercond“a'”g gap, anl is the Chern number of the supercon-

(a)

: : luctor, which is equal to the number of chiral Majorana edgees.
the scattering of the edge electron by a superconducting r b) Phase diagram for finite, shown only forA > 0. The QAH,

gion induced by proximity effect is always perfect Andreev normal insulator (NI) and metallic (Metal) phases are vdelfined

reflection [(Adr t al, 2010; Guigou and Cays56l. 2010; oniy for A — 0. FromQiet al, 2010

Satoet all,[2010). '
_ o _ _ perpendicular direction, because the magnetic field may de-
3. Majorana fermions in semiconductors with Rashba stroy superconductivity. Two ways to realize a TR breaking
spin-orbit coupling mass term have been proposed: by applying an in-plane mag-
netic field and making use of the Dresselhaus S licea,

From the above analysis, we see that conventigipaliring
in the surface Hamiltoniad (ID1) induces topologically nion
trivial superconductivity with Majorana fermions. Thesed
2D system which is described by a Hamiltonian very S|m|IarWlth Rashba SOC, and a magnetic insulator.

to Eq. [IO1), i.e. a 2D electron gas with Rashba SOC. The This mechanism can also be generalized to the 1D semicon-

Hamiltonian isH = [ d*x 4! (p_ +a(oxp)-z- N) ¥, ductor wires with Rashba SOC coupling in proximity with a
which differs from the surface state Hamiltonian only by superconductor (Oreet all,[2010; Wimmeret all,[2010). De-
the spin-independent terrp?/2m. Consequently, when spite the 1D nature of the wires, non-Abelian statisticgiis s
conventionals-wave pairing is introduced, each of the two possible by making use of wire networks (Alicetall, 2010).
spin-split Fermi surfaces forms a nontrivial superconduct

However, the Majorana fermions from these two Fermi sur-

faces annihilate each other so that theave superconduc- 4. Majorana fermions in quantum Hall and quantum

tor in the Rashba system is trivial. It was pointed out re-anomalous Hall insulators

cently , ) that a nontrivial superconducting

phase can be obtained by introducing a TR breaking term More recently, a new approach to realize a topological
Moo* into the Hamiltonian, which splits the degeneracy nearsuperconductor phase has been propo, M),

k = 0. If the chemical potential is tuned | < |M|, the  which is based on the proximity effect to a 2D QH or QAH
inner Fermi surface disappears. Therefore, supercomitycti insulator. Integer QH states are classified by an intéger
is only induced by pairing on the outer Fermi surface, and beeorresponding to the first Chern number in momentum space
comes topologically nontrivial. Physically, one cannatice  and equal to the Hall conductance in unitsedf/h. Con-

a TR breaking mass term by applying a magnetic field in thesider a QH insulator with Hall conductanéc?/h in close

or by exchange coupling to a ferromagnetic insujatin
Iayer @ﬁ ). The latter proposal requires a het-

erostructure consisting of a superconductor, a 2D elegfasn
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edge mode vortex

proximity to a superconductor. Even if the pairing strength
inducing by the superconducting proximity effect is infasit
imally small, the resulting state is topologically equeat to

a chiral topological superconductor withtopological quan-

tum numberN" = 2N. An intuitive way to understand
such a relation between QH and topological superconducting
phases is through the evolution of the edge states. The edge
state of a QH state with Chern numh¥r = 1 is described

by the effective 1D Hamiltoniatoqze = Zpy vpynj,ynpy,
Wherenggy s Mp, are greatlon/annlhllatlon operat_ors f_or a com- clectrons Majorana
plex spinless fermion. We can decompage into its real o hisles feriions

and imaginary partsy,, = 1/v2(v,,1 + ivp,2) andn;y =
1/\/5(7_,,y1 — iY-p,2), Where~y, , are Majorana fermion
operators satisfyingy;ya = Y_p,a and {w_pya,yp;b} =
5ab5pyp;. The edge Hamiltonian becomes

topological insulator

Hegge = Z Py (”Y*pyl”Ypyl + ”Y*pyﬂpy?) ) (104)
Py >0

up to a trivial shift of the energy. In comparison with the edg FIG. 44 3D topological insulator in proximity to ferromagse
theory of the chiral topological superconducting state, 1  with opposite polarization¥/; and M) and to a superconductor
edge state can be considered as two identical copies of chirg). The top panel shows a single chiral Majorana mode along the
Majorana fermions, so that the QH phase with Chern numbefd9€ between superconductor and ferromagnet. This modecis e
trically neutral, and therefore cannot be detected elmtyi The

N " 1 can be -con5|dered as a chiral topologlc_al .Sl.Jpe.rconMach-Zehnder interferometer in the bottom panel convectsaaged
ducting state with Chern numbgf = 2, even for infinitesi-

J ) current along the domain wall into a neutral current alorg sh-
mal pairing amplitudes perconductor (and vice versa). This allows electrical cfaga of
An important consequence of such a relation between Qkhe parity of the number of enclosed vortices/flux quantaonfr
and topological superconducting phases is that the QHaplate IAkhmerovet all, 2009.
transition fromN = 1to N = 0 will generically split into
two transitions when superconducting pairing is introdlce
Between the two transitions, there will be a new topologi-5. Detection of Majorana fermions
cal superconducting phase with odd winding numbee= 1
[Fig.[43]). Compared to other approaches, the emergence of The next obvious question is how to detect the Ma-
the topological superconducting phase at a QH plateau traferana fermion if such a proposal is experimentally re-
sition is determined topologically, so that this approaoksd alized. There exist two similar theoretical proposals of
not depend on any fine tuning or details of the theory. electrical transport measurements to detect these Maoran
A natural concern raised by this approach is that the stronéermions (Akhmeroet all, [2009; Fu and Kane, 2009). Con-
magnetic field usually required for QH states can suppress sisider the geometry shown in Fig.]44. This device is a com-
perconductivity. The solution to this problem can be foundbination of the inhomogeneous structures on the surface of
in a special type of QH state — the QAH state, whicha topological insulator discussed in the previous subsesti
is a TR breaking gapped state with nonzero Hall conducThe input and output of the circuit consist of a chiral fermio
tance in the absence of an external orbital magnetic fieldoming from a domain wall between two ferromagnets. This
(Sec[ILE). There exist now two realistic proposals forl+ea chiral fermion is incident on a superconducting region weher
izing the QAH state experimentally, both of which make useit splits into two chiral Majorana fermions. The chiral Ma-
of the TR invariant topological insulator materials Mn-édp jorana fermions then recombine into an outgoing electron or
HgTe, ), and Cr- or Fe-dopedf8e; thin  hole after traveling around the superconducting islandrevio
films (Yuetal, ). The latter material is proposed to be explicitly, an electron incident from the source can be dran
ferromagnetic, and can thus exhibit a quantized Hall conducmitted to the drain as an electron, or converted to a hole by
tance at zero magnetic field. The former material is known tan Andreev process in which charge is absorbed into the
be paramagnetic for low Mn concentrations, but only a smalkuperconducting condensate. To illustrate the idea weisksc
magnetic field is needed to polarize the Mn spins and drivéhe behavior for & = 0 quasiparticle (Fu and Kane, 2009).
the system into a QAH phase. This requirement is not so proA chiral fermion incident at point meets the superconduc-
hibitive, because a nonzero magnetic field is already neceser and evolves from an electrari into a fermioney built
sary to generate superconducting vortices and the assdciatfrom the Majorana operators and~.. The arbitrariness in
Majorana zero modes. the sign ofy; » allows us to choose = ~; + iv,. After
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the quasiparticle winds around the superconducting region order effects, realistic predictions for topological Motsu-
recombines into a complex fermion at poiht This fermion  lator materials, a deeper understanding of fractional ltupo
must beeitherczfl orcq, Since a superposition of the two is not a ical insulators and realistic predictions for materialaliza-
fermion operator and is thus forbidden. To determine the cortions of such states, the effective field theory descriptbn
rect operator we can use adiabatic continuity. When the sizthe topological superconducting state, and realistic redse
of the superconductor shrinks continuously to zero, paints predictions for topological superconductors. On the exper
andd continuously tend to each other. Adiabatic continuity mental side, the most important task is to grow materialk wit
implies that an incidentZ = 0 electron is transmitted as an sufficient purity so that the bulk insulating behavior can be
electronc! — c:;. However, if the ring encloses a quantized reached, and to tune the Fermi level close to the Dirac point
flux ® = nhc/2e, this adiabatic argument must be reconsid-of the surface state. Hybrid structures between topolbgiea
ered. Whem is an odd integer, the two Majorana fermions sulators and magnetic and superconducting states will-be in
acquire an additional relative phasemgfkince each flux quan- tensively investigated, with a focus on detecting exotieem
tum he/2e is ar flux for an electron, and thus for a Majo-  gent particles such as the image magnetic monopole, tha axio
rana fermion. Up to an overall sign, one can take— —v; and the Majorana fermion. The theoretical prediction of the
and~, — 2. Thus, when the ring encloses an odd number ofQAH state is sufficiently realistic and its experimentabois-
flux quantac! — c4, and an incidenfZ = 0 electron is con-  ery appears to be imminent. The topological quantization of
verted to a hole. The general consequences of this were cdhe TME effect in 3D and the spin-charge separation effect
culated in detail (Akhmeroet all,[2009] Fu and Kane, 2009), in 2D could experimentally determine the topological order
and it was shown that the output current (through diimthe ~ parameter of this novel state of matter.
lower panel of Figl-44) changes sign when the number of flux Due to space limitations, we did not discuss in detail the
quanta in the ring jumps between odd and even. This uniqupotential for applications of topological insulators amngber-
behavior of the current provides a way to electrically detecconductors. It would be interesting to explore the posgbil
Majorana fermions. of electronic devices with low power consumption based on
Besides these two proposals reviewed above, several othtre dissipationless edge channels of the QSH state, spintro
theoretical proposals have also been made recently to olics devices based on the unique current-spin relationship i
serve the Majorana fermion state, which make use ofhe topological surface states, infrared detectors, amadirto-
the Coulomb charging energy (Fu, 2010) or a flux qubitelectric applications. Topological quantum computerstas
(Hassleret all, [2010). More indirectly, Majorana fermions on Majorana fermions remain a great inspiration in the field.
can also be detected through their contribution to Josephso Topologicalinsulators and superconductors offer a ptatfo
coupling (Fu and Kane, 2008, 2009; Linder and Sudbo, [2010t0 test many novel ideas in particle physics — a “baby uni-
Linderet all,[2010; Lutchyret al,[2010; Tanakat al,,[2009).  verse” where the mysteriodsvacuum is realized, where ex-
For a topological superconductor ring with Majorana femsio otic particles roam freely and where compactified extra di-
at both ends, the period of Josephson current is doubled, itTension can be tested experimentally. In the introduction t
dependent from the physical realization (Fu and Kane, |200%his article we drew an analogy between the search for new
Kitaev,|2001! Lutchyret all,[2010). states of matter and the discovery of elementary partitles.
to now, the most important states of quantum matter were first
discovered empirically and often serendipitously. On titep
VI. OUTLOOK hand, the Einstein-Dirac approach has been most successful
in searching for the fundamental laws of nature: pure Idgica
The subject of topological insulators and topological supe reasoning and beautiful mathematical equations guided and
conductors is now one of the most active fields of research ipredicted subsequent experimental discoveries. The ssicce
condensed matter physics, developing at a rapid pace. Thef theoretical predictions in the field of topological instdrs
orists have systematically classified topological stateali ~ shows that this powerful approach works equally well in con-
dimensions. Ref. [(Qétall [2008) initiated the classifica- densed matter physics, hopefully inspiring many more exam-
tion program of all topological insulators according tocdlege  ples to come.
particle-hole symmetry and the TR symmetry, and noticed a
periodic structure with period eight, which is known in math
ematics as the Bott periodicity. More extended and sysiemat ACKNOWLEDGMENTS
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