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PART ONE: SYMMETRY )

OUTLINE

In this Outline we give a brief description of each item listed in the Contents.

While the Contents and Index are quick ways to search, or learn the general layout
of the book, the Outline gives more detail for the uninitiated. (The PDF version also
allows use of the “Find” command in PDF readers.)

Preface ... ... 23
general remarks on style, organization, focus, content, use, differences from other
texts, etc.

Some field theory texts........ ... .. 36

recommended alternatives or supplements (but see Preface)

iiveviseovo...... PART ONE: SYMMETRY .................
Relativistic quantum mechanics and classical field theory. Poincaré group = special
relativity. Enlarged spacetime symmetries: conformal and supersymmetry. Equations
of motion and actions for particles and fields/wave functions. Internal symmetries:
global (classifying particles), local (field interactions).

I. Global
Spacetime and internal symmetries.
A. Coordinates

spacetime symmetries

1. Nonrelativity ... 39
Poisson bracket, Einstein summation convention, Galilean symmetry (in-
troductory example)

2. Fermions . ... ... 46
statistics, anticommutator; anticommuting variables, differentiation, in-
tegration

3. Lie algebra......... .. 51
general structure of symmetries (including internal); Lie bracket, group,
structure constants; brief summary of group theory

4. Relativity ... ... 54
Minkowski space, antiparticles, Lorentz and Poincaré symmetries, proper
time, Mandelstam variables, lightcone bases

5. Discrete: C, P, T ... ... . 65
charge conjugation, parity, time reversal, in classical mechanics and field
theory; Levi-Civita tensor



6. Conformal . ... 68

broken, but useful, enlargement of Poincaré; projective lightcone

B. Indices

easy way to group theory

1. Matrices ... ..o o 73
Hilbert-space notation
2. Representations .......... ... ... ... . . .. . 76

adjoint, Cartan metric, Dynkin index, Casimir, (pseudo)reality, direct

sum and product

3. Determinants.................. .. i 81
with Levi-Civita tensors, Gaussian integrals; Pfaffian

4. Classical groups ............ i 84
and generalizations, via tensor methods

5. Tensor notation........... .. ... ... . ... ... 86

index notation, simplest bases for simplest representations

C. Representations

useful special cases

1. More coordinates. ... 92

Dirac gamma matrices as coordinates for orthogonal groups

2. Coordinate tensors............... . ... 94
formulations of coordinate transformations; differential forms

3. Young tableaux......... ... .. . 99
pictures for representations, their symmetries, sizes, direct products

4. Color and flavor................ . 101
symmetries of particles of Standard Model and observed light hadrons

5. COVEring GrOUPS . ... ...ttt 107

II. Spin

relating spinors and vectors

Extension of spacetime symmetry to include spin. Field equations for field strengths

of all spins. Most efficient methods for Lorentz indices in QuantumChromoDynamics

or pure Yang-Mills. Supersymmetry relates bosons and fermions, also useful for QCD.

A. Two components

2x2 matrices describe the spacetime groups more easily (2<4)

1.

B-VECHOTS . . oo 110
algebraic properties of 2x2 matrices, vectors as quaternions
Rotations .......... ... . . 114

in three (space) dimensions
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SPINOTS . . . 115

basis for spinor notation

review of spin in simpler notation: many indices instead of bigger; tensor

notation avoids Clebsch-Gordan-Wigner coefficients

still 2x2 matrices, but four dimensions; dotted and undotted indices;

antisymmetric tensors; matrix identities

Dirac . ... 126
example in free field theory; 4-component identities
Chirality /duality .............. 128

chiral symmetry, simpler with two-component spinor indices; more exam-

ples; duality

B. Poincaré

relativistic solutions

1. Field equations.......... ... .. 131
conformal group as unified way to all massless free equations

2. Examples . ... 134
reproduction of familiar cases (Dirac and Maxwell equations)

3. Solution. ... ... 137

proof; lightcone methods; transformations

dimensional reduction; Stiickelberg formalism for vector in terms of mass-

less vector + scalar

. Foldy-Wouthuysen ..................... ... ... ... ... 144

an application, for arbitrary spin, from massless analog; transformation
to nonrelativistic + corrections; minimal electromagnetic coupling to spin
1/2; preparation for nonminimal coupling in chapter VIII for Lamb shift
TWisStOrS ... o 148
convenient and covariant method to solve massless equations; related to
conformal invariance and self-duality; useful for QCD computations in
chapter VI

Helicity . ... 151

via twistors; Penrose transform

C. Supersymmetry

symmetry relating fermions to bosons, generalizing translations; general prop-

erties, representations



1. Algebra ... ... 156
definition of supersymmetry; positive energy automatic

2. Supercoordinates......... ... 157
superspace includes anticommuting coordinates; covariant derivatives
generalize spacetime derivatives

3. SUPEIGIrOUPS . . ...ttt 160
generalizing classical groups; supertrace, superdeterminant

4. Superconformal. ............ .. 163
also broken but useful, enlargement of supersymmetry, as classical group

5. Supertwistors. ...... ... 164

massless representations of supersymmetry

III. Local
Symmetries that act independently at each point in spacetime. Basis of fundamental
forces.

A. Actions

for previous examples (spins 0, 1/2, 1)

1. General ...... ... 169
action principle, variation, functional derivative, Lagrangians

2. Fermions . ... 174
quantizing anticommuting quantities; spin

3. Fields ... 176
actions in nonrelativistic field theory, Hamiltonian and Lagrangian den-
sities

4. Relativity .. ... 180

relativistic particles and fields, charge conjugation, good ultraviolet be-
havior, general forces
5. Constrained systems............. ... ... .. .. 186
role of gauge invariance; first-order formalism; gauge fixing
B. Particles
relativistic classical mechanics; useful later in understanding Feynman dia-

grams; simple example of local symmetry

1. Free .. 191
worldline metric, gauge invariance of actions

2. GaAUEES . . oo 195
gauge fixing, lightcone gauge

3. Coupling . ... 197

external fields
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4. Conservation ....... ... ... 198
for classical particles; true vs. canonical energy

5. Pair creation.......... ... ... ... . 201
and annihilation, for classical particle and antiparticle

C. Yang-Mills

self-coupling for spin 1; describes forces of Standard Model

1. Nonabelian ........ .. ... . . . . 204
self-interactions; covariant derivatives, field strengths, Jacobi identities,
action

2. Lightcone ...... ... 208
a unitary gauge; axial gauges; spin 1/2

3. Plane waves. .......... .. 212

simple exact solutions to interacting theory

4. Self-duality ...... ... ... 213
and massive analog

B, TWIStOrS . ..o 217
useful for self-duality; lightcone gauge for solving self-duality

6. Instantons .......... ... . 220

nonperturbative self-dual solutions, via twistors; 't Hooft ansatz; Chern-

Simons form

7. ADHM .. 224
general instanton solution of Atiyah, Drinfel’d, Hitchin, and Manin
8. Momnopoles. ... ... 226

more nonperturbative self-dual solutions, but static

IV. Mixed
Global symmetries of interacting theories. Gauge symmetry coupled to lower spins.
A. Hidden symmetry
explicit and soft breaking, confinement
1. Spontaneous breakdown ....................... ... ... ... ... ... 232

method; Goldstone theorem of massless scalars

2. Sigma models....... ... 234
linear and nonlinear; low-energy theories of scalars
3. COoSet SPACE . . ..o 237

general construction, using gauge invariance, for sigma models
4. Chiral symmetry ........ ... 240
low-energy symmetry, quarks, pseudogoldstone boson, Partially Con-

served Axial Current
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Stiickelberg . ... ... 243
scalars generate mass for vectors; free case

Higgs . ..o 245
same for interactions; Gervais-Neveu model; unitary gauge

Dilaton cosmology ............. 247

cosmology with gravity replaced by Goldstone boson of scale invariance

B. Standard model
application to real world

1. ChromodynamicCs. .............. ... 259
strong interactions, using Yang-Mills; C and P

2. Electroweak........ ... ... .. .. 264
unification of electromagnetic and weak interactions, using also Higgs

3. Families ............. . 267

including all known fundamental leptons; Cabibbo-Kobayashi-Maskawa,
transformation; flavor-changing neutral currents

Grand Unified Theories.............. .. ... .. ... ... ... 269
unification of all leptons and vector mesons

C. Supersymmetry

superfield theory, using superspace; useful for solving problems of perturba-

tion resummation (chapter VIII)

1. Chiral ... ... 275
simplest (“matter”) multiplet

2. Actions. ... 277
to introduce interactions; component expansion, superfield equations

3. Covariant derivatives ........................ i 280

approach to gauge multiplet; vielbein, torsion; solution to Jacobi identities
Prepotential ....... ... ... . . .. 282
fundamental superfield for constructing covariant derivatives; solution to

constraints, chiral representation

. Gauge actions . ... 284
for gauge and matter multiplets; Fayet-Iliopoulos term
. Breaking . ... 287

of supersymmetry; spurions
Extended ........ ... ... ... 289
introduction to multiple supersymmetries; central charges
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.................... PART TWO: QUANTA

Quantum aspects of field theory. Perturbation theory: expansions in loops, helicity,
and internal symmetry. Although some have conjectured that nonperturbative ap-
proaches might solve renormalization difficulties found in perturbation, all evidence

indicates these problems worsen instead in complete theory.

V. Quantization
Quantization of classical theories by path integrals. Backgrounds fields instead of
sources exclusively: All uses of Feynman diagrams involve either S-matrix or effective
action, both of which require removal of external propagators, equivalent to replacing
sources with fields.
A. General
various properties of quantum physics in general context, so these items need
not be repeated in more specialized and complicated cases of field theory
1. Path integrals ......... ... ... . 298
Feynman’s alternative to Heisenberg and Schrodinger methods; relation
to canonical quantization; unitarity, causality
2. Semiclassical expansion............. ... ... i 303

JWKB in path integral; free particle

3. Propagators......... ... 307
Green functions; solution to Schrodinger equation via path integrals

4. S-mAatTiCes ... ... 310
scattering, most common use of field theory; unitarity, causality

5. Wick rotation............. ... 315

imaginary time, to get Fuclidean space, has important role in quantum
mechanics
B. Propagators

relativistic quantum mechanics, free quantum field theory

1. Particles ....... . 319
Stiickelberg-Feynman propagator for spin 0; covariant gauge, lightcone
gauge

2. Properties ... ... ... 322

features, relations to classical Green functions, inner product

3. Generalizations.................. ... 326
other spins, nature of quantum corrections

4. Wick rotation........ ... ... .. .. 329

its relativistic use, in mechanics and field theory
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C. S-matrix
path integration of field theory produces Feynman diagrams/graphs; simple
examples from scalar theories
1. Path integrals ...... ... ... ... ... . 334
definition of initial /final states; generating functional of background fields;

perturbative evaluation

pictorial interpretation of perturbation theory; connected and one-
particle-irreducible parts, effective action

3. Semiclassical expansion.............. ... ... i, 344
classical (tree) graphs give perturbative solution to classical field equa-
tions

4. Feynman rules...... ... ... ... . 349
collection of simplified steps from action to graphs, in Wick-rotated (Eu-
clidean) momentum space

5. Semiclassical unitarity ............ ... ... 355
properties of classical action needed for unitarity

6. Cutting rules...... ... ... . . 358
diagrammatic translation of unitarity and causality

7. Cross SeCtionsS ... ... 361
scattering probabilities; differential cross sections; cut propagators

8. Singularities...... ... .. . . 366
relation of Landau singularities in momenta to classical mechanics

9. Group theory . ...... ... . 368

quark line rules for easily dealing with group theory in graphs

VI. Quantum gauge theory
Gauge fixing and more complicated vertices require additional methods.
A. Becchi-Rouet-Stora-Tyutin
easiest way to gauge fix, with fermionic symmetry relating unphysical degrees
of freedom; unitarity clear by relating general gauges to unitary gauges; gen-
eral discussion in framework of quantum physics and canonical quantization,
so field theory can be addressed covariantly with path integrals
1. Hamiltonian ........ ... ... ... ... . . . 373
canonical quantization, ghosts (unphysical states), cohomology (physical
states/operators)
2. Lagrangian. ... 378

relation to Hamiltonian approach, Nakanishi-Lautrup auxiliary fields
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3. Particles ... 381
first-quantization

4. Fields . ... 382
Yang-Mills, unitary gauges

B. Gauges

different gauges for different uses (else BRST wouldn’t be necessary)

1. Radial. ... ..o 386
for particles in external fields

2. LOrenz. ... ... 389
covariant class of gauges is simplest; Landau, Fermi-Feynman gauges

3. MaASSIVE ... 391
Higgs requires modifications; unitary and renormalizable gauges

4. Gervais-NeVeU . . ... 393
special Lorenz gauges that simplify interactions, complex gauges similar
to lightcone; anti-Gervais-Neveu

5. Super Gervais-Neveu ............. ... ... i 396
supersymmetry has interesting new features

6. SPACECONE. ... .. 399
general axial gauges; Wick rotation of lightcone, best gauge for trees;
lightcone-based simplifications for covariant rules

7. SUPEIrSPACECOIIE. . ...\ttt et ettt e 403
supersymmetric rules also useful for nonsupersymmetric theories (like
QCD)

8. Background-field ......... ... .. .. 406
class of gauges that simplifies BRST to ordinary gauge invariance for loops

9. Nielsen-Kallosh.......... ... ... ... .. 412
methods for more general gauges

10. Super background-field ............. ... ... ...l 415

again new features for superfields; prepotentials only as potentials

C. Scattering

applications to S-matrices

1. Yang-Mills. ... .o 419
explicit tree graphs made easy; 4-gluon and 5-gluon trees evaluated

2. Recursion . ... ... ... 423
methods for generalizations to arbitrary number of external lines

3. Fermions . ... 426

similar simplifications for high-energy QCD
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more complicated trees for massive theories; all 4-point tree amplitudes
of QED, differential cross sections

5. Supergraphs .......... . 435
supersymmetric theories are simpler because of superspace; anticommut-
ing integrals reduce to algebra of covariant derivatives; explicit locality of
effective action in anticommuting coordinates implies nonrenormalization

theorems

VII. Loops

General features of higher orders in perturbation theory due to momentum integra-

tion.

A. General
properties and methods
1. Dimensional renormalization................................... 440
eliminating infinities; method (but not proof); dimensional regularization

2. Momentum integration................... ... ... ... ... 443

general method for performing integrals, Beta and Gamma functions

3. Modified subtractions.............. ... ... .. L 447
schemes: minimal (MS), modified minimal (MS), momentum (MOM)
4. Optical theorem...... ... ... .. . . 451

unitarity applied to loops; decay rates

5. Power counting............... .. ... 453
how divergent, UV divergences, divergent terms, renormalizability,
Furry’s theorem

6. Infrared divergences ........... ... .. ... . . i 458
brief introduction to long-range infinities; soft and colinear divergences

B. Examples

mostly one loop

1. Tadpoles . .......... 462
simplest examples: one external line, one or more loops, massless and
massive

2. Effective potential.................. ... ... . ...l 465
simplest application — low energy; first-quantization

3. Dimensional transmutation..................................... 468
most important loop effect; massless theories can get mass

4. Massless propagators ............... .. 470

next simplest examples
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5. Bosonization......... ... ... ... 473
fermion fields from boson fields in D=2

6. Massive propagators.......... ... 478
masses mean dimensional analysis is not as useful

7. Renormalization group ................... ... .. ... ... 482
application of dimensional transmutation; running of couplings at high
energy

8. Overlapping divergences............... ... ... .. ... 485
two-loop complications (massless); renormalization of subdivergences

C. Resummation

how good perturbation is

1. Improved perturbation ....................... ... ............... 492
using renormalization group to resum

2. Renormalons ........... .. 497
how good renormalization is; instantons and IR and UV renormalons
create ambiguities tantamount to nonrenormalizability

improving resummation; ambiguities related to nonperturbative vacuum
values of composite fields

4. 1/N eXPansion. ..........ouuii i 504
reorganization of resummation based on group theory; useful at finite
orders of perturbation; related to string theory; Okubo-Zweig-lizuka rule;
a solution to instanton ambiguity

VIII. Gauge loops
(Mostly) one-loop complications in gauge theories.
A. Propagators

QED and QCD

1. Fermion . ... ... ... 511
correction to fermion propagator from gauge field

2. Photon . ... ... . 514
correction to gauge propagator from matter

3. GlUuom . ... 515

correction to gauge propagator from self-interaction; total contribution to
high-energy behavior

4. Grand Unified Theories............. .. ... .. ... ... ... 521
3 gauge couplings running to 1 at high energy

5. Supermatter. ... ... ... ... ... 524
supergraphs at 1 loop
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6.

7.

Supergluon .......... 527
finite N=1 supersymmetric theories as solution to renormalon problem
Schwinger model . ... ... ... ... ... .. 531
kinematic “bound” states at one loop (quantum Stiickelberg), axial

anomaly

B. Low energy
QED and anomaly effects

1. JWEKB 537
first-quantized approach to 1 loop at low-enregy

2. Axial anomaly . ... ... ... 540
classical symmetry broken at one loop

3. Anomaly cancellation................ ... ... ... L. 544
constraints on electroweak models

A, T o 2y 546
application of uncanceled anomaly

B Vet X . . 548
one-loop 3-point function in QED

6. Nonrelativistic JWKB.......... ... ... ... . ... .......... 551
nonrelativistic form of effective action useful for finding Lamb shift (in-
cluding anomalous magnetic moment), using Foldy-Wouthuysen transfor-
mation

T. Lattice ... 554

lattices for nonperturbative QCD; regulator; no gauge fixing; problems

with fermions; Wilson loop, confinement; nonuniversality

C. High energy

brief introduction to perturbative QCD

1. Conformal anomaly .............. ... ... ....... ... ... ... .. ..... 561
relation to asymptotic freedom

2. ete” — hadrons....... ... ... ... ... 564
simplest QCD loop application; jets

3. Partonmodel............. ... . ... 566
factorization and evolution; deep inelastic and Drell-Yan scattering

4. Maximal supersymmetry ............... .. ... ... ... 573
3- & 4-pt. amplitudes for N=4 supersymmetry

5. First quantization............. ... ... ... ... 576

making use of the worldline for loop calculations
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General spins. Spin 2 must be included in any complete theory of nature. Higher

spins are observed experimentally for bound states, but may be required also as

fundamental fields.

IX. General relativity

Treatment closely related to that applied to Yang-Mills, super Yang-Mills, and super-

gravity. Based on methods that can be applied directly to spinors, and therefore to

supergravity and superstrings. Somewhat new, but simplest, methods of calculating

curvatures for purposes of solving the classical field equations.
A. Actions
starting point for deriving field equations for gravity (and matter)

1.

Gauge invariance.............. ... 587
curved (spacetime) and flat (tangent space) indices; coordinate (space-

time) and local Lorentz (tangent space) symmetries

. Covariant derivatives ............ .. 592

gauge fields: vierbein (coordinate symmetry) and Lorentz connection;
generalization of unit vectors used as basis in curvilinear coordinates;
basis for deriving field strengths (torsion, curvature), matter coupling;

Killing vectors (symmetries of solutions)

3. Conditions. ... ... ... 598
gauges, constraints; Weyl tensor, Ricci tensor and scalar

4. Integration......... ... .. 601
measure, invariance, densities

5. Gravity. ... ... 605
pure gravity, field equations

6. Energy-momentum. ......... ... ... i 609

matter coupling; gravitational energy-momentum

Weyl scale . ... ..o 611
used later for cosmological and spherically symmetric solutions, gauge
fixing, field redefinitions, studying conformal properties, generalization to

supergravity and strings

B. Gauges
coordinate and other choices
1. Lorenz. ... ... 620
globally Lorentz covariant gauges, de Donder gauge; perturbation, BRST
2. GEOdEeSICS ... 622

straight lines as solutions for particle equations of motion; dust
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Axial ..o 625
simplest unitary gauges; lightcone, Gaussian normal coordinates
Radial . ... ... 629

gauges for external fields, Riemann normal coordinates; local inertial

frame, parallel transport

. Weylscale ... ... 633

use of Weyl scale invariance to simplify gauges; dilaton; string gauge

C. Curved spaces

solutions

1. Self-duality ........ ... . 638
simplest solutions, waves; lightcone gauge for self-duality

2. De Sitter..... ... 640
cosmological term and its vacuum, spaces of constant curvature

3. CosmOlogy . ... 642
the universe, Big Bang

4. Red shift...... ... .. . 645
cosmological measurements: Hubble constant, deceleration parameter

5. Schwarzschild........ ... ... ... . 646

spherical symmetry; applications of general methods for solving field equa-

tions; electromagnetism

. Experiments. ... . 654

classic experimental tests: gravitational redshift, geodesics
Black holes ........ ... . 660
extrapolation of spherically symmetric solutions (Kruskal-Szekeres coor-

dinates); gravitational collapse, event horizon, physical singularity

X. Supergravity

Graviton and spin-3/2 particle (gravitino) from supersymmetry; local supersymmetry.

A. Superspace

simplest (yet complicated) method for general applications, especially quan-

tum

1.

Covariant derivatives .............. .. ... . i 664
general starting point for gauge theories; R gauge symmetry; constraints,

solution, prepotentials

. Field strengths ....... . ... .. 669
generalization of curvatures; solution of Bianchi (Jacobi) identities
. Compensators . ........... 672

more than one generalization of dilaton; minimal coupling
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Scale gauges ... 675
supersymmetric generalization of Weyl scale; transformations of field

strengths, compensators

B. Actions

generalization from global supersymmetry, using superspace, components,

and compensators

1. Integration.......... ... 681
different measures, supergravity action, matter, first-order action

2. Ectoplasm ....... ... 684
alternative method of integration, geared for components

3. Component transformations................... ... ... .. ..., 687

derivation from superspace
Component approach .............. ... ... ... ... .. 689
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No-scale. ... . 698
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C. Higher dimensions

useful for superstring and other unifications; extended supergravity
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Dirac spinors . ....... ... 701
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. Wick rotation.......... .. 704
generalization to arbitrary signature; sigma matrices, Majorana spinors
. Other spins....... ... 708
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4. SUPErsymImMetry ... ...ttt 709
supersymmetry in general dimensions; extended supersymmetry

5. Theories. ... 713
examples of supersymmetric and supergravity theories
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D=4 theories from higher dimensions; extended supergravities; S-duality
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XI. Strings
Approach to studying most important yet least understood property of QCD: con-

finement. Other proposed methods have achieved explicit results for only low hadron

energy. String theory is also useful for field theory in general.

A. Generalities

known string theories not suitable for describing hadrons quantitatively, but

useful models of observed properties; qualitative features of general string

theories, using dilaton and closed = open ® open

1. Regge theory ... ... 724
observed high-energy behavior of hadrons; bound states, s-t duality

2. TopPOologY . . oo 728
loop simplifications from geometry; closed from open

3. Classical mechanics ................ ... ... ... . . ... 733

action, string tension, Virasoro constraints, boundary conditions

reality and group properties; twisting; generalizations for massless part
of theory; supergravity theories appearing in superstrings; string types:

heterotic, Types I and II

CT-duality . ..o 740

strings unify massless antisymmetric tensors with gravity; transforma-
tions, O(D,D)

Dilaton. ... ... 742
how it appears in strings and superstrings; constraints on backgrounds;
S-duality

Lattices ... ... 47

discretization of string worldsheet into sum of Feynman diagrams; alter-

native lattice theories relevant to string theory of hadrons

B. Quantization

calculational methods; spectrum; tree graphs

L. GaAUGES . it 756
fixing 2D coordinates; conformal and lightcone gauges; open vs. closed
strings

2. Quantum mechanics ................... ... .. ... 761

mode expansion; spectrum; ghosts

3. CommutatorsS. ... ... 766
commutators from propagators
4. Conformal transformations. ..............uiniii .. 769

consequences of conformal invariance of the worldsheet; vertex operators
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5. Triality ... 773
bosonization relates physical fermions and bosons

6. Trees ... 778
interactions, path integral; Regge behavior, but not parton behavior

7. Ghosts . ... 785
ghosts manifest conformal invariance

C. Loops

quantum field theory corrections via first quantization
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3. Green function .................... .. 797
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6. SUPET . .. 810
supersymmetry, cancellation of divergences

7. Anomalies ........... .. . 814
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of commuting and anticommuting ghost dimensions. Usual ghost fields appear as

components of gauge fields in anticommuting directions, as do necessary auxiliary

fields like determinant of metric tensor in gravity.
A. OSp(1,1]2)
enlarged group of BRST, applied to first-quantization

1. Lightcone ......... .. 819
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A, SPINOTS . . oo 827

slight generalization for half-integer spin
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AfterMath . ... . 866
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Scientific method

Although there are many fine textbooks on quantum field theory, they all have
various shortcomings. Instinct is claimed as a basis for most discussions of quantum
field theory, though clearly this topic is too recent to affect evolution. Their subjectiv-
ity more accurately identifies this as fashion: (1) The old-fashioned approach justifies
itself with the instinct of intuition. However, anyone who remembers when they first
learned quantum mechanics or special relativity knows they are counter-intuitive;
quantum field theory is the synthesis of those two topics. Thus, the intuition in this
case is probably just habit: Such an approach is actually historical or traditional,
recounting the chronological development of the subject. Generally the first half (or
volume) is devoted to quantum electrodynamics, treated in the way it was viewed in
the 1950’s, while the second half tells the story of quantum chromodynamics, as it
was understood in the 1970’s. Such a “dualistic” approach is necessarily redundant,
e.g., using canonical quantization for QED but path-integral quantization for QCD,
contrary to scientific principles, which advocate applying the same “unified” methods
to all theories. While some teachers may feel more comfortable by beginning a topic
the way they first learned it, students may wonder why the course didn’t begin with
the approach that they will wind up using in the end. Topics that are unfamiliar
to the author’s intuition are often labeled as “formal” (lacking substance) or even
“mathematical” (devoid of physics). Recent topics are usually treated there as ad-
vanced: The opposite is often true, since explanations simplify with time, as the topic
is better understood. On the positive side, this approach generally presents topics

with better experimental verification.

(2) In contrast, the fashionable approach is described as being based on the in-
stinct of beauty. But this subjective beauty of art is not the instinctive beauty of
nature, and in science it is merely a consolation. Treatments based on this approach
are usually found in review articles rather than textbooks, due to the shorter life ex-
pectancy of the latest fashion. On the other hand, this approach has more imagination
than the traditional one, and attempts to capture the future of the subject.

A related issue in the treatment of field theory is the relative importance of con-
cepts vs. calculations: (1) Some texts emphasize the concepts, including those which
have not proven of practical value, but were considered motivational historically (in
the traditional approach) or currently (in the artistic approach). However, many ap-
proaches that were once considered at the forefront of research have faded into oblivion
not because they were proven wrong by experimental evidence or lacked conceptual
attractiveness, but because they were too complex for calculation, or so vague they
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lacked predicitive ability. Some methods claimed total generality, which they used to
prove theorems (though sometimes without examples); but ultimately the only useful
proofs of theorems are by construction. Often a dualistic, two-volume approach is
again advocated (and frequently the author writes only one of the two volumes): Like
the traditional approach of QED volume + QCD volume, some prefer concept volume
+ calculation volume. Generally, this means that gauge theory S-matrix calculations
are omitted from the conceptual field theory course, and left for a “particle physics”
course, or perhaps an “advanced field theory” course. Unfortunately, the particle
physics course will find the specialized techniques of gauge theory too technical to
cover, while the advanced field theory course will frighten away many students by its
title alone.

(2) On the other hand, some authors express a desire to introduce Feynman graphs
as quickly as possible: This suggests a lack of appreciation of field theory outside of
diagrammatics. Many essential aspects of field theory (such as symmetry breaking
and the Higgs effect) can be seen only from the action, and its analysis also leads to
better methods of applying perturbation theory than those obtained from a fixed set
of rules. Also, functional equations are often simpler than pictorial ones, especially
when they are nonlinear in the fields. The result of over-emphasizing the calculations
is a cookbook, of the kind familiar from some lower-division undergraduate courses
intended for physics majors but designed for engineers.

The best explanation of a theory is the one that fits the principles of scientific
method: simplicity, generality, and experimental verification. In this text we thus
take a more economical or pragmatic approach, with methods based on efficiency
and power. Unattractiveness or counter-intuitiveness of such methods become ad-
vantages, because they force one to accept new and better ways of thinking about
the subject: The efficiency of the method directs one to the underlying idea. For
example, although some consider Einstein’s original explanation of special relativity
in terms of relativistic trains and Lorentz transformations with square roots as be-
ing more physical, the concept of Minkowski space gave a much simpler explanation
and deeper understanding that proved more useful and led to generalization. Many
theories have “miraculous cancellations” when traditional methods are used, which
led to new methods (background field gauge, supergraphs, spacecone, etc.) that not
only incorporate the cancellations automatically (so that the “zeros” need not be
calculated), but are built on the principles that explain them. We place an emphasis
on such new concepts, as well as the calculational methods that allow them to be
compared with nature. It is important not to neglect one for the sake of the other,

artificial and misleading to try to separate them.
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As a result, many of our explanations of the standard topics are new to textbooks,
and some are completely new. For example:

(1) We derive the Foldy-Wouthuysen transformation by dimensional reduction from
an analogous one for the massless case (subsections 11B3,5).

(2) Cosmology is discussed with just the dilaton instead of full general relativity
(subsection IVAT). With only some minor fudges, this is sufficient to fit the
post-inflation universe to observations.

(3) We derive the Feynman rules in terms of background fields rather than sources
(subsection VC1); this avoids the need for amputation of external lines for S-
matrices or effective actions, and is more useful for background-field gauges.

(4) We obtain the nonrelativistic QED effective action, used in modern treatments
of the Lamb shift (because it makes perturbation easier than the older Bethe-
Salpeter methods), by field redefinition of the relativistic effective action (sub-
section VIIIB6), rather than fitting parameters by comparing Feynman diagrams
from the relativistic and nonrelativistic actions. (In general, manipulations in the
action are easier than in diagrams.)

(5) We present two somewhat new methods for solving for the covariant derivatives
and curvature in general relativity that are slightly easier than all previous meth-
ods (subsections IXA2,A7,C5).

There are also some completely new topics, like:

(1) the anti-Gervais-Neveu gauge, where spin in U(N) Yang-Mills is treated in al-
most the same way as internal symmetry — with Chan-Paton factors (subsection
VIB4);

(2) the superspacecone gauge, the simplest gauge for QCD (subsection VIB7); and

(3) anew “(almost-)first-order” superspace action for supergravity, analogous to the
one for super Yang-Mills (subsection XB1).

We try to give the simplest possible calculational tools, not only for the above
reasons, but also so group theory (internal and spacetime) and integrals can be per-
formed with the least effort and memory. Some traditionalists may claim that the old
methods are easy enough, but their arguments are less convincing when the order of
perturbation is increased. Even computer calculations are more efficient when left as
a last resort; and you can’t see what’s going on when the computer’s doing the calcu-
lating, so you don’t gain any new understanding. We give examples of (and exercises
on) these methods, but not exhaustively. We also include more recent topics (or those
more recently appreciated in the particle physics community) that might be deemed
non-introductory, but are commonly used, and are simple and important enough to

include at the earliest level. For example, the related topics of (unitary) lightcone
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gauge, twistors, and spinor helicity are absent from all field theory texts, and as a
result no such text performs the calculation of as basic a diagram as the 4-gluon
tree amplitude. Another missing topic is the relation of QCD to strings through the
random worldsheet lattice and large-color (1/N) expansion, which is the only known
method that might quantitatively describe its high-energy nonperturbative behavior
(bound states of arbitrarily large mass).

This text is meant to cover all the field theory every high energy theorist should
know, but not all that any particular theorist might need to know. It is not meant as
an introduction to research, but as a preliminary to such courses: We try to fill in the
cracks that often lie between standard field theory courses and advanced specialized
courses. For example, we have some discussion of string theory, but it is more oriented
toward the strong interactions, where it has some experimental justification, rather
than quantum gravity and unification, where its usefulness is still under investigation.
We do not mention statistical mechanics, although many of the field theory methods
we discuss are useful there. Also, we do not discuss any experimental results in detail;
phenomenology and analysis of experiments deserve their own text. We give and apply
the methods of calculation and discuss the qualitative features of the results, but do
not make a numerical comparison to nature: We concentrate more on the “forest”
than the “trees”.

Unfortunately, our discussions of the (somewhat related) topics of infrared-diver-
gence cancellation, Lamb shift, and the parton model are sketchy, due to our inability
to give fully satisfying treatments — but maybe in a later edition?

Unlike all previous texts on quantum field theory, this one is available for free
over the Internet (as usual, from arXiv.org and its mirrors), and may be periodically
updated. Errata, additions, and other changes will be posted on my web page at
http://insti.physics.sunysb.edu/ siegel /plan.html until enough are accumulated for a
new edition. Electronic distribution has many advantages:

o [t’s free.

e [t’s available quickly and easily. You can download it from the arXive.org or its
mirrors, just like preprints, without a trip to the library (where it may be checked
out) or bookstore or waiting for an order from the publisher. (If your connection
is slow, download overnight.) And it won’t go “out of print”.

e Download it at work, home, etc. (or carry it on a CD), rather than carrying a

book or printing multiple copies.
e Get updates just as quickly, rather than printing yet again.

e [t has the usual Web links, so you can get the referenced papers just as easily.
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e [t has a separate “outline” window containing a table of contents on which you
can click to take the main window to that item.

e You can electronically search (do a “find” on) the text.

e Easier to read on the computer screen (arbitrary magnification, etc.)
e Save trees, ink, and space.

e Theft is not a problem.

e No wear or tear.

e No paper cuts.

e You can even add notes (far bigger than would fit in the margin) with various
software programs.

Highlights

The preceding Table of Contents lists the three parts of the text: Symmetry,
Quanta, and Higher Spin. Each part is divided into four chapters, each of which has
three sections, divided further into subsections. Each section is followed by references
to reviews and original papers. Exercises appear throughout the text, immediately
following the items they test: This purposely disrupts the flow of the text, forcing
the reader to stop and think about what he has just learned. These exercises are
interesting in their own right, and not just examples or memory tests. This is not a
crime for homeworks and exams, which at least by graduate school should be about
more than just grades.

This text also differs from any other in most of the following ways:

(1) We place a greater emphasis on mechanics in introducing some of the more ele-
mentary physical concepts of field theory:

(a) Some basic ideas, such as antiparticles, can be more simply understood al-

ready with classical mechanics.

(b) Some interactions can also be treated through first-quantization: This is suf-
ficient for evaluating certain tree and one-loop graphs as particles in external
fields. Also, Schwinger parameters can be understood from first-quantization:
They are useful for performing momentum integrals (reducing them to Gaus-
sians), studying the high-energy behavior of Feynman graphs, and finding
their singularities in a way that exposes their classical mechanics interpreta-
tion.

(¢) Quantum mechanics is very similar to free classical field theory, by the usual
“semiclassical” correspondence (“duality”) between particles (mechanics) and
waves (fields). They use the same wave equations, since the mechanics Hamil-
tonian or Becchi-Rouet-Stora-Tyutin operator is the kinetic operator of the
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(2) We
the

(3) We

corresponding classical field theory, so the free theories are equivalent. In
particular, (relativistic) quantum mechanical BRST provides a simple expla-
nation of the off-shell degrees of freedom of general gauge theories, and in-
troduces concepts useful in string theory. As in the nonrelativistic case, this
treatment starts directly with quantum mechanics, rather than by (first-)
quantization of a classical mechanical system. Since supersymmetry and
strings are so important in present theoretical research, it is useful to have a
text that includes the field theory concepts that are prerequisites to a course
on these topics. (For the same reason, and because it can be treated so
similarly to Yang-Mills, we also discuss general relativity.)

also emphasize conformal invariance. Although a badly broken symmetry,
fact that it is larger than Poincaré invariance makes it useful in many ways:
General classical theories can be described most simply by first analyzing
conformal theories, and then introducing mass scales by various techniques.
This is particularly useful for the general analysis of free theories, for finding
solutions in gravity theories, and for constructing actions for supergravity
theories.

Spontaneously broken conformal invariance produces the dilaton, which can
be used in place of general relativity to describe cosmology.

Quantum theories that are well-defined within perturbation theory are confor-
mal (“scaling”) at high energies. (A possible exception is string theories, but
the supposedly well understood string theories that are finite perturbatively
have been discovered to be hard-to-quantize membranes in disguise nonper-
turbatively.) This makes methods based on conformal invariance useful for
finding classical solutions, as well as studying the high-energy behavior of the
quantum theory, and simplifying the calculation of amplitudes.

Theories whose conformal invariance is not (further) broken by quantum cor-
rections avoid certain problems at the nonperturbative level. Thus conformal
theories ultimately may be required for an unambiguous description of high-
energy physics.

make extensive use of two-component (chiral) spinors, which are ubiquitous

in particle physics:

(a)

The method of twistors (more recently dubbed “spinor helicity”) greatly sim-
plifies the Lorentz algebra in Feynman diagrams for massless (or high-energy)
particles with spin, and it’s now a standard in QCD. (Twistors are also re-
lated to conformal invariance and self-duality.) On the other hand, most texts

still struggle with 4-component Dirac (rather than 2-component Weyl) spinor
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notation, which requires gamma-matrix and Fierz identities, when discussing
QCD calculations.

Chirality and duality are important concepts in all the interactions: Two-
component spinors were first found useful for weak interactions in the days
of 4-fermion interactions. Chiral symmetry in strong interactions has been
important since the early days of pion physics; the related topic of instantons
(self-dual solutions) is simplified by two-component notation, and general
self-dual solutions are expressed in terms of twistors. Duality is simplest in

two-component spinor notation, even when applied to just the electromagnetic
field.

Supersymmetry still has no convincing experimental verification (at least not
at the moment I'm typing this), but its theoretical properties promise to solve
many of the fundamental problems of quantum field theory. (Although there
is no experimental evidence for supersymmetry, there is also no experimental
evidence for the Higgs boson. They are equally important for predictability
in particle physics, although for one this is seen in perturbation theory, while
for the other only when attempting to resum it.) It is an element of most
of the proposed generalizations of the Standard Model. Chiral symmetry is
built into supersymmetry, making two-component spinors unavoidable.

(4) The topics are ordered in a more pedagogical manner:

(a)

(b)

Abelian and nonabelian gauge theories are treated together using modern

techniques. (Classical gravity is treated with the same methods.)

Classical Yang-Mills theory is discussed before any quantum field theory. This
allows much of the physics, such as the Standard Model (which may appeal to
a wider audience), of which Yang-Mills is an essential part, to be introduced
earlier. In particular, symmetries and mass generation in the Standard Model
appear already at the classical level, and can be seen more easily from the
action (classically) or effective action (quantum) than from diagrams.

Only the method of path integrals is used for second-quantization. Canonical
quantization is more cumbersome and hides Lorentz invariance, as has been
emphasized even by Feynman when he introduced his diagrams. We thus
avoid such spurious concepts as the “Dirac sea”, which supposedly explains
positrons while being totally inapplicable to bosons. However, for quantum
physics of general systems or single particles, operator methods are more
powerful than any type of first-quantization of a classical system, and path
integrals are mainly of pedagogical interest. We therefore “review” quantum
physics first, discussing various properties (path integrals, S-matrices, unitar-
ity, BRST, etc.) in a general (but simpler) framework, so that these properties
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need not be rederived for the special case of quantum field theory, for which
path-integral methods are then sufficient as well as preferable.

(5) Gauge fizing is discussed in a way more general and efficient than older methods:

(a)

(c)

The best gauge for studying unitarity is the (unitary) lightcone gauge. This
rarely appears in field theory (and gravity) texts, or is treated only half way,
missing the important explicit elimination of all unphysical degrees of free-
dom.

Ghosts are introduced by BRST symmetry, which proves unitarity by showing
equivalence of convenient and manifestly covariant gauges to the manifestly
unitary lightcone gauge. It can be applied directly to the classical action,
avoiding the explicit use of functional determinants of the older Faddeev-
Popov method. It also allows direct introduction of more general gauges
(again at the classical level) through the use of Nakanishi-Lautrup fields
(which are omitted in older treatments of BRST), rather than the functional
averaging over Landau gauges required by the Faddeev-Popov method.

For nonabelian gauge theories the background field gauge is a must. It makes
the effective action gauge invariant, so Slavnov-Taylor identities need not be
applied to it. Beta functions can be found from just propagator corrections.

(6) Dimensional regularization is used exclusively (with the exception of one-loop

axial anomaly calculations):

(a)

(b)

It is the only one that preserves all possible symmetries, as well as being the
only one practical enough for higher-loop calculations.

We also use it exclusively for infrared regularization, allowing all divergences
to be regularized with a single regulator (in contrast, e.g., to the three regu-
lators used for the standard treatment of Lamb shift).

It is good not only for regularization, but renormalization (“dimensional
renormalization”). For example, the renormalization group is most simply de-
scribed using dimensional regularization methods. More importantly, renor-
malization itself is performed most simply by a minimal prescription implied
by dimensional regularization. Unfortunately, many books, even among those
that use dimensional regularization, apply more complicated renormalization
procedures that require additional, finite renormalizations as prescribed by
Slavnov-Taylor identities. This is a needless duplication of effort that ignores
the manifest gauge invariance whose preservation led to the choice of dimen-
sional regularization in the first place. By using dimensional renormalization,
gauge theories are as easy to treat as scalar theories: BRST does not have to
be applied to amplitudes explicitly, since the dimensional regularization and

renormalization procedure preserves it.
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(7) Perhaps the most fundamental omission in most field theory texts is the expansion
of QCD in the inverse of the number of colors:

(a) It provides a gauge-invariant organization of graphs into subsets, allowing
simplifications of calculations at intermediate stages, and is commonly used
in QCD today.

(b) It is useful as a perturbation expansion, whose experimental basis is the
Okubo-Zweig-lizuka rule.

(c¢) At the nonperturbative level, it leads to a resummation of diagrams in a way
that can be associated with strings, suggesting an explanation of confinement.

(8) Our treatment of gravity is closely related to that applied to Yang-Mills theory,
and differs from that of most texts on gravity:

(a) We emphasize the action for deriving field equations for gravity (and matter),
rather than treating it as an afterthought.

(b) We make use of local (Weyl) scale invariance for cosmological and spherically
symmetric solutions, gauge fixing, field redefinitions, and studying conformal
properties. In particular, other texts neglect the (unphysical) dilaton, which
is crucial in such treatments (especially for generalization to supergravity and
strings).

(c) While most gravity texts leave spinors till the end, and treat them briefly,
our discussion of gravity is based on methods that can be applied directly to
spinors, and therefore to supergravity and superstrings.

(d) Our methods of calculating curvatures for purposes of solving the classical
field equations are somewhat new, but probably the simplest, and are directly

related to the simplest methods for super Yang-Mills theory and supergravity.

Notes for instructors

This text is intended for reference and as the basis for a course on relativistic
quantum field theory for second-year graduate students. The first two parts were
repeatedly used for a one-year course I taught at Stony Brook. (There is more there
than can fit comfortably into one year, so I skipped some subsections, but my choice
varied.) It also includes material I used for a one-semester relativity course, and for
my third of a one-year string course, both of which I also gave several times here —

I used most of the following:
relativity: A, B3, C2; I1A; IIIA-C5; IVA7; VIB1; IX; XIA3, A5-6, B1-2

strings: 1IB1-2; VIIA2, B5, C4; VIIIB2, C4-5; XI; XITA2, B1-3, B8
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The prerequisites (for the quantum field theory course) are the usual graduate
courses in classical mechanics, classical electrodynamics, and quantum mechanics.
For example, the student should be familiar with Hamiltonians and Lagrangians,
Lorentz transformations for particles and electromagnetism, Green functions for wave
equations, SU(2) and spin, and Hilbert space. Unfortunately, I find that many second-
year graduate students (especially many who got their undergraduate training in the
USA) still have only an undergraduate level of understanding of the prerequisite
topics, lacking a working knowledge of action principles, commutators, creation and
annihilation operators, etc. While most such topics are briefly reviewed here, they
should be learned elsewhere.

Generally students need to be prepared to begin research at the beginning of their
third year. This means they have to begin preparation for research in the middle of
their second year, so standard courses for high-energy theorists, such as quantum
field theory (and maybe even string theory), should already be finished by then. This
is rather difficult, considering that quantum field theory is usually considered a one-
year course that follows one-year prerequisites. The best solution would be to improve
undergraduate courses, making them less repetitive, so first-semester graduate courses
could be eliminated. An easier fix would be to make graduate courses more efficient,
or at least better coordinated and more modern. For example:

(1) Sometimes relativistic quantum mechanics is taught in the second semester of
quantum mechanics. If this were done consistently, it wouldn’t need to be treated
in the quantum field theory course.

(2) The useful parts of classical electrodynamics are covered in the first semester. (Do
all physicists really need to learn wave guides?) This is especially true if methods
for solving wave equations (special functions, radiation, etc.) are not covered
twice, once in quantum mechanics and once in electromagentism. Furthermore,
we now know (since the early 20th century) that electromagnetism is not the
only useful classical field theory: Why not have a one-year course on classical
field theory, covering not only electromagnetism, but also Yang-Mills and general
relativity?

(3) A lot of the important concepts in the Standard Model (especially the electroweak
interactions) are essentially classical: spontaneous symmetry breaking, the Higgs
effect, tree graphs, etc. They could be covered as a third semester of classical
field theory.

(4) Meanwhile, true quantum field theory (quantization, loops, etc.) could become a

third semester of quantum theory, taken in parallel with the Standard Model.
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(5) Much of string theory is mechanics, not field theory. A string theory course could
begin in the first semester of the second year (classical and statistical mechanics
having been covered in the first year).

In summary, a curriculum for high-energy theorists could look something like...

sem.  Mechanics Classical fields Quantum

1 Classical mechanics Actions & symmetries Quantum theory

2 Statistical mechanics ~ Yang-Mills & gravity ~ Solving wave equations
3 Strings Standard Model Quantum field theory

followed by more advanced courses (e.g., more quantum field theory or strings). An
alternative is to start quantum field theory in the second semester of the first year.

Unfortunately, in most places students start quantum field theory in their second
year, having had little relativistic quantum mechanics and no Yang-Mills, so those
subjects will comprise the first semester of the “quantum” field theory course, while
the true quantum field theory will wait till the second semester of that year.

To fit these various scenarios, the ordering of the chapters is somewhat flexible:
The “flow” is indicated by the following “3D” plot:

classical — quantum
lower spin symmetry  fields quantize loop
% Bose I IT1 V4 VII
. _ | IX X1
higher spin < o
Fermi II v VI VIII

[1Pe))

where the 3 dimensions are spin (“j”), quantization (“h”), and statistics (“s”): The
three independent flows are down the page, to the right, and into the page. (The third
dimension has been represented as perpendicular to the page, with “higher spin” in
smaller type to indicate perspective, for legibility.) To present these chapters in the
1 dimension of time we have classified them as jhs, but other orderings are possible:

ghs: TITIIIV V VI VII VIIT IX X XI XII
gsh: TIII'V VIIII IV VI VIII IX XI X XII
hjs: TIIIIIIV IX XV VI XI XII VII VIII
hsj: TITIIX IV XV XI VI XII VII VIII
sjh: TIII'V VII IX XTI IT IV VI VIII X XII
shy: TIIIIXV XI VIIITI IV X VI XII VIII
(However, the spinor notation of II is used for discussing instantons in III, so some

rearrangement would be required, except in the jhs, hjs, and hsj cases.) For exam-
ple, the first half of the course can cover all of the classical, and the second quantum,
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dividing Part Three between them (hjs or hsj). Another alternative (jsh) is a one-
semester course on quantum field theory, followed by a semester on the Standard
Model, and finishing with supergravity and strings. Although some of these (espe-
cially the first two) allow division of the course into one-semester courses, this should
not be used as an excuse to treat such courses as complete: Any particle physics
student who was content to sit through another entire year of quantum mechanics in
graduate school should be prepared to take at least a year of field theory.

Notes for students

Field theory is a hard course. (If you don’t think so, name me a harder one at this
level.) But you knew as an undergraduate that physics was a hard major. Students
who plan to do research in field theory will find the topic challenging; those with less
enthusiasm for the topic may find it overwhelming. The main difference between field
theory and lower courses is that it is not set in stone: There is much more variation in
style and content among field theory courses than, e.g., quantum mechanics courses,
since quantum mechanics (to the extent taught in courses) was pretty much finished
in the 1920’s, while field theory is still an active research topic, even though it has had
many experimentally confirmed results since the 1940’s. As a result, a field theory
course has the flavor of research: There is no set of mathematically rigorous rules to
solve any problem. Answers are not final, and should be treated as questions: One
should not be satisfied with the solution of a problem, but consider it as a first step
toward generalization. The student should not expect to capture all the details of
field theory the first time through, since many of them are not yet fully understood
by people who work in the area. (It is far more likely that instead you will discover
details that you missed in earlier courses.) And one reminder: The only reason for
lectures (including seminars and conferences) is for the attendees to ask questions
(and not just in private), and there are no stupid questions (except for the infamous
“How many questions are on the exam?”). Only half of teaching is the responsibility
of the instructor.

Some students who have a good undergraduate background may want to begin
graduate school taking field theory. That can be difficult, so you should be sure you
have a good understanding of most of the following topics:

(1) Classical mechanics: Hamiltonians, Lagrangians, actions; Lorentz transforma-
tions; Poisson brackets

(2) Classical electrodynamics: Lagrangian for electromagnetism; Lorentz transfor-
mations for electromagnetic fields, 4-vector potential, 4-vector Lorentz force law;

Green functions
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(3) Quantum mechanics: coupling to electromagnetism; spin, SU(2), symmetries;
Green functions for Schrodinger equation; Hilbert space, commutators, Heisen-
berg and Schrodinger pictures; creation and annihilation operators, statistics
(bosons and fermions); JWKB expansion

It is not necessary to be familiar with all these topics, and most will be briefly

reviewed, but if most of these topics are not familiar then there will not be enough

time to catch up. A standard undergraduate education in these three courses is not
enough.
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The first four chapters present a one-semester course on “classical field theory”.
Perhaps a more accurate description would be “everything you should know before

learning quantum field theory”.

One of the most important and fundamental principles in physics is symmetry.
A symmetry is a transformation (a change of variables) under which the laws of
nature do not change. It places strong restrictions on what kinds of objects can exist,
and how they can interact. When dynamics are described by an action principle
(Lagrangian, Hamiltonian, etc.), as required by quantum mechanics (but also useful
classically), continuous symmetries are equivalent to conservation laws, which are the
sole content of Newton’s laws. In particular, local (“gauge”) symmetries, which allow
independent transformations at each coordinate point, are basic to all the fundamental
interactions: All the fundamental forces are mediated by particles described by Yang-

Mills theory and its generalizations.

From a practical viewpoint, symmetry simplifies calculations by relating different
solutions to equations of motion, and allowing these equations to be written more

concisely by treating independent degrees of freedom as a single entity.

Part One is basically a study of global and local symmetries: Classical dynamics
represents only a certain limit of quantum dynamics, and not the one usually em-
phasized, but most of the symmetries of classical physics survive quantization. The
phenomenon of symmetry breaking, and the related mechanisms of mass generation,
can also be seen at the classical level. In perturbative quantum field theory, classical

field theory is simply the leading term in the perturbation expansion.

Note that “global” (time-, and usually space-independent) symmetries can elim-
inate a variable, but not its time derivative. For example, translation invariance
allows us to fix (i.e., eliminate) the position of the center of mass of a system at some
initial time, but not its time derivative, which is just the total momentum, whose
conservation is a consequence of that same symmetry. A local symmetry, being time
dependent, may allow the elimination of a variable at all times: The existence of this

possibility depends on the dynamics, and will be discussed later.

Of particular interest are ways in which symmetries can be made manifest. Fre-
quently in the literature “manifest” is used vacuously; a “manifest symmetry” is an
obvious one: If you know the group, the representation under consideration doesn’t

need to be stated, but can be seen from just the notation. (In fact, one of the main
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uses of index notation is just to manifest the symmetry.) Formulations where global
and local symmetries are manifest simplify calculations and their results, as well as
clarifying their meaning.

One of the main uses of manifest symmetry is rarely needing to explicitly perform
a specific symmetry transformation. For example, one might need to examine a rela-
tivistic problem in different Lorentz frames. Rather than starting with a description
of the problem in one frame, and then explicitly transforming to another, it is much
simpler to start with a manifestly covariant description, make one choice of frame,
then make another choice of frame. One then never uses the messy square roots of the
familiar Lorentz contraction factors (although they may appear at the end from kine-
matic constraints). A more extreme example is the corresponding situation for local
symmetries, where such transformations are intractable in general, and one always

starts with the manifestly covariant form.

I. GLOBAL

In the first chapter we study symmetry in general, concentrating primarily on

spacetime symmetries, but also discussing general properties that will have other

applications in the following chapter.

....................... A. COORDINATES ......................

In this section we discuss the Poincaré (and conformal) group as coordinate trans-
formations. This is the simplest way to represent it on the physical world. In later

sections we find general representations by adding spin.

1. Nonrelativity

We begin by reviewing some general properties of symmetries, including as an
example the symmetry group of nonrelativistic physics. Symmetries are the result of a
redundant, but useful, description of a theory. (Note that here we refer to symmetries
of a theory, not of a solution to the theory.) For example, translation invariance says
that only differences in position are measurable, not absolute position: We can’t

measure the position of the “origin”. There are three ways to deal with this:

(1) Keep this invariance, and the corresponding redundant variables, which allows all

particles to be treated equally.

(2) Choose an origin; i.e., make a “choice of coordinates”. For example, place an

object at the origin; i.e., choose the position of an object at a certain time to be the
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origin. We can use translational invariance to fix the position of any one particle
at a given time, but not the rest: The differences in position are “translationally
invariant”. In this example, for N particles there are 3N coordinates describing
the particles, but still only 3 translations: The particles interact in the same

3-dimensional space.

Work only in terms of the differences of positions themselves as the variables, al-
lowing a symmetric treatment of the particles in terms of translationally invariant
variables: However, in this example this would require applying constraints on
the variables, since there are 3N(N—1)/2 differences, of which only 3(N—1) are

independent.

Although the last choice is most physical, the first is usually most convenient: The

use of redundant variables, together with symmetry, often gives a simpler description

of a theory. We will find similar features later for “local” invariances: In general, the

most convenient description of a theory is with the invariance; the invariance can then

be fixed, or invariant combinations of variables used, appropriately for the particular

application.

Exercise TA1.1

Consider a system of objects labeled by the index I, each object located at
position z;. (For simplicity, we can consider one spatial dimension, or just
ignore an index labeling the different directions.) Because of translational
invariance

T =x;+0x
where 0z is a constant independent of I, we are led to define new variables
LTy =21 —2J

invariant under the above symmetry. But these are not independent, satisfy-
ing
rr ==, rry+ Tk +rxr =0

for all I,J, K. Start with x;; as fundamental instead, and show that the
solution of these constraints is always in terms of some derived variables z;
as in our original definition. (Hint: What happens if we define z; = 07)
The appearance of a new invariance upon solving constraints in terms of new
variables is common in physics: e.g., the gauge invariance of the potential

upon solving the source-free half of Maxwell’s equations.

Another example is quantum mechanics, where the arbitrariness of the phase of

the wave function can be considered a symmetry: Although quantum mechanics can
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be reformulated in terms of phase-invariant probabilities, currents, or density matri-
ces instead of wave functions, and this can be useful for some purposes of exposing
physical properties, formulating and solving the Schrodinger equation is simpler in
terms of the wave function. The same applies to “local” symmetries, where there
is an independent symmetry at each point of space and time: For example, quarks
and gluons have a local “color” symmetry, and are not (yet) observed independently
in nature, but are simpler objects in terms of which to describe strong interactions
than the observed hadrons (protons, neutrons, etc.), which are described by color-
invariant products of quark/gluon wave functions, in the same way that probabilities

are phase-invariant products of wave functions.

(Note that in quantum mechanics there is a subtle distinction between observed
and observer that can obscure this symmetry if the observer is not invariant under
it. This can always be avoided by choosing to define the observer as invariant: For
example, the detection apparatus can be included as part of the quantum mechanical
system, while the observer can be defined as some “remote” recorder, who may be
abstracted as even being translationally invariant. In practice we are less precise, and
abstract even the detection apparatus to be invariant: For example, we describe the
scattering of particles in terms of the coordinates of only the particles, and deal with

the origin problem as above in terms of just those coordinates.)

In the Hamiltonian approach to mechanics, both symmetries and dynamics can
be expressed conveniently in terms of a “bracket”: the Poisson bracket for classi-
cal mechanics, the commutator for quantum mechanics. In this formulation, the
fundamental variables (operators) are some set of coordinates and their canonically
conjugate momenta, as functions of time. The (Heisenberg) operator approach to
quantum mechanics then is related to classical mechanics by identifying the semiclas-
sical limit of the commutator as the Poisson bracket: For any functions A and B of

p and ¢, the quantum mechanical commutator is

0A 0B 9B 9A
Opm Og™  Opm, Oq™

AB — BA = —ih ( ) + O(h?)

where all terms are generated by re-ordering. (For example, if we define “normal
ordering” in A and B by putting all ¢’s to the left of all p’s, then doing so in the
products will lead to an automatic cancellation of the “classical” terms, with all the
original p’s and ¢’s.) In other words, the true classical limit of AB — BA is zero, since

classically functions commute; thus the semiclassical limit is defined by

lim 1 AB — BA
H )
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(which is really a derivative with respect to h). We therefore define the bracket for

the two cases by

.<8A 0B 0B 0A

- O 07" — oo 8qm) semiclassically

[A, B] =
AB — BA quantum mechanically

The semiclassical definition of the bracket then can be applied to classical physics
(where it was originally discovered). Classically A and B are two arbitrary functions
of the coordinates ¢ and momenta p; in quantum mechanics they can be arbitrary

“” in the classical normalization so the two agree

operators. We have included an
in the semiclassical limit. We generally use (natural/Planck) units 7 = 1, so mass
is measured as inverse length, etc. (In fact, proposals have been made to fix the
value of A by definition, and then determine the value of the kilogram by exper-
imental apparatus such as the “watt balance”, rather than relying on a cylinder
somewhere in Paris.) When we do use an explicit £, it is a dimensionless parameter,
and appears only for defining Jeffries-Wentzel-Kramers-Brillouin (JWKB) expansions

or (semi)classical limits.

Our indices may appear either as subscripts or superscripts, with preferences to
be explained later: For nonrelativistic purposes we treat them the same. We also use
the Einstein summation convention, that any repeated index in a product is summed

over (“contracted”); usually we contract a superscript with a subscript:

A™B,, = Z A™B,,

m

The definition of the bracket is equivalent to using
[P, ¢"] = —idy,

(where 07 is the “Kronecker delta function”: 1 if m = n, 0 if m # n) together with

the general properties of the bracket
[A>B] :_[BaA]a [A>B]T:_[AT>BT]
[[A, B],C]+[[B,C], A] +[[C, A], B] = 0
[A, BC| = [A, B]C + B[A, (]

The first set of identities exhibit the antisymmetry of the bracket; next are the “Ja-
cobi identities”. In the last identity the ordering is important only in the quantum

mechanical case: In general, the difference between classical and quantum mechanics
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comes from the fact that in the quantum case operator reordering after taking the

commutator results in multiple commutators.

Infinitesimal symmetry transformations are then written as
A =[G, A], A=A+ 06A

where G is the “generator” of the transformation. More explicitly, infinitesimal gen-

erators will contain infinitesimal parameters: For example, for translations we have
G=¢ép, = 6r'=i[Ga']=¢, 6pi=0

where € are infinitesimal numbers.

As we'll see later (subsection IA3), the bracket of any two generators of infinites-
imal transformations is also an infinitesimal transformation. Thus, any symmetry
group defines an algebra whose properties follow from the above general properties
of the bracket.

The most evident physical symmetries are those involving spacetime. For nonrel-
ativistic particles, these symmetries form the “Galilean group”: For the free particle,

those infinitesimal transformations are linear combinations of

p?

om’

M=m, P=p;, Jij=uzup)=xip;—xp;, E=H= Vi =mz; — pit

in terms of the position 2 (i = 1,2,3), momenta p;, and (nonvanishing) mass m,
where [ij] means to antisymmetrize in those indices, by summing over all permuta-
tions (just two in this case), with plus signs for even permutations and minus for odd.
(In three spatial dimensions, one often writes J; = %eiijjk to make J into a vector,
where € is totally antisymmetric in its indices and €153 = 1. This is a peculiarity of
three dimensions, and will lose its utility once we consider relativity in four spacetime
dimensions.) These transformations are the space translations (momentum) P, rota-
tions (angular momentum — just orbital for the spinless case) J, time translations
(energy) FE, and velocity transformations (“Galilean boosts”) V. (The mass M is not

normally associated with a symmetry, and is not conserved relativistically.)

Exercise 1A1.2
Let’s examine the Galilean group more closely. Using just the relations for
[z,p] and [A, BC] (and the antisymmetry of the bracket):

a Find the action on z; of each kind of infinitesimal Galilean transformation.

b Show that the nonvanishing commutation relations for the generators are

i, P = ik Py, [ Vil = 0wV, g, JH] = ol
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[P, V] = —idi; M, |H,V;] = —iP;

For more than one free particle, we introduce an m, z*, and p; for each particle (but
the same t), and the generators are the sums over all particles of the above expressions.
If the particles interact with each other the expression for H is modified, in such a
way as to preserve the commutation relations. If the particles also interact with
dynamical fields, field-dependent terms must be added to the generators. (External,
nondynamical fields break the invariance. For example, a particle in a Coulomb

potential is not translation invariant since the potential is centered about some point.)

Exercise TA1.3
Show that the Hamiltonian

H = ( p—) +Ul(er — )]

2m1

preserves the algebra of exercise [A1.2 for the Galilean group, where the other
generators are modified only by summing over the index “I” labeling each
particle. (There are also implicit sums over the usual vector index “i”; U is

a function of coordinate differences for each I and J.)

The rotations (or at least their “orbital” parts) and space translations are exam-
ples of coordinate transformations. In general, generators of coordinate transforma-

tions are of the form
G=X@)p = 0¢(x) =i[G, 0] = NDip

where 9; = /92" and ¢(z) is a “scalar field” (or “spin-0 wave function”), a function

of only the coordinates.

In classical mechanics, or quantum mechanics in the Heisenberg picture, time

development also can be expressed in terms of the Hamiltonian using the bracket:

d 0 0
—A=|—+iH Al = —A+ilH A
dt L%H ’ ] g il Al
(The middle expression with the commutator of 9/dt makes sense only in the quantum
case, and is not defined for the Poisson bracket.) Again, this general relation is
equivalent to the special cases, which in the classical limit are Hamilton’s equations
of motion: dm oH P oH

q . Pm .

dt ilH,q"] O, dt i, pm] Ogm
The Hamiltonian has no explicit time dependence in the absence of time-dependent

nondyamical fields (external potentials whose time dependence is fixed by hand,
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rather than by introducing the fields and their conjugate variables into the Hamilto-
nian). Consequently, time development is itself a symmetry: Time translations are
generated by the Hamiltonian; the 9/0t term in d/dt term can be dropped when

acting on operators without explicit time dependence.

Invariance of the theory under a symmetry means that the equations of motion

are unchanged under the transformation:

dA\"  dA’
dt ) dt
To apply our above translation of infinitesimal transformations into bracket language,

we define §(d/dt) by
d d d
) (%A) =0 (%) A+ EéA

In the quantum case we can write

(@) [fog-u].

which follows from the Jacobi identity using B = iG and C' = 9/0t+iH, and inserting
A into the blank spaces of the commutators above. (The classical case can be treated
similarly, except that the time derivatives are not written as brackets.) We then find

that the generator of a symmetry transformation is conserved (constant), since

=o(g)-[ o |8

Exercise TA1.4

Show that the generators of the Galilean group are conserved:
a Use the relation d/dt = 0/0t+i[H, | for the hamiltonian H of a free particle.

b Solve the equations of motion for x(t) and p(¢) in terms of initial conditions,
and substitute into the expression for the generators to give an independent

derivation of their time independence.

Note that in the case where the Galilean symmetry persists for interacting mul-
tiparticle systems, (total) mass is conserved. In particular, invariance under transla-

tions and velocity transformations implies mass conservation.

In the cases where time dependence is not involved, symmetries can be treated
in almost exactly the same way either classically or quantum mechanically using the
corresponding bracket (Poisson or commutator), by using the properties that they
have in common. In particular, the fact that a symmetry generator G = A" (z)p,, is

conserved means that we can solve for a component of p in terms of the constant G,
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and substitute the result into the remaining equations of motion, and that the con-
jugate to that component doesn’t appear in H. For example, translation invariance
of a potential in a particular direction means that component of the momentum is a
constant (dp;/dt = —0H/dq" = 0), rotational invariance about some axis means that

component of angular momentum is a constant (d.J/dt = —0H/00 = 0), etc.

2. Fermions

As we learned in our quantum mechanics course, two particles of the same type
are indistinguishable. Furthermore, while an arbitrary number of bosons (particles
satisfying Bose-Einstein statistics) can each exist in the same one-particle state, only
one (or zero) fermions can exist in the same one-particle state. (For example, we can
have a state consisting of 17 photons each of the same momentum and each of the
same polarization, and we can’t tell which is which, but we can only have 1 electron
in such a state.) In terms of wave functions, e.g., a 2-particle wave function, made
from 1-particle wave functions of the form ;(z) (where z labels the spatial position

and i other properties), we conveniently define

bosons : W (x,x') =+ (2, x)

fermions : Yy (z,2') = —y (2, T)

For x = 2’ and @ = ¢ the signs (which could be phases, but are chosen real for
convenience) are chosen so ;;(z,x) vanishes for fermions but not necessarily for
bosons, so no 2 fermions are in the same state. For other cases the relation avoids
double counting for the 2 particles being switched; the signs are arbitrary, but are
chosen consistently with the previous case so that the relation is local. The symmetry
of wave functions for bosons and antisymmetry for fermions corresponds to operators
that commute for bosons and anticommute for fermions (or for properties associated

with fermions).

As we know experimentally, and we will see follows from relativistic field theory,
particles with half-integral spins obey Fermi-Dirac statistics. Let’s therefore consider
the classical limit of fermions: This will prove useful later, when we define quantum
field theory by quantizing classical field theory. (A similar approach can be taken to
the quantum mechanics of fermions, but is less useful, which is one reason why non-
relativistic quantum mechanics of spin % is usually done directly, without reference to
the corresponding classical mechanics.) This will lead to generalizations of the con-
cepts of brackets and coordinates. Bosons (more generally, bosonic operators) obey

commutation relations, such as [z, p] = ih; in the classical limit they just commute.
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Fermions obey anticommutation relations, such as {¢, ('} = h for a single fermionic
harmonic oscillator, where
{A,B} = AB+ BA

is the anticommutator, expressed in terms of “braces” {,}” instead of the “(square)
brackets” [,] used for commutators. So, in the truly classical (not semiclassical)
limit they anticommute, ({7 + (T¢ = 0. Actually, the simplest case is a single real

(hermitian) fermion: Quantum mechanically, or semiclassically, we have

h={¢ & =2¢

while classically £ = 0. There is no analog for a single boson: [z, z] = 2? — 2% = 0.
This means that classical fermionic fields must be “anticommuting”: Two such objects
get a minus sign when pushed past each other. As a result, the product of two

fermionic quantities is bosonic, while fermionic times bosonic gives fermionic.

Exercise TA2.1
Show

[B,C]=[A,D]=0 = [AB,CD]=i{A,C}[B,D]+ i[A,C){B,D}

Functions of anticommuting variables are simpler than functions of commuting
variables in every way (algebra and calculus) except for keeping track of signs. This
is because Taylor expansions in anticommuting variables always terminate. For in-
stance, given a single anticommuting variable 1, we need to be able to Taylor expand

functions in ¢, e.g., to find a basis for the states. We then have simply

f) =a+by

for constants a and b, since ¥? = 0. This generalizes in an obvious way to a function
of many anticommuting variables: For N such variables, we have 2V terms in the
Taylor expansion, since any term can be either independent or first-order in each

variable.

Note that a has the same statistics as f, while b has the opposite; thus func-
tions of anticommuting variables will include some anticommuting coefficients. In
general, when Taylor expanding a function of anticommuting variables we must pre-
serve the statistics: If we Taylor expand a quantity that is defined to be commuting
(bosonic), then the coefficients of even powers of anticommuting variables will also be
commuting, while the coefficients of odd powers will be anticommuting (fermionic),

to maintain the commuting nature of that term (the product of the variables and
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coefficient). Similarly, when expanding an anticommuting quantity the coefficients of

even powers will also be anticommuting, while for odd powers it will be commuting.

To work with wave functions that are functions of anticommuting numbers, we
must also understand calculus of anticommuting variables. Since the Taylor expansion
of a function terminates because 1> = 0, as follows from anticommutativity, an

anticommuting derivative d/0vy must also satisfy

8 2
~“ ) =0
o
from either anticommutativity or the fact functions of ¢ terminate at first order in .
We also need a 1) integral to define the inner product; indefinite integration turns out

to be enough. The most important property of the integral is integration by parts;

then, when acting on any function of v,

Jrog=r = Jo=5

where the normalization is fixed for convenience. This also implies a definition of the

“(anticommuting) Dirac delta function”,

oY) =
which satisfies
[ v s — o)) = )

for any function f. However, unlike the commuting case, we also have

Exercise TA2.2
Prove this is the most general possibility for anticommuting integration by
considering action of integration and differentiation on the most general func-

tion of ¢ (which has only two terms).

We can now consider operators that depend on both commuting (¢™) and anti-

commuting (") classical variables,
oM = (¢™,9")

Classically they satisfy the “graded” commutation relations (anticommutation if both
elements are fermionic, commutation otherwise), not to be confused with the Poisson
bracket,

classically (@M oV} =0 : PP =@ P = PP = Q" = PF Y+ Pt =0
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where we use mixed brackets (square and brace), the square one to the left to indicate
the usual commutator unless both arguments are fermionic. This relation is then

generalized to the graded quantum mechanical commutator or Poisson bracket by
[@M &N} = MY OMNOpy = oY
where (2 is constant, hermitian, and “graded antisymmetric”:
QN =0: Qenny = ) = Oy + 20, = 0

where [uv] is the difference of the two orderings, as above, while (uv) is the sum. For

the standard normalization of canonically conjugate pairs of bosons
¢" = ¢ = (¢',p")
and self-conjugate fermions, we choose
v — 5uu; Qia,jﬁ — 572]'0&6’ Caﬁ — ( 0 z)

—10

Because of signs resulting from ordering anticommuting quantities, we define

derivatives unambiguously by their action from the left:

0 N _ N
apn =0
The general Poisson bracket then can be written as
semiclassicall [A,B} = —-A 0 QM 0 B
Y I =T e HaN

Since derivatives are normally defined to act from the left, there is a minus sign from
pushing the first derivative to the left if A and that particular component of 9/0®

are both fermionic.

Exercise IA2.3

Let’s examine some properties of fermionic oscillators:

a For a single set of harmonic oscillators we have
{a,a'} =1, {a,a} = {a',a'} =0
Show that the “number operator” a'a has the property
{a, emﬁa} -0

(Hint: Since this system has only 2 states, the easiest way is to check the

action on those states.)
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b Define eigenstates of the annihilation operator (“coherent states”) by

al¢) = ¢|¢)

where ( is anticommuting. Show that this implies

0 /
aT|C>:_a_g\C>a Q) =e~¢f0), e = I+ 2 UC) = |C),

Iy =< 1= [acra el
Define wave functions in this space, ¥((*) = (¢|¥). Taylor expand them in

¢*, and compare this to the usual two-component representation using |0)

and a'|0) as a basis.

¢ Define the “supertrace” by

str(A) = /dg*dc e~ (¢]AIC)

Find the relation between any operator in this space and a 2x2 matrix, and

find the expression for the supertrace in terms of this matrix.

d For two sets of fermionic oscillators, we define
{al,aTl} = {CLQ,CLTQ} = 1, other { y } =0

Show that the new operators

N - ot
a; = ay, Qg = €™ 1% q,

(and their Hermitian conjugates) are equivalent to the original ones except
that one set of the new oscillators commutes (not anticommutes) with the
other ([@y,a's] = 0, etc.), even though each set satisfies the same anticom-
mutation relations with itself ({a;,a’;} = 1, etc.). Thus, choice of statistics
is relevant only for particles in the same state: at most one fermion, but
unlimited bosons. (This change of oscillator basis is called a “Klein trans-
formation”. It can be useful for discrete sets of oscillators, but not for those
labeled by a continuous parameter, because of the discontinuity in the com-

mutation relations when the two labels are equal.)

Exercise 1A2.4
Repeat exercise IA2.3 for the bosonic oscillator ([a, a'] = 1), where the Hilbert
space is infinite-dimensional, paying attention to signs, interchanging commu-
tators with anticommutators where necessary, etc. Show that the analog of

part ¢ defines the ordinary trace.
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3. Lie algebra

Since the same symmetries can be expressed in terms of different kinds of brackets
for classical and quantum theories, it can be useful to work with just those properties
that the Poisson bracket and commutator have in common, i.e., those that involve

only the bracket of two operators, not just their ordinary product:
[@«A+ B,C] = alA,C]+ B[B,C] for numbers «, 5 (distributivity)

[A, Bl = —[B, A] (antisymmetry)
(A, [B,C]]+ [B,[C,A]] + [C,[A,B]] =0 (Jacobi identity)

with similar expressions (differing only by signs) for anticommutators or mixed com-

mutators and anticommutators.

Exercise TA3.1
Find the generalizations of the Jacobi identity using also anticommutators,
corresponding to the cases where 2 or 3 of the objects involved are considered

as fermionic instead of bosonic.

These properties also give an abstract definition of a form of multiplication, the
“Lie bracket”, which defines a “Lie algebra”. (The first property is true of algebras
in general.) Other Lie brackets include those defined by another, associative, form of
multiplication, such as matrix multiplication, or operator (infinite matrix) multipli-
cation as in quantum mechanics: In those cases we can write [A, B] = AB — BA, and
use the usual properties of multiplication (distributivity and associativity) to derive
the properties of the Lie bracket. (Another familiar example in physics is the “cross”
product for three-vectors; however, this can also be expressed in terms of matrix
multiplication.) The most important use of Lie algebras for physics is for describing

(continuous) infinitesimal transformations, especially those describing symmetries.

Exercise TA3.2
Using only the commutation relations of the generators of the Galilean group
(exercise TA1.2), check all the Jacobi identities.

For describing transformations, we can also think of the bracket as a derivative:
The “Lie derivative” of B with respect to A is defined as

L4B = [A, B

As a consequence of the properties of the Lie bracket, this derivative satisfies the

usual properties of a derivative, including the Leibniz (distributive) rule. (In fact,
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for coordinate transformations the Lie derivative is really a derivative with respect to

the coordinates.)

We can now define finite transformations by exponentiating infinitesimal ones:
A~ (LtieLe)d = A =lm(l+ ieLg) A = ec A
In cases where we have [A, B] = AB — BA, we can also write
HiLG A — oiG fp—iG

This follows from replacing G on both sides with aG and taking the derivative with
respect to «, to see that both satisfy the same differential equation with the same
initial condition. We then can recognize this as the way transformations are performed
in quantum mechanics: A linear transformation that preserves the Hilbert-space inner
product must be unitary, which means it can be written as the exponential of an

antihermitian operator.

Just as infinitesimal transformations define a Lie algebra with elements G, finite

ones define a “Lie group” with elements
g=Ee

(or similarly with L). The multiplication law of two group elements follows from
the fact the product of two exponentials can be expressed in terms of multiple com-

mutators:

1
cAB — A+B+5[AB+...

We now have the mathematical properties that define a group, namely:

(1) a product, so that for two group elements g; and go, we can define g;go, which is

another element of the group (closure),
(2) an identity element, so gI = Ig = g,
(3) an inverse, where gg~' = g71g = I, and
(4) associativity, g1(9293) = (9192)93-

In this case the identity is 1 = €°, while the inverse is (e4)™ = ¢4,

Thus two consecutive symmetry transformations will automatically involve Lie
brackets of the generators of infinitesimal transformations. In particular, performing
two consecutive infinitesimal transformations, followed by the inverse transformations

in the same order, gives their bracket:

eePe e P = exp(e?Be e P ~ AP
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Since the elements of a Lie algebra form a vector space (we can add them and

multiply by numbers), it’s useful to define a basis:

G=ad'G, = g=cv%

The parameters o’ then also give a set of coordinates for the Lie group. (Previously
they were required to be infinitesimal, for infinitesimal transformations; now they are
finite, but may be periodic, as determined by topological considerations that we will
mostly ignore.) Now the multiplication rules for both the algebra and the group are

given by those of the basis:
[Gi,Gj] = —if;" G
for the (“structure”) constants f;;* = —f;;*, which define the algebra/group (but are
ambiguous up to a change of basis). They satisfy the Jacobi identity
(G, G, Gl =0 = fuj' fiy™ =0

A familiar example is SO(3) (SU(2)), 3D rotations, where f;;* = €, if we use G; =
%Eijk J jk-

Another useful concept is a “subgroup”: If some subset of the elements of a group
also form a group, that is called a “subgroup” of the original group. In particular, for

a Lie group the basis of that subgroup will be a subset of some basis for the original

group. For example, for the Galilean group J;; generate the rotation subgroup.

Exercise TA3.3
Let’s examine the subgroup of the Galilean group describing (spatial) coor-

dinate transformations — rotations and spatial translations:

a Show that the infinitesimal transformations are given by
5l’i = l’jEji + éi, €ij = _€ji
where the €’s are constants.

b Exponentiate to find the finite transformations
o xj/lji + A
¢ Show that A7 must satisfy
AF Ay = 6

both to preserve the scalar product, and as a consequence of exponentiating.

(Hint: Use matrix notation, and find the equivalent relation between A and

A1)
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d Show that the last equation implies det A = +1, while exponentiating can
give only det A =1 (since +1 can’t change continuously to —1). What is the
physical interpretation of a transformation with det A = —17 (Hint: Consider

a simple example.)

These results can be generalized to include anticommutators: When some of the
basis elements G; are fermionic, the corresponding parameters o' are anticommuting
numbers, the structure constants are defined by [G;, G;}, etc.. Then G = o'G; is
bosonic term by term, as is g, so bosons transform into bosons and fermions into
fermions, but Taylor expansion in the «a’s will have both bosonic and fermionic co-
efficients. (For example, for dA = eB, if A is bosonic, then so is B, but if also € is
fermionic, then B will also be fermionic.)

«sn
]

For some purposes it is more convenient to absorb the in the infinitesimal

transformation into the definition of the generator:
G — —iG = 0A = [G, A] = EGA, g = €G, [Gl, G]] = fZ]ka

This affects the reality properties of G: In particular, if g is unitary (gg' = I), as
usually required in quantum mechanics, g = €!“ makes G hermitian (G = GT), while
g = € makes G antihermitian (G = —GT). In some cases anithermiticity can be
an advantage: For example, for translations we would then have P, = 0; and for
rotations J;; = x;0;), which is more convenient since we know the 4’s in these (and
any) coordinate transformations must cancel anyway. On the other hand, the U(1)
transformations of electrodynamics (on the wave function for a charged particle) are
just phase transformations g = ¢ (where @ is a real number), so clearly we want the
explicit 7; then the only generator has the representation G; = 1. In general we’ll find
that for our purposes absorbing the 7’s into the generators is more convenient for just

spacetime symmetries, while explicit i’s are more convenient for internal symmetries.

4. Relativity

The Hamiltonian approach singles out the time coordinate. In relativistic theories
time can be treated on equal footing with space, and it is useful to take advantage of
this fact, so that the full Poincaré invariance is manifest. So, we treat the time t and
spatial position z° together as a four-vector (or D-vector in D—1 space and 1 time

dimension)

2™ = (2%, 2%) = (¢, 2)
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where m = 0,1,...,3 (or D—1), i = 1,2,3. Since the energy F and three-momentum
p' are canonically conjugate to them,

[p', 27 = —ié¥,  [Et]=+i
we define the 4-momentum as
P =(E ) = 0" =™ P72 = =™ [, 2" = —idy,

where we raise and lower indices with the “Minkowski metric”, in an “orthonormal

basis”,
0 1 2 3
0f—-1 0 0 O
11 0 1 0 O 0
mn — = bo=—Pp = —F
d 2l 0 0 1 0 ’
3\ 0 0 0 1

in four spacetime dimensions, with obvious generalizations to higher dimensions.
(Sometimes the metric with signs + — —— is used; we prefer — + ++ because it
is more convenient for quantum calculations. The numbers of positive and negative
eigenvalues of an invertible matrix is known as its “signature”.) Therefore, we now
distinguish upper and lower indices in general: At least for position and momentum,
the upper-indexed ™ and p™ have the usual physical interpretation (so x,, and p,,
have extra signs). This is consistent with our previous nonrelativistic notation, since

3-vector indices do not change sign upon raising or lowering.

Of course, we could have done that much nonrelativistically. Relativity is a
symmetry of kinematics and dynamics: In particular, a free, spinless, relativistic

particle is completely described by the constraint
p?+m?=0
where we define the covariant square
P = 0" = "D e = —(0°)* + (01 + (0°)* + (0°)?

(The square of p on the left should not be confused with the second component of p
on the right.) Our relativistic symmetry must leave this constraint invariant: Thus
the metric defines the norm of a vector (and an invariant inner product). Therefore,
to preserve Lorentz invariance it is important that we contract only an upper index

with a lower index. For similar reasons, we have

0

On = Gar

O™ = 6™
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so quantum mechanically p,, = —i0,,.

We use (natural/Planck) units ¢ = 1 (where c is the speed of light in a vacuum),
so length and duration are measured in the same units; ¢ then appears only as a
parameter for defining nonrelativistic expansions and limits. For example, in astro-
nomical units, c=1 light year/year. In fact, the speed of light is no longer measured,
but used to define the meter (since 1986) in terms of the second (itself defined by an
atomic clock), as the distance light travels in a vacuum in exactly 1/299,792,458th
of a second. So, using metric system units for ¢ is no different than measuring land
distance in miles and altitude in feet and writing ds®> = da? + dy? + b*dz?, where
b=(1/5280)miles/foot is the slope of a line raised up 45°. (As we mentioned in sub-
section A1, similar remarks will soon apply to A and the kilogram, A = 1 being

another natural/Planck unit.)

Unlike the positive-definite nonrelativistic norm of a 3-vector V¢, for an arbitrary

4-vector V™ we can have

< timelike
Vi =30: lightlike/null
> spacelike

In particular, the 4-momentum is timelike for massive particles (m? > 0) and lightlike
for massless ones (while “tachyons”, with spacelike momenta and m? < 0, do not exist,
for reasons that are most clear from quantum field theory). With respect to “proper”
Lorentz transformations, those that can be obtained continuously from the identity,
we can further classify timelike and lightlike vectors as “forward” and “backward”,
since there is no way to continuously “rotate” a vector from forward to backward
without it being spacelike (“sideways”), so only spacelike vectors can have their time

component change sign continuously.

The quantum mechanics will be described later, but the result is that this con-
straint can be used as the wave equation. The main qualitative distinction from the

nonrelativistic case in the constraint

nonrelativistic: —2mE +p*> =0

relativistic: — E*+m?+p?=0

is that the equation for the energy F = p° is now quadratic, and thus has two
solutions:
P =tw, w= /)

Later we’ll see how the second solution is interpreted as an “antiparticle”.
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The translations and Lorentz transformations make up the Poincaré group, the
symmetry that defines special relativity. (The Lorentz group in D—1 space and 1
time dimension is the “orthogonal” group “O(D—1,1)". The “proper” Lorentz group
“SO(D—1,1)", where the “S” is for “special”, transforms the coordinates by a matrix
whose determinant is 1. The Poincaré group is ISO(D—1,1), where the “I” stands
for “inhomogeneous”.) For the spinless particle they are generated by coordinate

transformations G; = (P,, Ju):

P, = Pa, Jap = T(aPb)

(where also a,b = 0,...,3). Then the fact that the physics of the free particle is

invariant under Poincaré transformations is expressed as
[Pa>p2 + m2] = [Jab>p2 + m2] =0

Writing an arbitrary infinitesimal transformation as a linear combination of the gen-

erators, we find

ox™ = x"e,"" + €M, €Emn = —Enm

where the €’s are constants. Note that antisymmetry of €,,, does not imply antisym-
metry of €,," = €,,,n"", because of additional signs. (Similar remarks apply to Ju.)

Exponentiating to find the finite transformations, we have
2™ =" A"+ AT A A pg = Ninm

The same Lorentz transformations apply to p™, but the translations do not affect
it. The condition on A follows from preservation of the Minkowski norm (or inner
product), but it is equivalent to the antisymmetry of €,," by exponentiating A = e

(compare exercise IA3.3).

Since dx®p, is invariant under the coordinate transformations defined by the Pois-
son bracket (the chain rule, since effectively p, ~ 9,), it follows that the Poincaré

invariance of p? is equivalent to the invariance of the line element
ds* = —dz"dx" Np

which defines the “proper time” s. Spacetime with this indefinite metric is called
“Minkowski space”, in contrast to the “FEuclidean space” with positive definite metric
used to describe nonrelativistic length measured in just the three spatial dimensions.

(The signature of the metric is thus the numbers of space and time dimensions.)
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Exercise 1A4.1
For general variables (¢™, p,,) and generator GG, show from the definition of
the Poisson bracket that

oG
0(dq"pm) = —d | G — pr—=—o-
(dq"pim) < p 8pm>
and that this vanishes for any coordinate transformation.

For the massive case, we also have

dx®
ds

For the massless case ds = 0: Massless particles travel along lightlike lines. However,

a

p=m

we can define a new parameter 7 such that

B dx®
- dr

is well-defined in the massless case. In general, we then have

a

p

S =mT

While this fixes 7 = s/m in the massive case, in the massless case it instead restricts
s = 0. Thus, proper time does not provide a useful parametrization of the world
line of a classical massless particle, while 7 does: For any piece of such a line, d7 is
given in terms of (any component of) p* and dx®. Later we’ll see how this parameter
appears in relativistic classical mechanics, and is useful for quantum mechanics and
field theory.

Exercise 1A4.2
Starting from the usual Lorentz force law for a massive particle in terms of
proper time s (which doesn’t apply to m = 0), rewrite it in terms of 7 to find

a form which can apply to m = 0.

Exercise 1A4.3
The relation between z and p is closely related to the Poincaré conservation
laws:
a Show that
dP,=dJ, =0 = p[adl'b] =0
and use this to prove that conservation of P and J imply the existence of a
parameter 7 such that p* = dz®/dr.

b Consider a multiparticle system (but still without spin) where some of the

particles can interact only when at the same point (i.e., by collision; they
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act as free particles otherwise). Define P, = 37, p; and Ju, = 3, 2(,py as
the sum of the individual momenta and angular momenta (where we label
the particle with “/”). Show that momentum conservation implies angular

momentum conservation,
APa =0 = AJab =0

where “A” refers to the change from before to after the collision(s).

Special relativity can also be stated as the fact that the only physically observ-
able quantities are those that are Poincaré invariant. (Other objects, such as vectors,
depend on the choice of reference frame.) For example, consider two spinless par-
ticles that interact by collision, producing two spinless particles (which may differ
from the originals). Consider just the momenta. (Quantum mechanically, this is a
complete description.) All invariants can be expressed in terms of the masses and the

“Mandelstam variables” (not to be confused with time and proper time)

s=—(p1 +p2)?, t=—(p1 — p3)?, u=—(p1 — ps)*

where we have used momentum conservation, which shows that even these three

quantities are not independent:

4
pi=-—mj, pt+p=pstp = s+t+u:Zm§
I=1
(The explicit index now labels the particle, for the process 1+2—344.) The simplest
reference frame to describe this interaction is the center-of-mass frame (actually the
center of momentum, where the two 3-momenta cancel). In that Lorentz frame, using
also rotational invariance, momentum conservation, and the mass-shell conditions, the

momenta can be written in terms of these invariants as

P = 7 (5(s +mi —m3), A2, 0,0)

b2 = %(%(S + mg - m%)a _)\127()’0)

Py = %(%(s +m3 —m3), Asy cos 0, A4 5in6,0)

Py = %(%(s +m3i —m3), — g4 cos 6, — X3y sin 6, 0)
e g 25t = (S E)s + (md = mi3) o — )

4>\12)\34

Ay = 1ls — (mr+my)?)[s — (my —my)?]

The “physical region” of momentum space is then given by s > (m; + my)? and

(m3 + my)?, and |cos 0] < 1.
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Exercise 1A4.4
Derive the above expressions for the momenta in terms of invariants in the

center-of-mass frame.

Exercise 1A4.5
Find the conditions on s,t and u that define the physical region in the case

where all masses are equal.

For some purposes it will prove more convenient to use a “lightcone basis”

+ - 2 3
+f0 -1 0 0
=50 E0) = = N R B e L S A%
21l 0 0 10
3\o o0 01

and similarly for the “lightcone coordinates” (z*, 22, 23). (“Lightcone” is an unfor-

tunate but common misnomer, having nothing to do with cones in most usages.) In
this basis the solution to the mass-shell condition p? + m? = 0 can be written as
e _WPew
¥ 2T
(where now ¢ = 2,3), which more closely resembles the nonrelativistic expression.
(Note the change on indices + < — upon raising and lowering.) A special lightcone

basis is the “null basis”,

=500, v =50 -0, =507+ i)

+ - t t
+( 0 -1 0 0

—[-1 0 0o ) b ot

= Nmn = ;DT ==2pTp +2pp
t 0 0 01
t\0 0 10

where the square of a vector is linear in each component. (We often use “ ” to

indicate complex conjugation.)
Exercise 1A4.6
Show that for p> + m? = 0 (m? > 0, p* # 0), the signs of p* and p~ are
always the same as the sign of the canonical energy p°.
Exercise 1A4.7

Consider the Poincaré group in 1 extra space dimension (D space, 1 time) for

a massless particle. Interpret p* as the mass, and p~ as the energy.
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a Show that the constraint p? = 0 gives the usual nonrelativistic expression for

the energy.
b Show that the subgroup of the Poincaré group generated by all generators that

commute with p* is the Galilean group (in D—1 space and 1 time dimensions).
Now nonrelativistic mass conservation is part of momentum conservation,
and all the Galilean transformations are coordinate transformations. Also,

positivity of the mass is related to positivity of the energy (see exercise IA4.4).

There are two standard examples of relativistic effects on geometry. Without loss
of generality we can consider 2 dimensions, by considering motion in just 1 spatial
direction. One example is called “Lorentz-Fitzgerald contraction”: Consider a finite-
sized object moving with constant velocity. In our 2D space, this looks like 2 parallel

lines, representing the endpoints:

(In higher dimensions, this represents a one-spatial-dimensional object, like a thin
ruler, moving in the direction of its length.) If we were in the “rest frame” of this
object, the lines would be vertical. In that frame, there is a simple physical way to
measure the length of the object: Send light from a clock sitting at one end to a
mirror sitting at the other end, and time how long it takes to make the round trip.
A clock measures something physical, namely the proper time T'= [ Vds? along its
“worldline” (the curve describing its history in spacetime). Since ds? is by definition

the same in any frame, we can calculate this quantity in our frame.

¥y

In this 2D picture lightlike lines are always slanted at £45°. The 2 lines representing

the ends of the object are (in this frame) x = vt and * = L + vt. Some simple
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geometry then gives

T = \/% = L=V1-02T)2
This means that the length L we measure for the object is shorter than the length
T'/2 measured in the object’s rest frame by a factor V1 =12 < 1. Unlike T, the L we
have defined is not a physical property of the object: It depends on both the object
and our velocity with respect to it. There is a direct analogy for rotations: We can
easily define an infinite strip of constant width in terms of 2 parallel lines (the ends),
where the width is defined by measuring along a line perpendicular to the ends. If
we instead measure at an arbitrary angle to the ends, we won’t find the width, but

the width times a factor depending on that angle.

The most common point of confusion about relativity is that events that are
simultaneous in one reference frame are not simultaneous in another (unless they are
at the same place, in which case they are the same event). A frequent example is of
this sort: You have too much junk in your garage, so your car won’t fit anymore. So
your spouse/roommate/whatever says, “No problem, just drive it near the speed of
light, and it will Lorentz contract to fit.” So you try it, but in your frame inside the
car you find it is the garage that has contracted, so your car fits even worse. The real
question is, “What happens to the car when it stops?” The answer is, “It depends on
when the front end stops, and when the back end stops.” You might expect that they
stop at the same time. That’s probably wrong, but assuming it’s true, we have (at
least) two possibilities: (1) They stop at the same time as measured in the garage’s
reference frame. Then the car fits. However, in the car’s frame (its initial fast frame),
the front end has stopped first, and the back end keeps going until it smashes into
the front enough to make it fit. (2) They stop at the same time in the car’s frame. In
the garage’s frame, the back end of the car stops first, and the front end keeps going

until it smashes out the back of the garage.

The other standard example is “time dilation”: Consider two clocks. One moves
with constant velocity, so we choose the frame where it is at rest. The other moves
at constant speed in this frame, but it starts at the position of the first clock, moves
away, and then returns. (It is usually convenient to compare two clocks when they
are at the same point in space, since that makes it unambiguous that one is reading

the two clocks at the same time.)
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A simple calculation shows that when the moving clock returns it measures a time
that is shorter by a factor of v/1 — v2. Of course, this also has a Newtonian analog:
Curves between two given points are longer than straight lines. For relativity, straight
lines are always the longest timelike curves because of the funny minus sign in the

metric.

Exercise 1A4.8
You are standing in the road, and a police car comes toward you, flashing
its lights at regular intervals. It runs you down and keeps right on going,
as you watch it continue to flash its lights at you at the same intervals (as
measured by the clock in the car). Treat this as a two-dimensional problem
(one space, one time), and approximate the car’s velocity as constant. Draw
the Minkowski-space picture (including you, the car, and the light rays). If
the car moves at speed v and flashes its lights at intervals ¢y (as measured by
the clock’s car), at what intervals (according to your watch) do you see the

lights flashing when it is approaching, and at what intervals as it is leaving?

Special relativity is so fundamental a part of physics that in some areas of physics
every experiment is more evidence for it, so that the many early experimental tests

of it are more of historical interest than scientific.

The Galilean group is a symmetry of particles moving at speeds small compared
to light, but electromagnetism is symmetric under the Poincaré group (actually the
conformal group). This caused some confusion historically: Since the two groups have
only translations and rotations in common, it was assumed that nature was invariant
under no velocity transformation (neither Galilean nor Lorentz boost). In particular,
the speed of light itself would seem to depend on the reference frame, since the laws
of nature would be correct only in a “rest frame”. To explain “at rest with respect
to what,” physicists invented something that is invariant under rotations and space
and time translations, but not velocity transformations, and called this “medium” for

wave propagation the “ether,” probably because they were only semiconscious at the
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time. (The idea was supposed to be like sound traveling through the air, although

nobody had ever felt an ethereal wind.)

Many experiments were performed to test the existence of the ether, or at least to
show that the wave equation for light was correct only in references frames at rest. So
as not to keep you in suspense, we first tell you the general result was that the ether
theory was wrong. On the contrary, one finds that the speed of light in a vacuum is
measured as ¢ in both of two reference frames that are moving at constant velocity
with respect to each other. This means that electromagnetism is right and Newtonian
mechanics is wrong (or at least inaccurate), since Maxwell’s equations are consistent
with the speed of light being the same in all frames, while Newtonian mechanics is

not consistent with any speed being the same in all frames.

The first such experiment was performed by A.A. Michelson and E.W. Morley
in 1887. They measured the speed of light in various directions at various times of
year to try to detect the effect of the Earth’s motion around the sun. They detected
no differences, to an accuracy of 1/6th the Earth’s speed around the sun (=~ 10~%c).
(The method was interferometry: seeing if a light beam split into perpendicular paths

of equal length interfered with itself.)

Another interesting experiment was performed in 1971 by J.C. Hafele and R.
Keating, who compared synchronized atomic clocks, one at rest with respect to the
Earth’s surface, one carried by plane (a commercial airliner) west around the world,
one east. Afterwards the clocks disagreed in a way predicted by the relativistic effect

of time dilation.

Probably the most convincing evidence of special relativity comes from experi-
ments related to atomic, nuclear, and particle physics. In atoms the speed of the
electrons is of the order of the fine structure constant (=~1/137) times ¢, and the
corresponding effects on atomic energy levels and such is typically of the order of the
square of that (~ 107%), well within the accuracy of such experiments. In particle
accelerators (and also cosmic rays), various particles are accelerated to over 99% c,
so relativistic effects are exaggerated to the point where particles act more like light
waves than Newtonian particles. In nuclear physics the relativistic relation between
mass and energy is demonstrated by nuclear decay where, unlike Newtonian mechan-
ics, the sum of the (rest) masses is not conserved; thus the atomic bomb provides
a strong proof of special relativity (although it seems like a rather extreme way to

prove a point).
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5. Discrete: C, P, T

By considering only symmetries than can be obtained continuously from the iden-
tity (Lie groups), we have missed some important symmetries: those that reflect some
of the coordinates. It’s sufficient to consider a single reflection of a spacelike axis,
and one of a timelike axis; all other reflections can be obtained by combining these
with the continuous (“proper, orthochronous”) Lorentz transformations. (Spacelike
and timelike vectors can’t be Lorentz transformed into each other, and reflection of
a lightlike axis won’t preserve p* + m?.) Also, the reflection of one spatial axis can
be combined with a 7 rotation about that axis, resulting in reflection of all three
spatial coordinates. (Similar generalizations hold for higher dimensions. Note that
the product of an even number of reflections about different axes is a proper rotation;
thus, for even numbers of spatial dimensions reflections of all spatial coordinates are
proper rotations, even though the reflection of a single axis is not.) The reversal of the
spatial coordinates is called “parity (P)”, while that of the time coordinate is called
“time reversal” (“T”; actually, for historical reasons, to be explained shortly, this is
usually labeled “CT”.) These transformations have the same effect on the momen-
tum, so that the definition of the Poisson bracket is also preserved. These “discrete”
transformations, unlike the proper ones, are not symmetries of nature (except in cer-
tain approximations): The only exception is the transformation that reflects all axes
(“CPT”).

While the metric 7,,, is invariant under all Lorentz transformations (by defini-

tion), the “Levi-Civita tensor”

€mnpg totally antisymmetric, €oro3 = —€1 =1

is invariant under only proper Lorentz transformations: It has an odd number of
space indices and of time indices, so it changes sign under parity or time reversal.
(More precisely, under P or T the Levi-Civita tensor does not suffer the expected
sign change, since it’s constant, so there is an “extra” sign compared to the one
expected for a tensor.) Consequently, we can use it to define “pseudotensors”: Given
“polar vectors”, whose signs change as position or momentum under improper Lorentz
transformations, and scalars, which are invariant, we can define “axial vectors” and

“pseudoscalars” as
Va = EabchchDd, ¢ = GQdeAaBbCCDd

which get an extra sign change under such transformations (P or CT, but not CPT).
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There is another such “discrete” transformation that is defined on phase space,
but which does not affect spacetime. It changes the sign of all components of the
momentum, while leaving the spacetime coordinates unchanged. This transformation
is called “charge conjugation (C)”, and is also only an approximate symmetry in
nature. (Quantum mechanically, complex conjugation of the position-space wave
function changes the sign of the momentum.) Furthermore, it does not preserve the
Poisson bracket, but changes it by an overall sign. (The misnomer “CT” for time
reversal follows historically from the fact that the combination of reversing the time
axis and charge conjugation preserves the sign of the energy.) The physical meaning
of this transformation is clear from the spacetime-momentum relation of relativistic
classical mechanics p = m dx/ds: It is proper-time reversal, changing the sign of s.
The relation to charge follows from “minimal coupling”: The “covariant momentum”
m dx/ds = p + qA (for charge q) appears in the constraint (p + ¢A)? +m? = 0 in an

electromagnetic background; p — —p then has the same effect as ¢ — —q.

In the previous subsection, we mentioned how negative energies were associated
with “antiparticles”. Now we can better see the relation in terms of charge conjuga-
tion. Note that charge conjugation, since it only changes the sign of 7 but does not
effect the coordinates, does not change the path of the particle, but only how it is
parametrized. This is also true in terms of momentum, since the velocity is given by
p*/p°. Thus, the only observable property that is changed is charge; spacetime prop-
erties (path, velocity, mass; also spin, as we’ll see later) remain the same. Another
way to say this is that charge conjugation commutes with the Poincaré group. One
way to identify an antiparticle is that it has all the same kinematical properties (mass,
spin) as the corresponding particle, but opposite sign for internal quantum numbers
(like charge). (Another way is pair creation and annihilation: See subsection I1IB5
below.)

All these transformations are summarized in the table:

C|CT P|T CP|PT CPT
s|—|+ +|- —-|- +
t|+|—- +[- +|- -
Z|+|+ —|+ —-|—- -
E|l-|- +|+ —-|+ -
pl-|+ —-|- +|+ -

(The upper-left 3x3 matrix contains the definitions, the rest is implied.) In terms

of complex wave functions, we see that C' is just complex conjugation (no effect on



A. COORDINATES 67

wsn
7

coordinates, but momentum and energy change sign because of the in the Fourier
transform). On the other hand, for CT and P there is no complex conjugation, but
changes in sign of the coordinates that are arguments of the wave functions, and
also on the corresponding indices — the “orbital” and “spin” parts of these discrete
transformations. (For example, derivatives 0, have sign changes because x* does, so
a vector wave function ¢)* must have the same sign changes on its indices for 9,1 to

transform as a scalar.) The other transformations follow as products of these.

Exercise TA5.1
Find the effect of each of these 7 transformations on wave functions that are:

a scalars, b pseudoscalars, ¢ vectors, d axial vectors.

However, from the point of view of the “particle” there is some kind of kinematic
change, since the proper time has changed sign: If we think of the mechanics of a
particle as a one-dimensional theory in 7 space (the worldline), where z(7) (as well
as any such variables describing spin or internal symmetry) is a wave function or field
on that space, then 7 — —7 is T on that one-dimensional space. (The fact we don’t
get CT can be seen when we add additional variables: For example, if we describe
internal U(N) symmetry in terms of creation and annihilation operators a'* and aj,
then C mixes them on both the worldline and spacetime. So, on the worldline we
have the “pure” worldline geometric symmetry CT times C = T.) Thus, in terms of
“zeroth quantization”,

worldline T < spacetime C

On the other hand, spacetime P and C'T" are simply internal symmetries with respect
to the worldline (as are proper, orthochronous Poincaré transformations).

Quantum mechanically, there is a good reason for particles of negative energy:

They appear in complex-conjugate wave functions, since (e~™!)* = e*®! Since we
always evaluate expressions of the form (f|é), it is natural for energies of both signs

to appear.

In classical field theory, we can identify a particle with its antiparticle by requiring
the field to be invariant under charge conjugation: For example, for a scalar field

(spinless particle), we have the reality condition

¢(z) = ¢*(x)
or in momentum space, by Fourier transformation,
(p) = [o(—p)]*

which implies the particle has charge zero (neutral).
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Conformal

Poincaré transformations are the most general coordinate transformations that

preserve the mass condition p? + m? = 0, but there is a larger group, the “confor-

mal group”, that preserves this constraint in the massless case. Although conformal

symmetry is not observed in nature, it is important in all approaches to field theory:

(1)

First of all, it is useful in the construction of free theories (see subsections 11B1-4
below). All massive fields can be described consistently in quantum field theory
in terms of coupling massless fields. Massless theories are a subset of conformal
theories, and some conditions on massless theories can be found more easily by
finding the appropriate subset of those on conformal theories. This is related to
the fact that the conformal group, unlike the Poincaré group, is “simple”: It has
no nontrivial subgroup that transforms into itself under the rest of the group (like

the way translations transform into themselves under Lorentz transformations).

In interacting theories at the classical level, conformal symmetry is also impor-
tant in finding and classifying solutions, since at least some parts of the action are
conformally invariant, so corresponding solutions are related by conformal trans-
formations (see subsections IIIC5-7). Furthermore, it is often convenient to treat
arbitrary theories as broken conformal theories, introducing fields with which
the breaking is associated, and analyze the conformal and conformal-breaking

fields separately. This is particularly true for the case of gravity (see subsections
IXA7,B5,C2-3,XA3-4,B5-7).

Within quantum field theory at the perturbative level, the only physical quantum
field theories are ones that are conformal at high energies (see subsection VIIIC1I).
The quantum corrections to conformal invariance at high energy are relatively

simple.

Beyond perturbation theory, the only quantum theories that are well defined may
be just the ones whose breaking of conformal invariance at low energy is only
classical (see subsections VIIC2-3,VIIIA5-6). Furthermore, the largest possible
symmetry of a nontrivial S-matrix is conformal symmetry (or superconformal

symmetry if we include fermionic generators).

Self-duality (a generalization of a condition that equates electric and magnetic
fields) is useful for finding solutions to classical field equations as well as sim-
plifying perturbation theory, and is closely related to “twistors” (see subsections

[1B6-7,C5,ITIC4-7). In general, self-duality is related to conformal invariance: For
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example, it can be shown that the free conformal theories in arbitrary even di-
mensions are just those with (on-mass-shell) field strengths on which self-duality
can be imposed. (In arbitrary odd dimensions the free conformal theories are just

the scalar and spinor.)

Transformations A that satisfy

(X (2)pa, ] = ((x)p?

for some ( also preserve p? = 0, although they don’t leave p? invariant. Equivalently,

we can look for coordinate transformations that scale
da’? = ¢(z)da?

Exercise 1A6.1
Find the conformal group explicitly in two dimensions, and show it’s infinite
dimensional (not just the SO(2,2) described below). (Hint: Use lightcone

coordinates.)

This symmetry can be made manifest by starting with a space with one extra

space and time dimension:

yr=w%y T y) = VP =yyPnas = (") -2ty

2 = 9%y uses the usual D-dimensional Minkowski-space metric 7,

where (y%)
and the two additional dimensions have been written in a lightcone basis (not to
be confused for the similar basis that can be used for the Minkowski metric itself).
With respect to this metric, the original SO(D—1,1) Lorentz symmetry has been
enlarged to SO(D,2). This is the conformal group in D dimensions. However, rather
than also preserving (D+2)-dimensional translation invariance, we instead impose the

constraint and invariance
y* =0, &yt =(ly)y”
This reduces the original space to the “projective” (invariant under the ¢ scaling)

lightcone (which in this case really is a cone).
These two conditions can be solved by

y =ew?, wt = (291, 12%z,)
Projective invariance then means independence from e (y*), while the lightcone con-
dition has determined y~. y? = 0 implies y - dy = 0, so the simplest conformal

invariant is
dy? = (edw + wde)? = *dw?® = e*da”
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where we have used w? = 0 = w - dw = 0. This means any SO(D,2) transformation

on y* will simply scale dz?, and scale e? in the opposite way:

2
dz? = (%) dx?

in agreement with the previous definition of the conformal group.

The explicit form of conformal transformations on z* = y*/y™* now follows from

their linear form on y4, using the generators
GAB = y[ATB}a [TA> yB] = _255

of SO(D,2) in terms of the momentum r 4 conjugate to y“. (These are defined the same
way as the Lorentz generators J% = x[@pP) For example, GT~ just scales 2°. (Scale
transformations are also known as “dilatations”, or just “dilations”.) We can also
recognize G1% as generating translations on . The only complicated transformations
are generated by G~%, known as “conformal boosts” (acceleration transformations).
Since they commute with each other (like translations), it’s easy to exponentiate to

find the finite transformations:
y'=e%,  G=uy o

for some constant D-vector v® (where 94 = 9/0y*). Since the conformal boosts act
as “lowering operators” for scale weight (+ — a — —), only the first three terms in

the exponential survive:

Gy =0, Gy'=vy, Gy =vy, =
Y=y, Y=yt Y, YT =y 0y, + S0ty =
7@ + %’Ua.l’2

- 14 vz + jv2a?

la

using 2% = y°/y*, y~ Jy* = ia2.

Exercise 1A6.2
Make the change of variables to z* = y*/y™, e = y*, 2z = %yz. Express
r4 in terms of the momenta (p,,n,s) conjugate to (z% e, z). Show that the
conditions 4% = y4r4 = r2 = 0 become z = en = p?> = 0 in terms of the new
variables.

Exercise 1A6.3

Find the generator of infinitesimal conformal boosts in terms of z* and p,.
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We actually have the full O(D,2) symmetry: Besides the continuous symmetries,
and the discrete ones of SO(D—1,1), we have a second “time” reversal (from our
second time dimension):

Tty = “<—>—xa
Yy Y z )
51’

This transformation is called an “inversion”.

Exercise 1A6.4
Show that a finite conformal boost can be obtained by performing a transla-

tion sandwiched between two inversions.

Exercise 1A6.5
The conformal group for Euclidean space (or any spacetime signature) can be
obtained by the same construction. Consider the special case of D=2 for these
SO(D+1,1) transformations. (This is a subgroup of the 2D superconformal
group: See exercise IA6.1.) Use complex coordinates for the two “physical”
dimensions:
z= %(xl + iz?)

a Show that the inversion is )

Z _Z_*
b Show that the conformal boost is (using a complex number also for the boost

vector)
z

S +v*z

Exercise 1A6.6
Any parity transformation (reflection in a spatial axis) can be obtained from
any other by a rotation of the spatial coordinates. Similarly, when there
is more than one time dimension, any time reversal can be obtained from
another (but time reversal can’t be rotated into parity, since a timelike vector
can’t be rotated into a spacelike one). Thus, the complete orthogonal group
O(m,n) can be obtained from those transformations that are continuous from
the identity by combining them with 1 parity transformation and 1 time

reversal transformation (for mn#0).

a For the conformal group, find the rotation (in terms of an angle) that rotates

between the two time directions, and express its action on x®.

b Show that for angle 7 it produces a transformation that is the product of time

reversal and inversion.
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¢ Use this to show that inversion is related to time reversal by finding the
continuum of conformal transformations that connect them.
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............................. B. INDICES ............................

In the previous section we saw various spacetime groups (Galilean, Poincaré,
conformal) in terms of how they acted on coordinates. This not only gave them a
simple physical interpretation, but also allowed a direct relation between classical
and quantum theories. However, as we know from studying rotations in quantum
theory in terms of spin, we will often need to study symmetries of quantum theories

for which the classical analog is not so useful or perhaps even nonexistent.

We therefore now consider some general results of group theory, mostly for con-
tinuous groups. We use tensor methods, rather than the slightly more powerful but
greatly less convenient Cartan-Weyl-Dynkin methods. Much of this section should
be review, but is included here for completeness; it is not intended as a substitute for
a group theory course, but as a summary of those results commonly useful in field

theory.

1. Matrices

Matrices are defined by the way they act on some vector space; an nxn matrix
takes one n-component vector to another. Given some group, and its multiplication
table (which defines the group completely), there is more than one way to represent
it by matrices. Any set of matrices we find that has the same multiplication table as
the group elements is called a “representation” of that group, and the vector space on
which those matrices act is called the “representation space.” The representation of
the algebra or group in terms of explicit matrices is given by choosing a basis for the
vector space. If we include infinite-dimensional representations, then a representation
of a group is simply a way to write its transformations that is linear: ¢’ = M) is
linear in ¢. More generally, we can also have a “realization” of a group, where the
transformations can be nonlinear. These tend to be more cumbersome, so we usually
try to make redefinitions of the variables that make the realization linear. A precise
definition of “manifest symmetry” is that all the realizations used are linear. (One
possible exception is “affine” or “inhomogeneous” transformations ¢’ = My + M,
such as the usual coordinate representation of Poincaré transformations, since these
transformations are still very simple, because they are really still linear, though not

homogeneous.)

Exercise IB1.1

Consider a general real affine transformation ¢/’ = M1+V on an n-component
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vector ¢ for arbitrary real n x n matrices M and real n-vectors V. A general

group element is thus (M, V).

a Perform 2 such transformations consecutively, and give the resulting “group
multiplication” rule for (M, Vi) “x” (My, Vo) = (Ms, Vs).

b Find the infinitesimal form of this transformation. Define the n?+4n generators
as operators on v, in terms of ¢* and 9/0y®.

¢ Find the commutation relations of these generators.

d Compare all the above with (nonrelativistic) rotations and translations.

Exercise I1B1.2

Let’s consider some properties of matrix inverses:

a Show (AB)™' = B7'A~! for matrices A and B that have inverses but don’t

necessarily commute with each other.

b Show that . . L N
AvB A APatatata -

(There may be other assumptions; ignore convergence questions. Hint: Mul-
tiply both sides by A + B.)

For convenience, we write matrices with a Hilbert-space-like notation, but unlike
Hilbert space we don’t necessarily associate bras directly with kets by Hermitian
conjugation, or even transposition. In general, the two spaces can even be different
sizes, to describe matrices that are not square; however, for group theory we are
interested only in matrices that take us from some vector space into itself, so they
are square. Bras have an inner product with kets, but neither necessarily has a norm
(inner product with itself): In general, if we start with some vector space, written
as kets, we can always define the “dual” space, written as bras, by defining such an
inner product. In our case, we may start with some representation of a group, in
terms of some vector space, and that will give us directly the dual representation. (If
the representation is in terms of unitary matrices, we have a Hilbert space, and the

dual representation is just the complex conjugate.)

So, we define column vectors |1)) with a basis |’), and row vectors (¢| with a
basis (7|, where I = 1,...,n to describe nxn matrices. The two bases have a relative

normalization defined so that the inner product gives the usual component sum:

) =1"yr, D =x"Gl ) =6 = ) =x"vn () =vn () =X
These bases then define not only the components of vectors, but also matrices:

M ="M (), (M7 = My’
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where as usual the I on the component (matrix element) M;”’ labels the row of the
matrix M, and J the column. This implies the usual matrix multiplication rules,

inserting the identity in terms of the basis,
I=1"Y k| = (MN) = M) (INI’) = M Ng’
Closely related is the definition of the trace,
tr M = (M"Y =M = tr(MN)=tr(NM)

(We'll discuss the determinant later.)

The bra-ket notation is really just matrix notation written in a way to clearly
distinguish column vectors, row vectors, and matrices. We can, of course, also use

the usual pictorial notation

(0
W)y =1{ v |, xI=0" )
12 J
MY M2 M,
o Mt M2 My”
M= z
I a2 M7

This is useful only when listing individual components.

We can easily translate transformation laws from matrix notation into index no-
tation just by using a basis for the representation space. We now write g and G to
refer to either matrix representations of the group and algebra elements, or to the
abstract elements: i.e., either to a specific representation, or the most general one.
Again writing g = €,

gy =1"gs GIN =G,
G =o'G;, oY) =iGly) = |Nia (Gi) "y, = 0y =i (Gi) ",

The dual space isn’t needed for this purpose. However, for any representation of a

group, the transpose
(MT)IJ — MJI

of the inverse of those matrices also gives a representation of the group, since

=95 = (0)" (g2)" " =(g3)""
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[G1,Go)=G3 = [-G],-G]]=-Gf

This is the dual representation, which follows from defining the above inner product

to be invariant under the group:
) =0 = &' =—ip'a' (G,
The complex conjugate of a complex representation is also a representation, since
9192 =93 = G17g* = g5*

[Gl,Gﬂ =Gs = [G1*>G2*] = G3*

From any given representation, we can thus find three others from taking the dual

and the conjugate: In matrix and index notation,

V=g Y=g,
=gy W =gy
V=gt wh =g
W= (g =g lyd

since (¢71)T, g*, and (¢~1)T (but not g7, etc.) satisfy the same multiplication algebra
as ¢, including ordering. We use up/down and dotted/undotted indices to denote
the transformation law of each type of index; contracting undotted up indices with
undotted down indices preserves the transformation law as indicated by the remaining
indices, and similarly for dotted indices. These four representations are not necessarily
independent: Imposing relations among them is how the classical groups are defined

(see subsections IB4-5 below).

2. Representations

R

For example, we always have the “adjoint” representation of a Lie group/algebra,

which is how the algebra acts on its own generators:
(1) adjoint as operator: G = a'G;, A= 3G, = JA=i[G, A =p3d f;"Gy

= 03" = =i (Gy)',  (Gh);" =ifi"

This gives us two ways to represent the adjoint representation space: as either the

usual vector space, or in terms of the generators. Thus, we either use the matrix
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A = ('G; (for arbitrary representation of the matrices G;, or treating G; as just

abstract generators), or we can write A as a row vector:
(2) adjoint as vector: (A| = 3'(;| = §{A] = —i(A|G
= 08l = =il (Gy)i' (il

The adjoint representation also provides a convenient way to define a (symmetric)

group metric invariant under the group, the “Cartan metric”:
iy = tra(GiGy) = — fu! ;"

(tra refers to the trace taken with respect to the representation A; equivalently, we
could take the G’s inside the trace to be in the A representation.) For “Abelian”
groups the structure constants vanish, and thus so does this metric. “Semisimple”
groups are those where the metric is invertible (no vanishing eigenvalues). A “simple”
group has no nontrivial subgroup that transforms into itself under the rest of the
group: Semisimple groups can be written as “products” of simple groups. “Compact”
groups are those where it is positive definite (all eigenvalues positive); they are also
those for which the invariant volume of the group space is finite. For simple, compact

groups it’s convenient to choose a basis where
Nij = CA0ij

for some constant ¢4 (the “Dynkin index” for the adjoint representation). For some

general irreducible representation R of such a group the normalization of the trace is
CR
trr(GiGj) = crdij = —n;
Ca

Now the proportionality constant cgr/c4 is fixed by the choice of R (only), since we

have already fixed the normalization of our basis.

Exercise 1B2.1
What is cg for an Abelian group? (Hint: not just 1.)

In general, the cyclicity property of the trace implies, for any representation, that
so tr(G;) = 0 for semisimple groups. Similarly, we find

fisk = fii'mw = 1 tra([Gy, G;1Gy)
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is totally antisymmetric: For semisimple groups, this implies the total antisymmetry
of the structure constants f;;*, up to factors (which are absent for compact groups in
a basis where 7;; ~ d;;). This also means the adjoint representation is its own dual.
(For example, for the compact group SO(3), we have 7;; = —€;€j, = 20;;.) Thus,

we can write A in a third way, as a column vector
(3) adjoint as dual vector: |A) = |3 = [)/n;; = J|A) =iG|A)

We can also do this for Abelian groups, by defining an invertible metric unrelated to
the Cartan metric: This is trivial for Abelian groups, since the generators themselves

are invariant, and thus so is any metric on them.

An identity related to the trace one is the normalization of the value kg of the

“Casimir operator” for any particular representation,
T]ijGiG]’ = k’RI

Its proportionality to the identity follows from the fact that it commutes with each
generator:

7" GG, Gi) = —if*{ G, Gy} = 0
using the antisymmetry of the structure constants. (Thus it takes the same value on

any component of an irreducible representation, since they are all related by group

transformations.) By tracing this identity, and contracting the trace identity,

Ry = tra7GiG,) = kpdg
CaA

where dr = trr(I) is the dimension of that representation.

Although quantum mechanics is defined on Hilbert space, which is a kind of com-
plex vector space, more generally we want to consider real objects, like spacetime
vectors. This restricts the form of linear transformations: Specifically, if we absorb
i's as g = e, then in such representations G itself must be real. These represen-
tations are then called “real representations”, while a “complex representation” is
one whose representation isn’t real in any basis. A complex representation space can
have a real representation, but a real representation space can’t have a complex rep-
resentation. In particular, coordinate transformations (of real coordinates) have only
real representations, which is why absorbing the i’s into the generators is a useful
convention there. For semisimple unitary groups, hermiticity of the generators of the

adjoint representation implies (using total antisymmetry of the structure constants
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and reality of the Cartan metric) that the structure constants are real, and thus the
adjoint representation is a real representation. More generally, any real unitary rep-
resentation will have antisymmetric generators (G = G* = -G = G = —GT). If the
complex conjugate representation is the same as the original (same matrices up to a
similarity transformation g* = MgM™!), but the representation is not real, then it

is called “pseudoreal”. (An example is the spinor of SU(2), to be described in section

IC.)

For any representation g of the group, a transformation g — ¢ogg, ! on every
group element g for some particular group element gy clearly maps the algebra to
itself, and preserves the multiplication rules. (Similar remarks apply to applying the
transformation to the generators.) However, the same is true for complex conjugation,
g — ¢*: Not only are the multiplication rules preserved, but for any element g

* is also an element. (This can be shown,

of that representation of the group, g¢
e.g., by defining representations in terms of the values of all the Casimir operators,
contructed from various powers of the generators.) In quantum mechanics (where
the representations are unitary), the latter is called an “antiunitary transformation”.
Although this is a symmetry of the group, it cannot be reproduced by a unitary

transformation, except when the representation is (pseudo)real.

Exercise 1B2.2
Show how this works for the Abelian group U(1). Explain this antiunitary
transformation in terms of two-dimensional rotations O(2). (U(1)=SO(2),

the “proper rotations” obtained continuously from the identity.)

A very simple way to build a representation from others is by “direct sum”. If we
have two representations of a group, on two different spaces, then we can take their
direct sum by just putting one column vector on top of the other, creating a bigger
vector whose size (“dimension”) is the sum of that of the original two. Explicitly, if
we start with the basis |*) for the first representation and |) for the second, then
the union (|*),|")) is the basis for the direct sum. (We can also write |') = (]*), |')),
where . = 1,...m; /' =1,...,n; I =1,...m;m+1,....m +n.) The group then acts

on each part of the new vector in the obvious way:

/

b= x=1w gl = s gl) = gt
S ) =P e =) e ) or <w>=(¢)

K L K Y ngi 0
gl¥) =1")9:"Y. ® ") g xo or (g9) = ( 0 g/“')
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(We can replace the @ with an ordinary + if we understand the basis vectors to be
now in a bigger space, where the elements of the first basis have zeros for the new
components on the bottom while those of the second have zeros for the new compo-
nents on top.) The important point is that no group element mixes the two spaces:
The group representation is block diagonal. Any representation that can be written
as a direct sum (after an appropriate choice of basis) is called “reducible”. For exam-
ple, we can build a reducible real representation from an irreducible complex one by
just taking the direct sum of this complex representation with the complex conjugate

representation. Similarly, we can take direct sums of more than two representations.

A more useful way to build representations is by “direct product”. The idea there
is to take a colummn vector and a row vector and use them to construct a matrix,
where the group element acts simultaneously on rows according to one representation
and columns according to the other. If the two original bases are again |*) and |},

the new basis can also be written as |') = |*') (I =1,...,mn). Explicitly,
|¢> = |L> @ |L >¢LL’7 g(|L> ® |L >) = ‘K> ® |H >9RL9H’L = gw/m = gLHgL’R
or in terms of the algebra
GLL,HR/ = GLnéb’Rl + 5LRGL/ a

A familar example from quantum mechanics is rotations (or Lorentz transformations),
where the first space is position space (so ¢ is the continuous index z), acted on by
the orbital part of the generators, while the second space is finite-dimensional, and is
acted on by the spin part of the generators. Direct product representations are usually
reducible: They then can be written also as direct sums, in a way that depends on

the particulars of the group and the representations.
Consider a representation constructed by direct product: In matrix notation
Gi=Gol'+1eG,
Using tr(A ® B) = tr(A)tr(B), and assuming tr(G;) = tr(G}) = 0, we have
tr(GiGy) = tr(I')tr(GiG;) + tr(D)tr(G]G,)

For example, for SU(N) (see subsection IB4 below) we can construct the adjoint rep-
resentation from the direct product of the N-dimensional, “defining” representation
and its complex conjugate. (We also get a singlet, but it will not affect the result for
the adjoint.) In that case we find

t’/’A(GiGj) =2N t’/’D(GiGj)

CD_l

CA N ﬁ
For most purposes, we use trp(G;G;) = 6;; (cp = 1) for SU(N), so ¢4 = 2N.
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3. Determinants

We now “review” some properties of determinants that will prove useful for the
group analysis of the following subsections. Determinants can be defined in terms of

the Levi-Civita tensor €. As a consequence of its antisymmetry,
€ totally antisymmetric, €19 ., = =1 = ejl___Jneh“'I” = 5[1}1 . -5{,’;]

since each possible numerical index value appears once in each €, so they can be

matched up with d’s. By similar reasoning,

Ky Kmltodnom _ §h Tnem

1
WEKl---KmJI---Jnfme L e FA.

where the normalization compensates for the number of terms in the summation.

Exercise IB3.1

Apply these identities to rotations in three dimensions:

a Given only the commutation relations [J;;, J*] = ié[[ij]” and the definition
G, = %eijkjjk, derive fijk = €jk-

b Show the Jacobi identity e[ijlek]lm = 0 by explicit evaluation.

¢ Find the Cartan metric, and thus the value of cy4.

This tensor is used to define the determinant:
det M]J = %E]l,,,JnEIl'"I"Mth s M]nJ" = 6]1___J7LM11J1 s M]nJ" = 6[1”'Ind€t M

since anything totally antisymmetric in n indices must be proportional to the € tensor.

This yields an explicit expression for the inverse:

(M) = hmes e My - My, T (det M)

From this follows a useful expression for the variation of the determinant:

0 SNy
Wdet M = (M )J det M

which is equivalent to
§ In det M = tr(M*0M)

Replacing M with eM gives the often-used identity

§in det M =tr(e™MseM) =tr M = det M ="M
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where we have used the boundary condition for M = 0. Finally, replacing M in
the last identity with (n(1 + L) and expanding both sides to order L™ gives general

expressions for determinants of n X n matrices in terms of traces:

det(1+ L) = ") = det L= L(tr L)" — (tr L) (tr L)" 2 +

2(n 2)!

Exercise IB3.2
Use the definition of the determinant (and not its relation to the trace) to
show
det(AB) = det(A)det(B)

These identities can also be derived by defining the determinant in terms of a
Gaussian integral. We first collect some general properties of (indefinite) Gaussian

integrals. The simplest such integral is

d2 2 d@ 0o oo
G etz / —/ dr re "% = / due ™ =1
m 0 2T 0 0

= / = e T @ e~/ D/2—1
2m) D/2 2o a 2 a

The complex form of this integral is

dDZ* dDZ —‘Z‘2
— € =1
(2ri)D

by reducing to real parameters as z = (z + iy)/v/2. These generalize to integrals

involving a real, symmetric matrix S or a Hermitian matrix H as

de Tg dDZ* dDZ ;
—zt Sx/2 __ 1/2 —2"Hz _ H -1
/(QW)D/2 c = (det 5)” / (2mi)P ‘ (det H)

by diagonalizing the matrices, making appropriate redefinitions of the integration
variables, and identifying the determinant of a diagonal matrix. Alternatively, we
can use these integrals to define the determinant, and derive the previous definition.
The relation for the symmetric matrix follows from that for the Hermitian one by
separating z into its real and imaginary parts for the special case H = S. If we treat
z and z* as independent variables, the determinant can also be understood as the
Jacobian for the (dummy) variable change z — H 1z, 2* — 2z*. More generally, if
we define the integral by an appropriate limiting procedure or analytic continuation
(for convergence), we can choose z and z* to be unrelated (or even separate real

variables), and S and H to be complex.
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Exercise I1B3.3
Other properties of determinants can also be derived directly from the integral

definition:

a Find an integral expression for the inverse of a (complex) matrix M by using

the identity 5
_ o —zT M2
0= / . (z5e )

b Derive the identity ¢ in det M = tr(M~'6M) by varying the Gaussian defi-

nition of the (complex) determinant with respect to M.

An even better definition of the determinant is in terms of an anticommuting
integral (see subsection [A2), since anticommutativity automatically gives the anti-
symmetry of the Levi-Civita tensor, and we don’t have to worry about convergence.

We then have, for any matrix M,
/ dP¢t dP¢ em<™MC = det M

where (T can be chosen as the Hermitian conjugate of ¢ or as an independent variable,
whichever is convenient. From the definition of anticommuting integration, the only
terms in the Taylor expansion of the exponential that contribute are those with the
product of one of each anticommuting variable. Total antisymmetry in ¢ and in (T
then yields the determinant; we define “dP(" dP(” to give the correct normalization.
(The normalization is ambiguous anyway because of the signs in ordering the d(’s.)
This determinant can also be considered a Jacobian, but the inverse of the commuting

result follows from the fact that the integrals are now really derivatives.

Exercise IB3.4

Divide up the range of a square matrix into two (not necessarily equal) parts:

v=(e n)

and do the same for the (commuting or anticommuting) variables used in

In block form,

defining its determinant. Show that

A B
det (C D) =det D -det(A— BD™'C) = det A-det(D— CA™'B)

a by integrating over one part of the variables first (this requires off-diagonal

changes of variables of the form y — y + Oz, which have unit Jacobian), or

b by first proving the identity

A B\ (I BD™'\ (A-BD'C 0 I 0
Cc D) \o I 0 D)\ DC I
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We then have, for any antisymmetric (even-dimensional) matrix A,
/ d?P¢ €42 = pf A (PfA)? =det A

by the same method as the commuting case (again with appropriate definition of the
normalization of d?P¢; the determinant of an odd-dimensional antisymmetric matrix
vanishes, since det M = det MT'). However, there is now an important difference: The
“Pfaffian” is not merely the square root of the determinant, but itself a polynomial,

since we can evaluate it also by Taylor expansion:
_ 1 _hL..»p
Pf AIJ - l)!QD6 AI]IQ e A12D71]2D

which can be used as an alternate definition. (Normalization can be checked by

examining a special case; the overall sign is part of the normalization convention.)

4. Classical groups

The rotation group in three dimensions can be expressed most simply in terms
of 2x2 matrices. This description is the most convenient for not only spin 1/2; but
all spins. This result can be extended to orthogonal groups (such as the rotation,
Lorentz, and conformal groups) in other low dimensions, including all those relevant

to spacetime symmetries in four dimensions.

There are an infinite number of Lie groups. Of the compact ones, all but a finite
number are among the “classical” Lie groups. These classical groups can be defined
easily in terms of (real or complex) matrices satisfying a few simple constraints. (The
remaining “exceptional” compact groups can be defined in a similar way with a little
extra effort, but they are of rather specialized interest, so we won’t cover them here.)
These matrices are thus called the “defining” representation of the group. (Sometimes
this representation is also called the “fundamental” representation; however, this term
has been used in slightly different ways in the literature, so we will avoid it.) These

constraints are a subset of:

volume: Special: det(g) =1
hermitian: Unitary: g rg=7 r'=7)
metric: Orthogonal: g'ng =n (" =n)

t tric:
(anti)symmetric { Symplectic: g = 0 (2T = —0)

{ Real: g* =ngn~t

lity:
reatity pseudoreal (*): gt = g1
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where ¢ is any matrix in the defining representation of the group, while 7,7, {2 are
group “metrics”, defining inner products (while the determinant defines the volume,
as in the Jacobian). For the compact cases T and 7 can be chosen to be the identity,
but we will also consider some noncompact cases. (There are also some uninteresting
variations of “Special” for complex matrices, setting the determinant to be real or its
magnitude to be 1.)

Exercise 1B4.1
Write all the defining constraints of the classical groups (S, U, O, Sp, R,

pseudoreal) in terms of the algebra rather than the group.

Note the modified definition of unitarity, etc. Such things are also encountered
in quantum mechanics with ghosts, since the resulting Hilbert space can have an
indefinite metric. For example, if we have a finite-dimensional Hilbert space where

the inner product is represented in terms of matrices as
(¥lx) = ¥'Tx
then “observables” satisfy a “pseudohermiticity” condition
(WIHx) = (HY]x) = TH=HT
and unitarity generalizes to
({U|Ux) = (lx) = UTU=T

Similar remarks apply when replacing the Hilbert-space “sesquilinear” (vector times
complex conjugate of vector) inner product with a symmetric (orthogonal) or anti-
symmetric (symplectic) bilinear inner product. An important example is when the
wave function carries a Lorentz vector index, as expected for a relativistic description

of spin 1; then clearly the time component is unphysical.

The groups of matrices that can be constructed from these conditions are then:

GL(n,C) [SL(n,C)] U [S|U(nyn) s o .
(S)p[SS]I())((Qr:((?) O | [S]O(nyn-) SO*(2n)
R: GL(n) [SL(n)] LR |l Spw)  [USp(n2n-)
*: [SJU*(2n)

Of the non-determinant constraints, in the first column we applied none (“GL” means

“general linear”, and “C” refers to the complex numbers; the real numbers “R” are



86 I. GLOBAL

implicit); in the second column we applied one; in the third column we applied three,
since two of the three types (unitarity, symmetry, reality) imply the third. (The
corresponding groups with unit determinant, when distinct, are given in brackets.)
These square matrices are of size n, n,+n_, 2n, or 2n,+2n_, as indicated. n, and
n_ refer to the number of positive and negative eigenvalues of the metric 1" or 7.
O(n) differs from SO(n) by including “parity”-type transformations, which can’t be
obtained continuously from the identity. (SSp(2n) is the same as Sp(2n).) For this
reason, and also for studying “topological” properties, for finite transformations it
is sometimes more useful to work directly with the group elements g, rather than
parametrizing them in terms of algebra elements as g = ¢’“. U(n) differs from SU(n)
(and similarly for GL(n) vs. SL(n)) only by including a U(1) group that commutes
with the SU(n): Although U(1) is noncompact (it consists of just phase transforma-
tions), a compact form of it can be used by requiring that all “charges” are integers
(i.e., all representations transform as ¢’ = €% for group parameter 6, where ¢ is an

integer defining the representation).

Of these groups, the compact ones are just SU(n), SO(n) (and O(n)), and USp(2n)
(all with n_=0). The compact groups have an interesting interpretation in terms of
various number systems: SO(n) is the unitary group of nxn matrices over the real
numbers, SU(n) is the same for the complex numbers, and USp(2n) is the same for
the quaternions. (Similar interpretations can be made for some of the noncompact
groups.) The remaining compact Lie groups that we didn’t discuss, the “exceptional”
groups, can be interpreted as unitary groups over the octonions. (Unlike the classical
groups, which form infinite series, there are only five exceptional compact groups,

because of the restrictions following from the nonassociativity of octonions.)

5. Tensor notation

Usually nonrelativistic physics is written in matrix or Gibbs’ notation. This is
insufficient even for 19th century physics: We can write a column or row vector p
for momentum, and a matrix 7" for moment of inertia, but how do we write in that
notation more general objects? These are different representations of the rotation

group: We can write how each transforms under rotations:
p = pA, T =ATTA

The problem is to write all representations.

One alternative is used frequently in quantum mechanics: A scalar is “spin 07, a

vector is “spin 17, etc. Spin s has 2541 components, so we can write a column “vector”
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with that many components. For example, moment of inertia is a symmetric 3x3
matrix, and so has 6 components. It can be separated into its trace S and traceless

pieces R, which don’t mix under rotations:
T=R+3iSI, tr(I)=S, tr(R)=0

= tr(T) =tr(ATTA) = tr(AATT) =tr(T) = tr(R)=0, S =S5

using the cyclicity of the trace. Thus the “irreducible” parts of 7" are the scalar S
and the spin-2 (5 components) R. But if we were to write R as a 5-vector, it would
be a mess to relate the 5x5 matrix that rotates it to the 3x3 matrix A, and even
worse to write a scalar like pRpT in terms of 2 3-vectors and 1 5-vector. (In quantum

mechanics, this is done with “Clebsch-Gordan-Wigner coefficients”.)

The simplest solution is to use indices. Then it’s easy to write an object of
arbitrary integer spin s as a generalization of what we just did for spins 0,1,2: It
has s 3-vector indices, in which it is totally (for any 2 of its indices) symmetric and

traceless:
Tits R R AR T"'i"'j"'éij =0

and it transforms as the product of vectors:
1i1...0s __ 11...s ] s
Trrets = s Ay AT

Similar remarks apply to group theory in general: Although historically group
representations have usually been taught in the notation where an m-component rep-
resentation of a group defined by nxn matrices is represented by an m-component
vector, carrying a single index with values 1 to m, a much more convenient and trans-
parent method is “tensor notation”, where a general representation carries many
indices ranging from 1 to n, with certain symmetries (and perhaps tracelessness) im-
posed on them. (Tensor notation for a covering group is generally known as “spinor
notation” for the corresponding orthogonal group: See subsection IC5.) This notation
takes advantage of the property described above for expressing arbitrary representa-
tions in terms of direct products of vectors. In terms of transformation laws, it means
we need to know only the defining representation, since the transformation of this

representation is applied to each index.

There are at most four vector representations, by taking the dual and complex
conjugate; we use the corresponding index notation. Then the group constraints
simply state the invariance of the group metrics (and their complex conjugates and

inverses), which thus can be used to raise, lower, and contract indices:
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volume: Special:  elIn

hermitian: Unitary: i

metric: ) ] Orthogonal: n'’

(anti)symmetric: _ 17
Symplectic: )

Real: o/

reality: L J
pseudoreal (*): 2,

As a result, we have relations such as
Ay =gl or 0V, <}|J> — riJ
We also define inverse metrics satisfying
S gy = Q51 O = TI'(ITI.(J -

(and similarly for contracting the second index of each pair). Therefore, with uni-
tarity /(pseudo)reality we can ignore complex conjugate representations (and dotted
indices), converting them into unconjugated ones with the metric, while for orthogo-
nality /symplecticity we can do the same with respect to raising/lowering indices:

Unitary: o = 7174,

Orthogonal: ! = n!74;

Symplectic: ! = 2174,

Real: ’l/JI = an’l/JJ

pseudoreal (*): 1y = ;79

For the real groups there is also the constraint of reality on the defining representation:
U5 = (V)* =y =70y

Exercise 1B5.1
As an example of the advantages of index notation, show that SSp is the
same as Sp. (Hint: Write one € in the definition of the determinant in terms
of (2’s by total antisymmetrization, which then can be dropped because it
is enforced by the other e. One can ignore normalization by just showing
det M = det 1.)

For SO(ny,n_), there is a slight modification of a sign convention: Since then

1.

indices can be raised and lowered with the metric, €'~ is usually defined to be the

result of raising indices on €;., which means

€o.n=1 = > =detn=(-1)"
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Then €/ should be replaced with (—1)"-¢’ in the equations of subsection IB3: For
example,

€€t = (=1)" 5[{}1 e 5§Z]

We now give the simplest explicit forms for the defining representations of the
classical groups. The most convenient notation is to label the generators by a pair
of fundamental indices, since the adjoint representation is obtained from the direct
product of the fundamental representation and its dual (i.e., as a matrix labeled by
row and column). The simplest example is GL(n), since the generators are arbitrary
matrices. We therefore choose as a basis matrices with a 1 as one entry and 0’s
everywhere else, and label that generator by the row and column where the 1 appears.
Explicitly,

GL(n): (Grx"=drox = G/ =|")(l

This basis applies for GL(n,C) as well, the only difference being that the coefficients
ain G = a;’G ! are complex instead of real. The next simplest case is U(n): We can
again use this basis, although the matrices G;7 are not all hermitian, by requiring
that a;7 be a hermitian matrix. This turns out to be more convenient in practice
than using a hermitian basis for the generators. A well known example is SU(2),
where the two generators with the 1 as an off-diagonal element (and 0’s elsewhere)

4

are known as the “raising and lowering operators” J., and are more convenient than
their hermitian parts for purposes of contructing representations. (This generalizes
to other unitary groups, where all the generators on one side of the diagonal are
raising, all those on the other side are lowering, and those along the diagonal give the

maximal Abelian subalgebra, or “Cartan subalgebra”.)

Representations for the other classical groups follow from applying their defini-
tions to the GL(n) basis. We thus find

SL(n):  (Gr)x" =010x — 3070 = G’ =)l = 3071") (x|
SO(n): (Gt =670 = Gu=|un)(s
Sp(n): (Gr)** =6(30% = Gr=Iu){(»l
As before, SL(n,C) and SU(n) use the same basis as SL(n), etc. For SO(n) and Sp(n)
we have raised and lowered indices with the appropriate metric (so SO(n) includes

SO(n,,n_)). For some purposes (especially for SL(n)), it’s more convenient to impose

tracelessness or (anti)symmetry on the matrix «, and use the simpler GL(n) basis.

Exercise 1B5.2
Our normalization for the generators of the classical groups is the simplest,

and independent of n (except for subtracting out traces):
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a Find the commutation relations of the generators (structure constants) for the
defining representation of GL(n) as given in the text. Note that the values of

all the structure constants are 0, +¢. Show that
Cp = 1

(see subsection 1B2).

b Consider the GL(m) subgroup of GL(n) (m<n) found by restricting the range
of the index of the above defining representation. Show the structure con-
stants are the same as those given by starting with the above representation
of GL(m).

¢ Find the structure constants for SO(n) and Sp(n).

d Directly evaluate kpca (= 6“G,G;) for SL(n), SO(n), and Sp(n), and compare
with CDdA/dD.

Exercise 1B5.3

A tensor that pops up in various contexts is
dijk = tr(Gi{ Gy, Gi})

It takes a very simple form in terms of defining indices:

a Show that for SU(n) this tensor is determined to be, up to an overall normal-
ization (that depends on the representation),

tr (G, {Gr,", G, }) ~ [(231)+(312)}—%[(132)+(213)+(321)]+%(123)

(abc) = 5}]; 5}?5}]:

(where a,b, ¢ are some permutation of 1,2,3) from just the total symmetry
of dij. (and G' = 0), since the only invariant tensor available is 7. (If €/
were used, €/’ would also be required, to balance the number of subscripts

and superscripts; but their product can be expressed in terms of just ¢’s also.)

b Check this result by using the explicit G’s for the defining representation, and

determine the proportionality constant for that representation.

With the exception of the “spinor” representations of SO(n) (to be discussed
in subsection IC5, section ITA, and subsection XC1), general representations can be
obtained by reducing direct products of the defining representations. This means they
can be described by objects with multiple indices (up/down, dotted /undotted), where
each index is that of a defining representation, and satisfying various (anti)symmetry

and tracelessness conditions on the indices.
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Exercise 1B5.4
Consider the representations of SU(n) obtained from the symmetric and an-
tisymmetric part of the direct product of two defining representations. For
simplicity, one can work with the U(n) generators, since the U(1) pieces will

appear in a simple way.

a Using tensor notation for the generators (G;”) k™%, find their explicit rep-

resentation for these two representations.

b By evaluating the trace, show that the Dynkin index for the two cases is

Ca =1 —2, ce=n—+2

¢ Show the sum of these two is consistent with the argument at the end of
subsection IB2. Show each case is consistent with n=2, and the antisymmetric
case with n=3, by relating those cases to the singlet, defining, and adjoint

representations.
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................... C. REPRESENTATIONS ...................

We now consider some of the more useful representations, as explicit examples
of the results of the previous section. In particular, we consider symmetries of the

quark model.

1. More coordinates

We began our “review” of group theory by looking at how symmetries were rep-
resented on coordinates. We now return to coordinates as a special case (particular
representation) of the general results of the previous section. The idea is that the
coordinates themselves are already a representation of the group, and the wave func-
tions are functions of these coordinates. For example, for ordinary rotations we use
wave functions that depend on position or momentum, which transforms as a vec-
tor. (This is not always the case: For example, in our description of the conformal
group the usual space and time coordinates transformed nonlinearly, and not just
by multiplication by constant matrices unless the extra two coordinates were intro-
duced.) This is the basic distinction between classical mechanics and classical field
theory: Mechanics uses the coordinates themselves as the basic variables, while field
theory uses functions of the coordinates. (Similarly, in quantum mechanics the wave
functions are functions of the coordinates, while in quantum field theory the wave

functions are “functionals” of functions of the coordinates.)

In general, the construction of such a “coordinate representation” starts with a
given matrix representation (usually finite dimensional) (G;);” and then defines a

new representation

Gi=d"G)'psy I’y =46/, le.¢} =Ip,p}=0

for some objects ¢ and p, which are interpreted as either coordinates and their con-
jugate momenta (up to a factor of i), or as creation and annihilation operators: The
latter nomenclature is used when the boundary conditions allow the existence of a
state |0) called the “vacuum”, satisfying p|0) = 0, so we can define the other states
as functions of ¢ acting on |0). (If the coordinates are fermionic, the distinction is
moot, since by the usual Taylor expansion the Hilbert space is finite dimensional. See
exercise [A2.3.) It is easy to check that Gi satisfy the same commutation relations
as ;. In particular, if the matrices are in the adjoint representation, ¢* can be inter-
preted as the group coordinates themselves: This follows from considering the action
of an infinitesimal transformation on the group element g(q) = ¢4’ (or just the Lie
algebra element G(q) = ¢'G}).
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If we write these results in bra/ket notation, since
qul = qJ(Gz’)JI> Gipl = _(Gi)IJpJ
it is more natural to look at the action on bras:
(@l =d"Gl Ipy="p = Gild =G Gilp)=—Gilp)

Note that this vector space is coordinate space itself, not the space of functions of
the coordinates; it is the same space on which G; is defined. (Of course, G, is defined
on arbitrary functions of the coordinates; it has a reducible representation bigger
than (G;);”’. Effectively, (G;);” is represented on the space of functions linear in the

coordinates.) Then, for example
G1Ga (gl = G1{q|Ga = (4|G1Ga
is obviously equivalent, while (ignoring any extra signs for fermions)
é1é2|p> = —éle‘p> = —Gzéﬂp) = GyGlp)

at least gives an equivalent result for the commutator algebra [G, G5]. This is the
expected result for the dual representation G; — —G7 .

Interesting examples are given by using the defining representation for G. For
example, the commonly used oscillator representation for U(n) is

Un): G =d7a;, |ag,a’} =6/

where the oscillators can be bosonic or fermionic. For the SO and Sp cases, because
we can raise and lower indices, and because of the (anti)symmetry on the indices, the
interesting possibility arises to identify the coordinates with their momenta, with the

statistics appropriate to the symmetry:
Sp(n) o G = %Z(IZJ), [ZI,ZJ] = {2

SO(n) : Gy = s vt =

For SO(n) the representation is finite dimensional because of the Fermi-Dirac statis-
tics, and is called a “Dirac spinor” (and 7 the “Dirac matrices”). If the opposite
statistics are chosen, the coordinates and momenta can’t be identified: For example,

bosonic coordinates for SO(n) give the usual spatial rotation generators Gy = 270y

Exercise IC1.1
Use this bosonic oscillator representation for U(2)=SU(2)®@U(1), and use the
SU(2) subgroup to describe spin.
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a Show that the spin s (the integer or half-integer number that defines the rep-
resentation) itself has a very simple expression in terms of the U(1) generator.
Show this holds in the quantum mechanical case (by interpreting the bracket
as the quantum commutator), giving the usual s(s + 1) for the sum of the

squares of the generators (with appropriate normalization).

b Use this result to show that these oscillators, acting on the vacuum state, can

be used to construct the usual states of arbitrary spin s.

Exercise 1C1.2
Considering SO(2n), divide up ~; into pairs of canonical (and complex) con-
jugates a; = (1 +i72)/V2, etc., so {a,a’} = 1.
a Write the SO(2n) generators in terms of aa, a'a’, and a'a. Show that the

a'a’s by themselves generate a U(n) subgroup.

b Decompose the Dirac spinor into U(n) representations. Show that the product
of all the ~’s is related to the U(1) generator, and commutes with all the
SO(2n) generators. Show that the states created by even or odd numbers of
a’s on the vacuum don’t mix with each other under SO(2n), so the Dirac

spinor is reducible into two “Weyl spinors”.

2. Coordinate tensors

We have just seen how groups can be represented on coordinates. Depending
on the choice of coordinates, the coordinates may transform nonlinearly (i.e., as a
realization, not a representation), as for the D-dimensional conformal group in terms
of D (not D+2) coordinates. However, given the nonlinear transformation of the
coordinates, there are always representations other than the defining one (scalar field)
that we can immediately write down (such as the adjoint). We now consider such
representations: These are useful not only for the spacetime symmetries we have
already considered, but also for general relativity, where the symmetry group consists
of arbitrary coordinate transformations. Furthermore, these considerations are useful
for describing coordinate transformations that are not symmetries, such as the change

from Cartesian to polar coordinates in nonrelativistic theories.

When applied to quantum mechanics, we write the action of a symmetry on a
state as 09 = iGy (or ¢/ = €'“y), but on an operator as A = i[G, A] (or A’ =
e!“Ae~%). In classical mechanics, we always write A = i[G, A] (since classical

objects are identified with quantum operators, not states). However, if G = X0, is
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a coordinate transformation (e.g., a rotation) and ¢ is a scalar field, then in quantum

notation we can write

0p(x) =[G, 0] = Gp=A"0np (¢ =" =€)

since the derivatives in G just differentiate ¢. (For this discussion of coordinate
transformations we switch to absorbing the i’s into the generators.) The coordinate

transformation GG has the usual properties of a derivative:
G, f(x)]=Gf = Gfifo=[G, fifd] =(GhH)f2+ LGS
eCfifo =€ fifae™C = (% f1e79) (€ ™) = (e“ f1) (e fo)

and similarly for products of more functions.

The adjoint representation of coordinate transformations is a “vector field” (in the
sense of a spatial vector), a function that has general dependence on the coordinates

(like a scalar field) but is also linear in the momenta (as are the Poincaré generators):
G=\"(2)0p, V=V"x)0, = 0V=[GV]=N"0,V"—=V"0,\")0,

= V" =X"0,V" =V"I,\"

The same result follows if we use the Poisson bracket instead of the quantum me-

chanical commutator, replacing 0,, with ip,, in both G and V.

Finite transformations can also be expressed in terms of transformed coordinates

themselves, instead of the transformation parameter:
Blw) = " (@) = ol (")

as seen, for example, from a Taylor expansion of ¢, using e ¢’ = e~“¢’e“. We then
define
Sy = o) = ol =g

This is essentially the statement that the active and passive transformations cancel.
However, in general this method of defining coordinate transformations is not con-
venient for applications: When we make a coordinate transformation, we want to
know ¢'(x). Working with the “inverse” transformation on the coordinates, i.e., our
original e*¢,

ey = ¢(z) = eYP(z) = ¢(3(x))

So, for finite transformations, we work directly in terms of Z(x), and simply plug this

z

into ¢ in place of x (r — Z(x)) to find ¢’ as a function of x.
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Similar remarks apply for the vector, and for derivatives in general. We then use
=e% = 0 =e%e"
where 0’ = 0/02', since 0z’ = 0x = ¢. This tells us
V™(2)0m = e V'™ (2)0pe” = V'™ ('),

or V'(2') = V(z). Acting with both sides on 2,

al,/m

ox™

V) = V7 (a)

On the other hand, working in terms of Z is again more convenient: Changing the

transformation for the vector operator in the same way as the scalar

=  V"™(x)0n = V"(%)0,
ox™

oxn

= VM(z) = V(F)

where & = 9/0% and as usual

Goa™) (Oni?) = o0 = 2 [ (aj(x))_ll

orm™ ox

m

We can also use
V'(z) = eCV(x)e @

= VM (@)d = (V™ (@)e ) (e 0ne ) = V(@)D

A “differential form” is defined as an infinitesimal W = dz™W,,,(z). Its transfor-
mation law under coordinate transformations, like that of scalar and vector fields, is
defined by W'(z') = W (z). For any vector field V- = V™ (z)0,,, V"W, transforms as

a scalar, as follows from the “chain rule” d = da2'3, = dz™0,,. Explicitly,

ox"™

8x/m

W (2') = Wa(x)

or in infinitesimal form
oW, = N0, W,, + W,,0,, A"

Thus a differential form is dual to a vector, at least as far as the matrix part of coor-
dinate transformations is concerned. They transform the same way under rotations,

because rotations are orthogonal; however, more generally they transform differently,
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and in the absence of a metric there is not even a way to relate the two by raising or

lowering indices.

Higher-rank differential forms can be defined by antisymmetric products of the
above “one-forms”. These are useful for integration: Just as the line integral [ W =
[ dz™W,, is invariant under coordinate transformations by definition (as long as we
choose the curve along which the integral is performed in a coordinate-independent
way), so is a totally antisymmetric Nth-rank tensor (“N-form”) Wy, ..., integrated

on an N-dimensional subspace as

axpl axpN
8x/m1 T 837/1’)11\7

/dIml cedr" N Wy W, (@) = Wp,py ()

mi-my

where the surface element da™! ---dxz™¥ is interpreted as antisymmetric. (The signs
come from switching initial and final limits of integration, as prescribed by the “ori-
entation” of the hypersurface.) This is clear if we rewrite the integral more explicitly

in terms of coordinates o’ for the subspace: Then
/d:zsml ceedr"™N Wi omy () = /dai1 . -daiN/I/IZI...iN(U) = /dNO' eil"'iN/WZI...iN(U)

where
— dx™  Qx™N

VVilmz’N(U) = Do . Soin

is the result of a coordinate transformation that converts N of the x’s to ¢’s, an

Wiy ooma ()

interpretation of the functions z(o) that define the surface. Then any coordinate
transformation on x — 2’ (not on o) will leave W(U) invariant. In particular, if the
subspace is the full space, so we can look directly at f dNx €™ MNW, L, We see
that a coordinate transformation generates from W an N-dimensional determinant

exactly canceling the Jacobian resulting from changing the integration measure d” z.

Exercise 1C2.1
For all of the following, use the exponential form of the finite coordinate

transformation:

a Show that any (local) function of a scalar field (without explicit x dependence
additional to that in the field) is also a scalar field (i.e., satisfies the same

coordinate transformation law).

b Show that the transformation law of a vector field or differential form remains

the same when multiplied by a scalar field (at the same x).

¢ Show that V¢ = V™0,,¢ is a scalar field for any scalar field ¢ and vector field
V.

d Show that [V, W] is a vector field for any vector fields V' and W.
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Exercise 1C2.2
Examine finite coordinate transformations for integrals of differential forms
in terms of Z rather than z’. Find the explicit expression for W'(z) in terms

of W(z(z)), etc., and use this to show invariance:

mi-my

/dxml ceedx™NW! (93) - /dfml codT"N W my (‘%)

= /dxml e dx™N W my (T)

where in the last step we have simply substituted £ — x as a change of integra-
tion variables. Note that, using the & form of the transformation rather than
2', the transformation generates the needed Jacobian, rather than canceling

one.

From the above transformation law, we see that the curl of a differential form is
also a differential form:
O W, (@) = O, (Oppp ™) -+ (O,

ma-my] 18 ) W ()

= (O Whsopn) (2)] (0, 2) - - (8, 7Y)

because the curl kills 0’0’x terms that would appear if there were no antisymmetriza-
tion. Objects that transform “covariantly” under coordinate transformations, without
such higher derivatives of x (or A in the other notation), like scalars, vectors, differen-
tial forms and their products, are called (coordinate) “tensors”. Getting derivatives of
tensors to come out covariant in general requires special fields, and will be discussed
in chapter IX. An important application of the covariance of the curl of differential
forms is the generalized Stokes’ theorem (which includes the usual Stokes’ theorem

and Gauss’ law as special cases):

/d:)ﬁml R dl’mNJﬁl (N—li-l)'a[ml sz“'mN+1} = \%dljﬂl U dme Wm1~~-mN

where the second integral is over the boundary of the space over which the first is
integrated. (We use the symbol “§” to refer to boundary integrals, including those
over contours, which are closed boundaries of 2D surfaces.) It is basically just the
fundamental theorem of (integral) calculus ( fab dx f'(x) = f(b) — f(a)), as is clear
from choosing a coordinate system where the boundary is at a fixed value of just one
coordinate (at least in patches). (A standard example is a pair of infinite constant-

time surfaces, neglecting the boundaries that connect them at spatial infinity.)
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3. Young tableaux

We now return to our discussion of finite-dimensional representations. In the
previous section we gave the machinery for describing them using index notation,
but examined only the defining representation in detail. Now we analyze general

irreducible representations.

All the irreducible finite-dimensional representations of the groups SU(N) can be
described by tensors with lower N-valued indices with various (anti)symmetrizations.
(An upper index can be replaced with N—1 lower indices by using the Levi-Civita
tensor.) Although detailed calculations require explicit use of these indices, three

properties can be more conveniently discussed pictorially:
(1) the (anti)symmetries of the indices,
(2) the dimension (number of independent components) of the representation, and

(3) the reduction of the direct product of two representations (which irreducible rep-

resentations result, and how many of each).

A “Young tableau” is a picture representing an irreducible representation in terms
of boxes arranged in a regular grid into rows and columns, such that the columns are

aligned at the top, and their depths are nonincreasing to the right: for example,

Each box represents an index, with antisymmetry among indices in any column, and
symmetry among indices in any row. More precisely, since one can’t simultaneously
have these symmetries and antisymmetries, it corresponds to the result of taking any
arbitrary tensor with that many indices, first symmetrizing the indices in each row,
and then antisymmetrizing the indices in each column (or vice versa; symmetrizing
and then antisymmetrizing and then symmetrizing again gives the same result as
skipping the first symmetrization, etc.). This gives a simple way to classify and
symbolize each representation. (We can denote the singlet representation, which has
no boxes, by a dot.) Note that the deepest column should have no more than N—1

boxes for SU(N) because of the antisymmetry.

To calculate the dimension of the representation for a given tableau, we use the

“factors over hooks” rule:

(1) Write an “N” in the box in the upper-left corner, and fill the rest of the boxes
with numbers that decrease by 1 for each step down and increase by 1 for each

step to the right.
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(2) Draw (or picture in your mind) a “hook” for each box — a “I"” with its corner

in the box and lines extending right and down out of the tableau.

(3) The dimension is then given by the formula

integer written there

dimension =
H # boxes intersected by its hook
each box

For the previous example, we find (listing boxes first down and then to the right)

N N-1 N-2 N-3 N+1 N N-1 N+2 N+1 N+3 N+2 N+4
8 6 3 1 6 4 1 4 2 3 1 1

The direct product of two Young tableaux A®B is analyzed by the following rules:
First, label all the boxes in B by putting an “a” in each box in the top row, “b” in
the second row, etc. Then, take the following steps in all possible ways to find the

Young tableaux resulting from the direct product:

(1) Add all the “a” boxes from B to the right side and bottom of A, then “b” to
the right and bottom of that, etc., to make a new Young tableaux. Any two
tableaux constructed in this way with the same arrangement of boxes but different
assignment of letters are considered distinct, i.e., multiple occurences of the same

representation in the direct product.
(2) No more than 1 “a” can be in any column, and similarly for the other letters.

(3) Reading from right to left, and then from top to bottom (i.e., like Hebrew/Arabic),

the number of a’s read should always be > the number of b’s, b’s > ¢’s, etc.

For example,
ala _ [Jald ~ g -~ 4
Do 7 = o o

Note that A®B always gives the same result as B®A, but one way may be simpler
than the other. For a given value of N, a column of N boxes is equivalent to none
(again by antisymmetry), while more than N boxes in a column gives a vanishing

tableau.

Exercise IC3.1

Calculate
H- e H-
Check the result by finding the dimensions of all the representations and

adding them up.

These SU(N) tableaux also apply to SL(N): Only the reality properties are dif-
ferent. Similar methods can be applied to USp(2N) (or Sp(2N)), but tracelessness
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(with respect to the symplectic metric) must be imposed in antisymmetrized indices,
so these trace pieces must be separated out when considering the above rules. (Le.,
consider USp(2N)CSU(2N).) Similar remarks apply to SO(N), which has a symmet-
ric metric, but there are also “spinor” representations (see below). The additional
irreducible representations then can be constructed from taking direct products of
the above with the smallest spinors, and removing the “gamma-matrix” traces. Fur-
thermore, using the Levi-Civita tensor, all columns can be reduced to no more than
N/2 in height.

4. Color and flavor

We now consider the application of these methods to “internal symmetries” (those
that don’t act on the coordinates) in particle physics. The symmetries with experi-
mental confirmation involve only the unitary groups (U and SU) of small dimension.
However, we will find later that larger unitary groups can be useful for approxima-
tion schemes. (Also, larger unitary and other groups continue to be investigated for

unification and other purposes, which we consider in later chapters.)

The “Standard Model” describes all of particle physics that is well confirmed
experimentally (except gravity, which is not understood at the quantum level). It

includes as its “fundamental” particles:

(1) the spin-1/2 quarks that make up the observed strongly interacting particles, but
do not exist as asymptotic states,

(2) the weakly interacting spin-1/2 leptons,

(3) the spin-1 gluons that bind the quarks together, which couple to the charges

associated with SU(3) “color” symmetry, but also are not asymptotic,

(4) the spin-1 particles that mediate the weak and electromagnetic interactions, which
couple to SU(2)®@U(1) “flavor”, and

(5) the yet unobserved spin-0 Higgs particles that are responsible for all the masses

of these weakly interacting particles.

(However, quarks and gluons are temporarily free at high energy, eventually recom-
bining to give rise to “jets”, clusters of resulting hadrons.) These particles, along

with their masses (in GeV) and (electromagnetic) charges (Q = Q + AQ), are:
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§ = % s=1
color: — || quark (3) lepton (1) color: — || gluon | electroweak

flavor (AQ) || (Q = §) (Q=—3) flavor (Q) || (8) (1)

—1 d (.006) |e (.00051099892) 0 g (0) |5 (<6-107%)

+3 u (.003) |v. (<3-107) 0 Z (91.188)

1 s (10) | p (.105658369) +1 W (80.42)

+1 c(1.2) |y, (<.00019)

1 b(42) |7 (L7770) s=0

+1 t(178)  |v, (<.0182) (Q=0) H (>114.4)

The quark masses we have listed are the “current quark masses”, the effective masses
when the quarks are relativistic with respect to their hadron (at least for the lighter
quarks), and act as almost free. But since they are not free, their masses are ambigu-
ous and energy dependent, and defined by some convenient conventions. Nonrelativis-
tic quark models use instead the “constituent quark masses”, which include potential
energy from the gluons. This extra potential energy is about .30 GeV per quark in
the lightest mesons, .35 GeV in the lightest baryons; there is also a contribution to
the binding energy from spin-spin interaction. Unlike electrodynamics, where the po-
tential energy is negative because the electrons are free at large distances, where the
potential levels off (the top of the “well”), in chromodynamics the potential energy is
positive because the quarks are free at high energies (short distances, the bottom of
the well), and the potential is infinitely rising. Masslessness of the gluons is implied
by the fact that no colorful asymptotic states have ever been observed. We have
divided the spin-1/2 particles into 3 “families” with the same quantum numbers (but
different masses). Within each family, the quarks are similar to the leptons, except
that:

(1) the masses and average charges () are different,
(2) the quarks come in 3 colors, while the leptons are colorless, and

(3) the neutrinos, to within experimental error, are massless, so they have half as
many components as the massive fermions (1 helicity state each, instead of 2 spin

states each).

This means that each lepton family has 1 SU(2) doublet and 1 SU(2) singlet. For
symmetry (and better, quantum mechanical, reasons to be explained later), we also
assume the quarks have 1 SU(2) doublet, but therefore 2 SU(2) singlets. (Some exper-

iments have indicated small masses for neutrinos: This would require generalization
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of the Standard Model, such as models with parity broken by interactions. Some

examples of such theories will be discussed in subsection IVB4.)

We first look at the color group theory of the physical states, which are color
singlets. The fundamental unobserved particles are the spin-1 “gluons”, described by
the Yang-Mills gauge fields, and the spin-1/2 quarks. Suppressing all but color indices,
we denote the quark states by ¢*, and the antiquarks by ¢f;, where the indices are those
of the defining representation of SU(n), and its complex conjugate. The quarks also
carry a representation of a “flavor” group, unlike the gluons. The simplest flavorful
states are those made up of only (anti)quarks, with indices completely contracted
by one factor of an SU(n) group metric: From the “U” of SU(n), we can contract
defining indices with their complex conjugates, giving the “mesons”, described by
q'i¢"* (quark-antiquark), which are their own antiparticles. From the “S” of SU(n),
we have the “baryons”, described by €;, ,; ¢"...¢"" (n-quark), and the antibaryons,
described by the complex conjugate fields. All other colorless states made of just
(anti)quarks can be written as products of these fields, and therefore considered as
describing composites of them. Thus, we can approximate the ground states of the
mesons by

q'i(x)q' ()
which describe spins 0 and 1 because of the various combinations of spins (from
1 ® 4 =0 1). The first excited level will then be described by

q'0q = q'0q — (9q")q

The antisymmetric derivative picks out the relative momentum of the two quarks,
rather than the total, and thus introduces orbital angular momentum 1 (and simi-
larly for more such derivatives). This level thus includes spins 0, 1, and 2. (Similar
remarks apply to baryons.) We can also have flavorless states made from just gluons,
called “glueballs”: The ground states can be described by Fj/F}*, where each F is a
gluon state (in the adjoint representation of SU(n)), and includes spins 0 and 2 (from
the symmetric part of 1 ® 1). Because of their flavor multiplets and (electroweak)
interactions, many mesons and baryons corresponding to such ground and excited
states have been experimentally identified, while the glueballs’ existence is still un-
certain. Actually, quarks and gluons can almost be observed independently at high
energies, where the “strong” interaction is weak: The energetic particle appears as
a “jet” — a particle of high energy accompanied by particles of much lower energy
(perhaps too small to detect) in color-singlet combinations. (Depending on the avail-
able decay modes, the jet might not be observed until after decaying, but still within

a small angle of spread.)
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Just as all physical states are singlets of the local color SU(3), they are also singlets
of the local SU(2) of electroweak interactions. As will be explained later (subsection
IVB2), there are four Higgs fields, which transform simultaneously as a doublet of
this local SU(2) and a doublet of a broken, global isospin SU(2). (The determinant
of this 2x2 matrix gives the observable singlet Higgs.) For example, the proton and
neutron, which have close but different mass, are a doublet of this global SU(2).
Unlike the confinement responsible for SU(3) singlets, which is nonperturbative, the
Higgs mechanism responsible for SU(2) singlets is perturbative, since the scalar Higgs

4

fields can be expanded about their “vacuum values”, which are just numbers: SU(2)
singlets can be found from multiplying general fields by Higgs scalars, which trade the
local SU(2) for the global one, while there are no scalars that transform under SU(3),
and giving a vacuum value to a field with spin would violate Lorentz invariance.
Ironically, while the Higgs is easy to describe theoretically, but hasn’t been found yet
experimentally, confinement is the opposite. However, they look similar: Both have
(lowest mass) composite scalars of the form 17y and vectors of the form 7iV 1 that
are singlets under their (nonabelian) gauge group, where 1 is a scalar field for Higgs
and a spinor (fermion) field for confinement. Classically they seem quite different, but

the quantum relation is still unclear. Supersymmetry might provide some relation.

We now look at the flavor group theory of the physical hadronic states. In contrast
to the previous paragraph, we now suppress all but the flavor indices. Mesons M;’ =
q'i¢’ are thus in the adjoint representation of flavor U(m) (m ® m, where m is the
defining representation and m its complex conjugate), for both the spin-0 and the
spin-1 ground states. The baryons are more complicated: For simplicity we consider
SU(3) color, which accurately describes physics at observed energies. Then the color
structure described above results in total symmetry in combined flavor and Lorentz
indices (from the antisymmetry in the color indices, and the overall antisymmetry for

Fermi-Dirac statistics). Thus, for the 3-quark baryons, the Young tableaux

EGBH:'@EED

for SU(m) flavor are accompanied by the same Young tableaux for spin indices: In
nonrelativistic notation, the first tableau, being totally antisymmetric in flavor in-
dices, is also totally antisymmetric in the three two-valued spinor indices, and thus
vanishes. Similarly, the last tableau describes spin 3/2 (total symmetry in both types
of indices), while the middle one describes spin 1/2. Since only 3 flavors of quarks
have small masses compared to the hadronic mass scale, hadrons can be most conve-

niently grouped into flavor multiplets for SU(3) flavor: The ground states are then,
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in terms of SU(3) flavor multiplets, 8®1 for the pseudoscalars, 8@1 for the vectors, 8
for spin 1/2, and 10 for spin 3/2.

Exercise 1C4.1
What SU(flavor) Young tableaux, corresponding to what spins, would we have

for mesons and baryons if there were
a 2 colors?
b 4 colors?

However, the differing masses of the different flavors of quarks break the SU(3)
flavor symmetry (as does the weak interaction). In particular, the mass eigenstates
tend to be pure states of the various combinations of the different flavors of quarks,
rather than the linear combinations expected from the flavor symmetry. Specifically,
the linear combinations predicted by an 8@®1 separation for mesons (trace and traceless
pieces of a 3®3 matrix) are replaced with particles that are more accurately described
by a particular flavor of quark bound to a particular flavor of antiquark. (This is
known as “ideal mixing”.) The one exception is the lighest mesons (pseudoscalars),
which are more accurately described by the 8®1 split, for this restriction to the 3
lighter flavors of quarks, but the mass of the singlet differs from that naively expected
from group theory or nonrelativistic quark models. (This is known as the “U(1)
problem”.) The solution is probably that the singlet mixes strongly with the lightest
psuedoscalar glueball (described by ¢r e“deFachd); the mass eigenstates are linear
combinations of these two fields with the same quantum numbers. In any case, the
most convenient notation for labeling the entries of the matrix M;/ representing the
various meson states for any particular spin and angular momentum of the quark-
antiquark combination is that corresponding to the choice we gave earlier for the
generators of U(n): Label each entry by a separate name, where the complex conjugate
appears reflected across the diagonal. These directly correspond to the combination
of a particular quark with a particular antiquark, and to the mass eigenstates, with
the possible exception of the entries along the diagonal for the 3 lightest flavors,
where the mass eigenstates are various linear combinations. (However, the SU(2) of
the 2 lightest flavors is only slightly broken by the quark masses, so in that case the
combinations are very close to the 3&1 split of SU(2).)

For example, for the lightest multiplet of mesons (spin 0, and relative angular mo-
mentum 0 for the quark and antiquark, but not all of which have yet been observed),

we can write the U(6) matrix (for the 6 flavors of the 3 known families)
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dd du ds dec db dt
ud wu us uc ub ut

sd Su 3s Sc 35b st

M =

cd cu ¢s cc ¢cb ¢t

bd bu bs bc bb bt

td tu ts tc tb tt
d U S c b t
d (na 7 (.1395702) K9(.49765) D7T(1.8693) B°(5.2794) T+
u | 7w (") M K—(.49368) D°(1.8645) B~(5.2790) 1T°
5| KOy KF(v) Ns DF(1.9682) B%(5.370) T
e | D) D) D; (") n(2980)  B;(64) T
b | B°(") B*(") BJ(") B (") M Ty
t \T- T° T T° T, M

where (approximately)
e = 57 (.1349766) + 5[n'(.9578) + 1(.5478)]

na=—25m’ + 30 +n), 0= 500" —n)

in terms of the mass eigenstates (observed particles), with masses again in GeV,
and ditto marks refer to the transposed entry. (We have neglected the important

contribution from the glueball.) For the corresponding spin-1 multiplet,

d U S c b t
d [ wg pt(.7755)  K*9(.8961) D**(2.0100) B*9(5.3250) T**
a|p () w K*=(.8917) D*°(2.0067)  B*(5.3250) T*°
T 5| K K*(") 6(L01946)  D*F(21120) B*¥(5.417)  T*f
e | D)y DMy DF(v) J/1(3.09692) B*; T*0
b\ B() BF() BR() B*! 1(9.4603)  T*F
i \T* T*0 T*; T*0 T*; 0
where

wu = L [w(.7826) + p°(TTE8)], wa= L(w —p")

(with s = ¢, ideal mixing, also approximate).
Exercise 1C4.2
Check the consistency of the masses in the second mass matrix above by as-

suming the meson masses are just the sum of the “constituent” quark masses:

See how close a fit you can get. (Potential energies have just been lumped
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into the quark masses, assuming they are the same throughout the multiplet.
Note that masses on the diagonal will come out a bit low from annihilation
effects. The first multiplet was not used because of complications from mix-
ing with glueballs. Similar mass relations can be obtained from group theory

arguments, but the underlying physics is explained by the quark model.)

5. Covering groups

The orthogonal groups O(ny,n_) are of obvious interest for describing Lorentz
symmetry in spacetimes with n, space and n_ time dimensions, or conformal sym-
metry in spacetimes with n, —1 space and n_—1 time dimensions. This means we
should be interested in O(n) for n<6, and their “Wick rotations”: transformations
that put in extra factors of ¢ to change some signs on the metric. Coincidentally, these
are just the cases where the Lie algebras of the orthogonal groups are equivalent to
those of some algebras for smaller matrices. The smaller representation then can be

¢

identified as the “spinor” representation of that orthogonal group. Since the “vec-
tor”, or defining representation space of the orthogonal group, itself is represented as
a matrix with respect to the other group (i.e., the state carries two spinor indices),
the other group may include certain phase transformations (such as —1) that cancel
in the transformation of the vector. The other group is then called the “covering”
group for that orthogonal group, since it includes those missing transformations in
its defining representation. (As a result, its group space also has a more interesting

topology, which we won’t discuss here.)

One way to discover these covering groups is to first count generators, then try
to construct explicitly the orthogonal metric on matrices. SO(n) has n(n—1)/2 gen-
erators (antisymmetric matrices), Sp(n) has n(n+1)/2 (symmetric), and SU(n) has
n?—1 (traceless). (These are hermitian generators, since we applied reality o