Содержание

Поправки к фридмановской модели, вносимые петлевой квантовой космологией <i>М.Л. Фильченков, Ю.П. Лаптев</i>	3
Киральные волны плотности в двумерной модели Намбу- Йона-Лазини Н.В. Губина, В.Ч. Жуковский, К.Г. Клименко, С.Г. Курбанов, Д.Эберт	6
Инклюзивный распад т -лептона: эффекты адронизации <i>А.В.Нестеренко</i>	10
Космическая экзотика на Большом адронном коллайдере Л.И.Сарычева, Д.В.Скобельцын	12
Получение точной β-функции в N = 1 СКЭД, регуляризо- ванной высшими производными, с помощью прямого сум- мирования диаграмм Фейнмана <i>К.В.Степаньянц</i>	16

1. Сингулярности в моделях модифицированной гравитации

Е.В. Арбузова^{*a*}, А.Д. Долгов^{*b*}

^aКафедра высшей математики, университет "Дубна 141980 Дубна ^bИнститут теоретической и экспериментальной физики, 113259 Москва ^bDipartimento di Fisica, Università degli Studi di Ferrara, I-44100 Ferrara ^bIstituto Nazionale di Fisica Nucleare, Sezione di Ferrara, I-44100 Ferrara ^aarbuzova@uni-dubna.ru, ^bdolgov@fe.infn.it

Аннотация

Наблюдаемые проявления моделей модифицированной гравитации, предложенных для объяснения ускоренного космологического расширения, анализируются для гравитирующих систем с плотностью материи, зависящей от времени. Показано, что если плотность материи растет со временем, то система приходит в сингулярное состояние с бесконечным скаляром кривизны. Соответствующее характерное время значительно меньше космологического времени. Добавление R^2 -члена в действие позволяет избежать сингулярности.

Современные астрономические данные убедительно показывают, что в настоящее время вселенная расширяется с ускорением. Одним из возможных путей объяснения этого ускоренного расширения является предположение о существовании новой компоненты в космологической плотности энергии, так называемой темной энергии.

Конкурирующей возможностью для создания космологического ускорения служит модификация самой гравитации путем введения дополнительных членов в обычное действие общей теории относительности [1, 2]:

$$S = \frac{m_{Pl}^2}{16\pi} \int d^4x \sqrt{-g} (R + F(R)) + S_m, \tag{1}$$

где $m_{Pl} = 1.22 \cdot 10^{19}$ ГэВ - масса Планка, R - скаляр кривизны, S_m - действие материи. F(R) - дополнительный член, изменяющий гравитацию на больших расстояниях и отвечающий за космологическое ускорение.

В пионерских работах [1] рассматривалась функция $F(R) = -\mu^4/R$, где μ - малый параметер с размерностью массы. Однако, как было показано в [3], такой выбор F(R) ведет к сильной экспоненциальной нестабильности вблизи массивных объектов. Различные виды функции F(R), обеспечивающие ускоренное космологическое расширение и лишенные отмеченной выше нестабильности и некоторых других проблем, были рассмотрены в статьях [4, 5, 6, 7, 8]. В представленной работе [9] мы исследуем интересную модель модифицированной гравитации с функцией F(R), предложенной в [5]:

$$F(R) = \lambda R_0 \left[\left(1 + \frac{R^2}{R_0^2} \right)^{-n} - 1 \right] \,. \tag{2}$$

Здесь $\lambda > 0, n$ - положительное целое число. R_0 - постоянная, имеющая порядок средней кривизны вселенной в настоящее время, $R_0 \sim 1/t_U^2$, где $t_U \approx 4 \cdot 10^{17}$ сек - возраст вселенной.

Космология с гравитационным действием (2), также как и некоторые другие сценарии с модифицированной гравитацией, были проанализированы в работах [2, 10, 11, 12]. В [9] мы рассматриваем физическую ситуацию, отличную от тех, что обсуждались в цитируемых статьях. А именно, мы изучаем поведение астрономических объектов с плотностью материи, растущей со временем, и показываем, что кривизна, R, становится бесконечно большой за время, которое мало по сравнению с космологической временной шкалой. Эта сингулярность не может быть ликвидирована подбором начальных условий.

Другим возможным путем предотвравщения сингулярности является введение в действие R^2 -члена:

$$\delta F(R) = -R^2/6m^2, \qquad (3)$$

где *т* - постоянный параметр с размерностью массы.

Учитывая ограничение $m > 10^{-2.5}$ эВ, которое следует из лабораторных гравитационных тестов [13], мы нашли $n \ge 6$. В работе [2] представлено более сильное ограничение, $m \gg 10^5$ ГэВ. В этом случае $n \ge 9$. Естественное значение $m \sim m_{Pl}$ и, соответственно, $n \ge 12$.

Итак, мы показали, что влияние рассмотренных выше версий модифицированной гравитации на системы с плотностью материи, зависящей от времени, в современной вселенной может быть катастрофическим, ведущим к сингулярности $R \to \infty$ за конечное время в будущем. Это время значительно меньше, чем космологическое время. Проблема может быть устранена добавлением R^2 -члена, если степень n достаточно велика.

Список литературы

 S. Capozziello, S. Carloni, A. Troisi, *RecentRes. Dev. Astron. Astrophys.* 1, 625 (2003); S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, *Phys.Rev.* **D** 70, 043528 (2004).

- [2] S.A. Appleby, R.A. Battye, A.A. Starobinsky, *JCAP* 1006, 005 (2010).
- [3] A.D. Dolgov, M.Kawasaki, *Phys. Lett.* B 573, 1 (2003).
- [4] S. Nojiri, S. Odintsov *Phys. Rev.* D 68, 123512 (2003).
- [5] A.A. Starobinsky, JETP Lett. 86, 157 (2007).
- [6] W.Hu, I. Sawicki, *Phys. Rev.* D 76, 064004 (2007).
- [7] A.Appleby, R. Battye, *Phys. Lett.* B 654, 7 (2007).
- [8] S. Nojiri, S. Odintsov, *Phys. Lett.* B 657, 238 (2007); S. Nojiri, S. Odintsov, *Phys. Rev.* D 77, 026007 (2008); G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, *Phys. Rev.* D 77, 046009 (2008); G. Cognola, E. Elizalde, S.D. Odintsov, P. Tretyakov, S. Zerbini, *Phys. Rev.* D 79, 044001 (2009).
- [9] E.V. Arbuzova, A.D. Dolgov, *Phys. Lett.* **B** 700, 289 (2011).
- [10] S.A. Appleby, R.A. Battye, JCAP 0805, 019 (2008).
- [11] A. Dev, D. Jain, S. Jhingan, S. Nojiri, M. Sami, I. Thongkool, *Phys. Rev.* D 78, 083515 (2008); I. Thongkool, M. Sami, R. Gannouji, S. Jhingan, *Phys. Rev.* D 80, 043523 (2009); I. Thongkool, M. Sami, S. Rai Choudhury, *Phys. Rev.* D 80, 127501 (2009).
- [12] A.V. Frolov, *Phys. Rev. Lett.* 101, 061103 (2008).
- [13] D.J. Kapner, T.S. Cook, E.G. Adelberger, J.H. Gundlach, B.R. Heckel, C.D. Hoyle, H.E. Swanson, *Phys. Rev. Lett.* 98, 021101 (2007).

2. Эффекты связанные с конечными размерами пространства в модели Гросса–Неве с учетом изотопического и барионного химических потенциалов

Жуковский В.Ч., Клименко К.Г., Хунджуа Т.Г., Эберт Д. Кафедра теоретической физики, физического факультета МГУ, 119992 Москва, Воробьевы горы, Адрес электронной почты: gtamaz@gtamaz.com

Аннотация

В данной работе исследованы свойства безмассовой модели Гросса–Неве в (1+1)-размерном пространстве $R^1 \times S^1$ с учетом конечных размеров пространства а также ненулевых значений барионного и изотопического химических потенциалов μ_I , μ . Исследование проводилось в пределе большого количества фермионных цветов N_c .

Показано, что при $L \to \infty$ (L длина компактификации S^1) фаза пионной конденсации (ПК) с *с нулевой кварковой плотностью* образуется при любом ненулевом значении μ_I и малом значении μ . Для любых конечных значений L фазовый портрет модели содержит фазу ПК с *ненулевой кварковой плотностью* (в случае периодических граничных условий). Таким образом конечные размеры системы могут служить фактором, способствующим образованию фазы ПК в кварковой материи с ненулевой барионной плотностью. С другой стороны, фаза с нарушенной киральной симметрией может существовать только при очень больших значениях L.

Введение

В последнее время исследования фазовых портретов КХД в терминах барионного и изотопического химичсеких потенциалов вызывают повышенный интерес. Причина в том, что плотность барионной материи в экспериментах по столкновению тяжелых ионов имеет изоспиновую асимметрию. К тому же, плотность адроной/кварковой материи в компактных звездах также испытывает изотопическую асимметрию. Для объяснения выше перечисленных экспериментальных данных при низкой барионной плотности часто используются непертурбативные эффективные теории, в особенности модель Намбу–Йона-Лазинио [1] (НЙЛ). Однако очевидно, что (3+1)-размерная модель НЙЛ зависит от параметра обрезания, таким образом ее результаты применимы только к *низким энергиям, температуре и плотности.* По этой причине в настоящее время все больший интерес вызывают эффективные (1+1)-размерные теории, такие как модель Гросса–Неве (ГН) [2].

Настоящая работа посвящена обсуждению эффектов пионной конденсации при учете влияния конечных размеров пространства. Проблема была частично решена в [3]. Однако в этих работах барионный химический потенциал не учитывался, а учитывался только изотопический химический потенциал ($\mu = 0, \mu_I \neq 0$). Мы сделали заключение, что проблема заслуживает дальнейшего изучения и обобщения на случай обоих ненулевых химических потенциалов ($\mu \neq 0, \mu_I \neq 0$). Главным образом это мотивировано ненулевыми значениями барионной и изотопической плотности кварковой материи в экспериментах по столкновению тяжелых ионов.

Описание модели

Мы рассматриваем (1+1)-размерную модель ГН с двумя ароматами (и и d кварки), которая возникает при рассмотрении столкновений тяжелых ионов. Лагранжиан модели имеет следующий вид:

$$L_{q,\overline{q}} = \overline{q} \left[\gamma^{\nu} \mathrm{i}\partial_{\nu} + \mu\gamma^{0} + \frac{\mu_{I}}{2}\tau_{3}\gamma^{0} \right] q + \frac{G}{N_{c}} \left[(\overline{q}q)^{2} + (\overline{q}\mathrm{i}\gamma^{5}\overrightarrow{\tau}q)^{2} \right], \qquad (4)$$

где каждое кварковое поле $q(x) \equiv q_{i\alpha}(x)$ является дублетом по ароматам (i = 1, 2 или i = u, d) и N_c -плетом по цветам $(\alpha = 1, \ldots, N_c)$. Таким образом подразумевается суммирование по спинорным ¹, цветовым и ароматовым индексам. $\tau_k(k = 1, 2, 3)$ - матрицы Паули. Химический потенциал μ в (4) ответственен за ненулевую барионную плотность кварковой материи, тогда как изотопический химический потенциал μ_I отвечает за возникновение ненулевой изотопической плотности (в этом случае плотности u и d кварков различные).

Обсудим симметрии лагранжиана. Если $\mu_I = 0$, лагранжиан (4) имеет не только $SU(N_c)$ симметрию, но также инвариантен относительно киральной $SU_L(2) \times SU_R(2)$ группы. Однако если $\mu_I \neq 0$, симметрия сокращается до группы $U_{I_3L}(1) \times U_{I_3R}(1)$, где $I_3 = \tau_3/2$ третья компонента изоспинового оператора. Очевидно, эта группа может быть также представлена как $U_{I_3}(1) \times U_{AI_3}(1)$, где $U_{I_3}(1)$ изоспиновая подгруппа, а $U_{AI_3}(1)$ аксиально изоспиновая подгруппа. При действии этих подгрупп кварки преобразуются следующим образом $q \to \exp(i\alpha\tau_3)q$ и $q \to \exp(i\alpha\gamma^5\tau_3)q$.

¹Гамма матрицы Дирака выбраны в следующем виде: $\gamma^0 = \sigma_1; \gamma^1 = i\sigma_2; \gamma^5 = \sigma_3.$

Линеаризованный вид лагранжиана (4), который содержит составные бозонные поля $\sigma(x)$ и $\pi_a(x)(a = 1, 2, 3)$, имеет следующий вид:

$$L_{\sigma,\pi} = \overline{q} \left[\gamma^{\nu} \mathrm{i} \partial_{\nu} + \mu \gamma^{0} + \frac{\mu_{I}}{2} \tau_{3} \gamma^{0} - \sigma - \mathrm{i} \gamma^{5} \pi_{a} \tau_{a} \right] q - \frac{N_{c}}{4G} \left[\sigma \sigma + \pi_{a} \pi_{a} \right], \quad (5)$$

где бозонные поля: $\sigma(x) = -2\frac{G}{N_c}(\overline{q}q); \quad \pi_a(x) = -2\frac{G}{N_c}(\overline{q}i\gamma^5\tau_a q).$

Исходя из (5), можно получить термодинамический потенциал (ТДП) модели в приближении среднего поля, т.е. разложение по $1/N_c$:

$$\Omega_{\mu\mu_{I}}(\sigma,\pi_{a}) = \frac{\sigma^{2} + \pi_{a}^{2}}{4G} + i \operatorname{Tr}_{sf} \int \frac{d^{2}p}{(2\pi)^{2}} \ln(\gamma p + \mu\gamma^{0} + \frac{\mu_{I}}{2}\tau_{3}\gamma^{0} - \sigma - i\gamma^{5}\pi_{a}\tau_{a}), \quad (6)$$

где поля σ и π_a не зависят от пространственной координаты х. Следует отметить, что ТДП (6) зависит только от двух комбинаций бозонных полей ($\pi_1^2 + \pi_2^2$) и ($\pi_3^2 + \sigma^2$), которые инварианты относительно группы $U_{I_3}(1) \times U_{AI_3}(1)$. В этом случае, без потери общности можно положить $\pi_2 = \pi_3 = 0$, и изучать ТДП (6) как функцию только двух переменных $M \equiv \sigma$ и $\Delta \equiv \pi_1$. Далее мы накладываем на модель условия ограниченности пространства следующим образом $0 \le x \le L$. Это означает, что мы исследуем модель (1) в пространстве с топологией $R^1 \times S^1$, а на квантовые поля накладываем следующие граничные условия $q(t, x+L) = e^{i\pi\alpha}q(t, x)$, где $0 \le \alpha \le 2, L$ длина окружности S^1 . Далее мы будем рассматривать только два значения параметра $\alpha : \alpha = 0$, периодическое граничное условие, и $\alpha = 1$ для антипериодического. Итак, после всех расчетов можно получить ТДП в следующем виде:

$$\Omega_{L\mu\mu_{I}}(M,\Delta) = V_{L}(\rho) - \frac{1}{L} \sum_{n=-\infty}^{\infty} \left\{ E_{L\Delta n}^{+} + E_{L\Delta n}^{-} - 2\sqrt{\rho^{2} + \frac{\pi^{2}}{L^{2}}(2n+\alpha)^{2}} + (\mu - E_{L\Delta n}^{+})\theta(\mu - E_{L\Delta n}^{+}) + (\mu - E_{L\Delta n}^{-})\theta(\mu - E_{L\Delta n}^{-}) \right\}, \quad (7)$$

где $\rho = \sqrt{M^2 + \Delta^2},$

$$E_{L\Delta n}^{\pm} = \sqrt{\left(\sqrt{M^2 + \frac{\pi^2}{L^2}(2n+\alpha)^2} \pm \nu\right)^2 + \Delta^2}$$
(8)

И

$$V_L(\rho) - V_L(0) = -\frac{\rho^2}{\pi} \ln\left(\frac{M_0 L}{4\pi}\right) - \frac{\rho^2 \gamma}{\pi} - \frac{2}{L^2} \sqrt{\rho^2 L^2 + \pi^2 \alpha^2} + \frac{2\pi\alpha}{L^2} - \frac{2}{L^2} \sum_{n=1}^{\infty} \left[\sqrt{\pi^2 (2n+\alpha)^2 + L^2 \rho^2} + \sqrt{\pi^2 (2n-\alpha)^2 + L^2 \rho^2} - 4n\pi - \frac{\rho^2 L^2}{2n\pi}\right], \quad (9)$$

где $\nu = \frac{\mu_I}{2M_0}$ и $\gamma = 0.577...$ константа Эйлера. ТДП (7) уже перенормирован. Подробный вывод (9) и описание техники перенормировки проведены в [3]. Для дальнейшего исследования нам также потребуется выражение для кварковой плотности n_{qL} в пространстве $R^1 \times S^1$, которое может быть легко получено из ТДП (7) путем дифференцирования $n_{qL} \equiv -\frac{\partial \Omega_{L\mu\mu_I}}{\partial \mu}$. Кроме того, удобно пользоваться обезразмеренными величинами: $\lambda = \frac{\pi}{LM_0}$, $\tilde{\mu} = \frac{\mu}{M_0}$, $\tilde{\nu} = \frac{\nu}{M_0} \equiv \frac{\mu_I}{2M_0}$, $m = \frac{M}{M_0}$, $\delta = \frac{\Delta}{M_0}$.

Фазовая структура модели

Для дальнейшего изучения исходной модели ГН необходимо решить систему уравнений (уравнения щели): $\frac{\partial \Omega_{\mu\mu_I}(m,\delta)}{\partial m} = 0$; $\frac{\partial \Omega_{\mu\mu_I}(m,\delta)}{\partial \delta} = 0$. Координаты m и δ точки глобального минимума (ТГМ) термодинамического потенциала (7) являются параметрами (щелями), которые пропорциональны вакуумному среднему величин $\langle \bar{q}q \rangle$ и $\langle \bar{q}i\gamma^5\tau_1q \rangle$ соответственно. Результаты численного решения уравнений щели для ТДП (7) представлены на Рис.1 и Рис.2 для периодического и антипериодического случая ($\lambda = 0.1$). Симметричная фаза соответствует симметрии группы $U_{I_3}(1) \times U_{AI_3}(1)$ (точка глобального минимума $m = 0, \delta = 0$). Фаза II отвечает симметрии $U_{I_3}(1)$ (т.е. симметрия U_{AI_3} нарушена $m \neq 0, \delta = 0$). В этой фазе кварки массивны и кварковая плотность n_{qL} ненулевая. В отличие от случая с $\lambda \to 0$ ($L = \infty$) который обсуждался в статье [4], в случае $\lambda \neq 0$ фаза II занимает конечную область фазовой диаграммы и полностью исчезает при $\lambda > \lambda_p \approx 0.16(0.66)$ для периодических (антипериодических) граничных условий.

Также можно видеть, что в случае периодических граничных условий (Рис. 1) существует две фазы пионной конденсации РС и РСd. Главное различие между этими фазами в том, что в РС фазе плотность кварковой материи $n_{qL} = 0$, тогда как в фазе РСd $n_{qL} \neq 0$. В случае антипериодических граничных условий фазы РСd не существует (Рис.2).

Рис. 1. Периодический случай: фазовый портрет в переменных $(\tilde{\nu}, \tilde{\mu})$ при $\lambda = 0.1$. Обозначения РСd и РС соответствуют фазам пионной конденсации с нулевой и ненулевой кварковой плотностью соответственно. Фаза II отвечает состоянию нарушенной киральной симметрии.

Рис. 2. Антипериодический случай: фазовый портрет в переменных $(\tilde{\nu}, \tilde{\mu})$ при $\lambda = 0.1$. Обозначение PC соответствуют фазе пионной конденсации с нулевой кварковой плотностью. Фаза II - отвечает состоянию с нарушенной киральной симметрией.

Список литературы

- [1] Y. Nambu and G. Jona-Lasinio, Phys. Rev. D 112, 345 (1961).
- [2] D.J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
- [3] D. Ebert, K.G. Klimenko, A.V. Tyukov and V.C. Zhukovsky, Phys. Rev. D 78, 045008 (2008).
- [4] V. C. Zhukovsky, K. G. Klimenko and T. G. Khunjua, Moscow Univ. Phys. Bull. 65, 21 (2010).

3. Алгоритм Дирака и физика элементарных частиц

Олег Космачев

Объединенный Институт Ядерных Исследований, ЛФВЭ, 141980 Дубна Московской области, Адрес электронной почты: kos@theor.jinr.ru

Аннотация

Алгоритм Дирака это совокупность необходимых и достаточных условий для формулировки волновых уравнений всего лептонного сектора. Все уравнения были получены при строгом ограничении принятыми предположениями. Общность и строгость предложенного метода позволяют ставить вопрос о его распространении на адронный сектор.

Вступление

Алгоритм Дирака это совокупность необходимых и достаточных условий для формулировки волновых уравнений всего лептонного сектора при строгом ограничении рамками зафиксированных предположений. Алгоритм был установлен на основе исчерпывающего анализа уравнения Дирака. Предположения таковы.

- 1) Инвариантность и ковариантность уравнений относительно однородной группы Лоренца с учетом четырех компонентов связности.
- 2) Формулировка уравнений на основе неприводимых представлений групп, определяющих каждое лептонное уравнение.
- Сохранение 4-вектора тока вероятности и положительно определенный четвертый компонент тока.
- 4) Величина спина лептонов предполагается равной 1/2.
- 5) Каждое лептонное уравнение должно редуцироваться к уравнению Клейна-Гордона.

Всестороннее и максимально полное использование дискретных симметрий как рабочего инструмента было затруднено из-за отсутствия в физической литературе явной формы (P)-, (T)-, (PT)-сопряженных компонентов связности однородной группы Лоренца.

Требование неприводимости в данном подходе является эквивалентом принципа наименьшего действия на групповом языке.

Удовлетворять уравнению первого порядка по четырем производным $(\partial/\partial t, \partial/\partial x, \partial/\partial y, \partial/\partial z.)$ это требование - описывать релятивистскую частицу. Возможность при этом редукции к уравнению Клейна-Гордона означает обладать волновыми свойствами независимо от наличия или отсутствия массы и величины спина.

Лептонный сектор

Нами был получен полный и замкнутый набор групп для формулировки волновых уравнений как стабильных, так и нестабильных лептонов [2], [3]. Полнота и замкнутость означают, что в рамках принятых предположений нет возможности получить дополнительные уравнения сверх найденных, а для формулировки каждого из них достаточно четырех компонентов связности однородной группы Лоренца или их некоторой комбинации.

Очевидным и важным следствием выполненных построений является наличие в каждом уравнении без исключения своего собственного состава, т.е. набора тех или иных компонентов связности группы Лоренца. По определению [4] это позволяет говорить о своем собственном наборе квантовых чисел в каждом случае.

Совокупность исходных предположений вместе с известными теоретико-групповыми ограничениями и требованиями позволяют получить пять и только пять типов групп для формулировки пяти волновых уравнений по образу и подобию уравнения Дирака, т.е. групп уравнений стабильных лептонов. Их структурный состав т.е. набор соответствующих подгрупп $d_{\gamma}, f_{\gamma}, b_{\gamma}, c_{\gamma}$, на которых реализуются все четыре компонента связности неприводимых представлений группы Лоренца, выглядят таким образом:

- 1) Уравнение Дирака $D_{\gamma}(II)$: структурный состав $\{d_{\gamma}, b_{\gamma}, f_{\gamma}\}$. $In[D_{\gamma}(II)] = -1.$
- 2) Уравнение для дублета массивных нейтрино $D_{\gamma}(I)$: структурный состав $\{d_{\gamma}, c_{\gamma}, f_{\gamma}\}$. $In[D_{\gamma}(I)] = 1.$
- 3) Уравнение для квартета безмассовых нейтрино $D_{\gamma}(III)$: структурный состав $\{d_{\gamma}, b_{\gamma}, c_{\gamma}, f_{\gamma}\}$. $In[D_{\gamma}(III)] = 0.$

- 4) Уравнение для безмассового (*T*)-синглета $D_{\gamma}(IV)$: структурный состав $\{b_{\gamma}\}$. $In[D_{\gamma}(IV)] = -1.$
- 5) Уравнение для безмассового (*PT*)-синглета $D_{\gamma}(V)$: структурный состав $\{c_{\gamma}\}$. $In[D_{\gamma}(V)] = 1.$

Здесь дублет означает систему частица-античастица. Каждая из групп имеет порядок 32 и порождается четырьмя генераторами. Однако, определяющие соотношения для каждой группы свои собственные и различные. Если все четыре генератора антикоммутируют, то получаются уравнения для массивных частиц: $D_{\gamma}(II)$ -уравнение Дирака [1] и $D_{\gamma}(I)$ уравнение Майораны для массивного нейтрино [5]. Если четвертый генератор группы коммутирует с тремя первыми, то получаются уравнения для безмассовых нейтрино: $D_{\gamma}(III)$, $D_{\gamma}(IV)$, $D_{\gamma}(V)$. Группа $D_{\gamma}(III)$ связана с уравнением для двухкомпонентного нейтрино, не сохраняющего пространственную четность. Впервые уравнение было получено Паули [6]. Уравнения $D_{\gamma}(IV)$ и $D_{\gamma}(V)$ можно связывать с истинно нейтральными безмассовыми двухкомпонентными нейтрино.

Группы нестабильных лептонов получаются при расширении групп для стабильных массивных лептонов $(D_{\gamma}(II), D_{\gamma}(I))$ с помощью пятого антикоммутирующего генератора. Если он таков, что $(\Gamma_5)^2 = \pm I$ (I- единичная матрица), то получается три и только три не изоморфных группы $\Delta_1, \Delta_2, \Delta_3$, допускающих формулировку волновых уравнений, удовлетворяющих тем же требованиям. Структурный состав групп при этом выглядит более сложно. В каждой и них можно выделить подструктуры изоморфные группам стабильных лептонов. Структурный состав не повторяется. Точные выражения таковы.

$$\Delta_1\{D_\gamma(II), \quad D_\gamma(III), \quad D_\gamma(IV)\}.$$
(10)

$$\Delta_3\{D_\gamma(II), \quad D_\gamma(I), \quad D_\gamma(III)\}.$$
(11)

$$\Delta_2\{D_\gamma(I), \quad D_\gamma(III), \quad D_\gamma(V)\}.$$
(12)

Можно показать, что первые две группы связаны с уравнениями для заряженных частиц, а последняя - с уравнением для нейтральной нестабильной частицы.

Заключение

Весь комплекс результатов по лептонному сектору открывает новые возможности для формирования структур с различными характеристи-

ками, включая такие, которые не могут быть связаны с реально наблюдаемыми частицами типа составляющих адронов (партоны, кварки). В частности, не имеется принципиальных запретов для обобщения предложенного метода на адронный сектор так, чтобы внутренние структуры формировались на основе лоренц-инвариантных объектов (таковыми являются группы, реализующие все четыре компонента связности группы Лоренца). Растущая при этом структура объектов в целом будет определять те самые симметрии, которые мы сейчас связываем с унитарными. В таком подходе лептоны и адроны будут описываться на единой релятивистской основе. При этом устраняется противоестественное положение, когда из основательной классификационной схемы (унитарные симметрии) целиком и полностью выпал лептонный сектор. Причина может заключаться в том, что членение адронов на составляющие является более крупным, чем это допустимо для описания лептонов. Кроме того, в самом лептонном секторе отпадает необходимость удивляться т.н. $(\mu - e - \tau)$ -универсальности. Ее просто не имеется в силу структурных различий. Понятно, что реализация такой программы будет означать сближение сильных и электрослабых взаимодействий.

Список литературы

- [1] P.Dirac, Proc. Roy. Soc. A vol.117,610 (1928).
- [2] А.Гусев, О.Космачев, *Писъма ЭЧАЯ*. Т.5, N2, 26 (2008).
- [3] О.Космачев, Письма ЭЧАЯ. 2010. Т.7, N2, 149 (2010).
- [4] Г.Вейль, Теория групп и квантовая механика, (Наука, Москва), 16 1986.
- [5] E.Majorana, *Il Nuovo Cimento* v.14, 171 (1937).
- [6] В.Паули, Общие принципы волновой механики, (ГТТЛ, Москва) 254 1947.

4. Построение профилей изгибного излучения пульсаров

В.А.Бордовицын, Е.А.Немченко

Кафедра теоретической физики, физический факультет ТГУ, 634050 Томск, пр. Ленина 36, Адрес электронной почты: rector@tsu.ru

Аннотация

Предлагается техника построения профилей излучения пульсаров на основе мгновенной индикатрисы углового распределения мощности излучения релятивистских заряженных частиц (джетов), движущихся по заданной траектории в магнитосфере нейтронной звезды. Данный метод иллюстрируется вычислением профилей излучения на примере модели изгибного излучения пульсаров. Получено хорошее согласие с наблюдаемыми профилями некоторых пульсаров.

Введение

Открытие пульсаров, сделанное группой кембриджских радиоастрономов под руководством Э. Хьюиша [1] в 1967 году, существенным образом повлияло на дальнейшее развитие астрофизических исследований космического радиоизлучения. Было установлено, что пульсары представляют собой источники импульсного космического радиоизлучения с очень большой стабильностью периода. Они излучают в широком спектральном диапазоне - от метровых до сантиметровых волн включительно, а в ряде случаев - даже в оптическом, рентгеновском и гаммадиапазонах. Возможные механизмы излучения пульсаров продолжают интенсивно обсуждаться в научной литературе (см., например, [2, 3]). Пульсары открывают новые широкие возможности для применения теории излучения релятивистских частиц [4].

Кинематический метод построения профилей излучения пульсаров

В нашей работе [3] был предложен универсальный кинематический метод построения профилей излучения пульсаров на основе точной пространственной индикатрисы (углового распределения) мощности релятивистского излучения (см. [4]). Идея этого метода состоит в том, что профиль излучения пульсара находится как сечение вращающейся индикатрисы излучения неподвижным в пространстве лучом зрения. Для идентификации с наблюдаемыми экспериментально профилями излучения предлагается использовать целый набор параметров: угол наклона магнитной оси пульсара относительно оси его вращения η , углы, образованные лучом зрения с осью вращения пульсара ζ и с направлением его магнитной оси μ , угол α между скоростью и ускорением релятивистской частицы (см. рис. 1).

Рис. 3. Идентификация профилей излучения наблюдаемых (ср. [5]) пульсаров с параметрами α , β , μ , ζ соответственно: a) 25°, 0.99, 12°, 15°; б) 10°, 0.99, 14°, 11°; в) 15°, 0.95, 22°, 10°; г) 20°, 0.99, 10°, 15°; д) 20°, 0.99, 7°, 0°; e) 40°, 0.991, 8°, 10°.

Кроме того, можно варьировать параметры самого излучения, такие как энергия электронов (γ - фактор), напряженность магнитного поля H, радиус кривизны траектории электронов R, а также число излучающих частиц в плазменных сгустках и т. д.

Заключение

Мы показали, что наша теория позволяет с большей точностью описывать наблюдаемые профили излучения пульсаров, причем эти результаты могут быть улучшены за счет более тщательной подборки параметров. Кроме того, можно использовать и некоторые дополнительные условия. Например, малые колебания параметров могут привести к часто наблюдаемой в экспериментах тонкой структуре профилей пульсаров. Это условие может быть связано с тем, что релятивистские электроны движутся в поле излучения других электронов, испущенных ранее. Кроме того, дополнительную информацию о параметрах источников излучения в магнитосфере пульсаров могут дать профили поляризованного излучения пульсаров, для которых применима та же методика, что и для рассмотренных здесь профилей полного излучения. Совсем недавно была обнаружена возможность визуального наблюдения первых гармоник синхротронного излучения (см. [4]). В связи с этим в перспективе представляет большой интерес построение в этом диапазоне частот профилей более мощного когерентного излучения пульсаров.

Данная работа поддержана федеральной целевой программой "Научные и научно-педагогические кадры инновационной России контракт No П789.

Список литературы

- [1] A.Hewish, S.J.Bell, *Nature* 217, 709 (1968).
- [2] Р.Манчестер, Дж. Тейлор, "Пульсары", (Мир, Москва) 1980.
- [3] V.Bordovitsyn, V.Epp, V.Bulenok, in "Kinematic Projecting of Pulsur Profiles" (Proceedings of the 9th Lomonosov Conference on Elementary Particle Physics, September 20-26 1999, Moscow, Russia), ed. by A.Studenikin, World Scientific Singapore, 187, 2001.
- [4] В.Г.Багров, Г.С.Бисноватый-Коган и др., "Теория излучения релятивистских частиц" под ред. В.А. Бордовицына, (ФИЗМАТЛИТ, Москва) 2002.
- [5] A.D.Kuzmin, V.A.Izvekova et al., Astron. Astrophys. Suppl. Ser. 127, 355 (1998).

5. Изучение рождения тяжчлых кварков в эксперименте АТЛАС

Сергей Сивоклоков От имени Сотрудничества АТЛАС НИИЯФ МГУ, 119992 Москва, Ленинскиие горы, Россия Serguei.Sivoklokov@cern.ch

Аннотация

В работе представлен обзор новых результатов по физике тяжчлых кварков (b и c) полученных в эксперименте АТЛАС на Большом Адронном Коллайдере. Изучение процессов рождения тяжчлых ароматов на адронных коллайдерах дачт возможность проникновения в суть процессов КХД. Детектор АТЛАС обеспечивает получение физических данных при больших поперечных импульсах и в более широком интервале быстрот, чем достигнутые когда-либо раньше. Сечения рождения чармония и боттония были измерены в протон-протонных соударениях при энергии 7 ТэВ в разных интервалах поперечных импульсов и быстрот. Также был реконстроируван ряд эксклюзивных распадов В и D-мезонов. Результаты сравнивались с теоретическими предсказаниями некоторых КХД моделей.

Введение

АТЛАС - это экспериментальная установка широкого назначения, работающая на Большом Адронном Коллайдере в Европейской лаборатоии ЦЕРН в Женеве, Щвейцария. Хотя основной целью эксперимента является поиск Хиггс-бозона и явлений за рамками Стандартной Модели, программа исследований также включает в себя изучение широкого круга явлений физики ароматов. Эти процессы также являются очень полезным инструментом для понимания свойств установки (при измерении хорошо изученных В- и D-адронов, J/ψ и Υ - мезонов) и проверки предсказаний КХД. При достижении интегральной светимости в несколько фб⁻¹ будет возможен поиск непрямых проявлений эффектов новой физики в редких распадах В-мезонов и явлениях СР-нарушений.

Детектор АТЛАС

Детектор АТЛАС [1] имеет стандартную для коллайдерных экспериментов цилиндрическую конфигурацию и содержит внутренний трековый детектор, калориметры и мюонный спектрометр. Внутренний Детектор обеспечивает прецизионное измерение треков заряженных частиц. Он состоит из кремниевых пиксельных (3 слоя) и микростриповых (4 слоя) детекторов и детектора переходного излучения, помещенных в магнитное поле сверхпроводящего соленоида напряженностью 2Т и позволяет измерять импульсы частиц с точностью $\sigma(p_T)/p_T < 0.5\%$ в области псевдобыстрот $|\eta| < 2.5$. Мюоны являются самым удобным и чистым сигналом распада частиц с тяжчлыми кварками, поэтому свойства мюонной системы (наряду с трекингом) являются ключевыми для изучения физики тяжчлых ароматов. Мюонный спектрометр содержит несколько типов камер для измерения мюонных треков и находится в магнитном поле тороидальной сверхпроводящей системы (средней напряжчнностью около 0.5T). Он обеспечивает измерение импульсов мюонов в области $|\eta| < 2.7$ с точностью меньше 10% вплоть до импульсов ~ 1 ТэВ. Триггерная система АТЛАСа служит для отбора событий с определчнными физическими сигнатурами (например, мюонами с большими поперечными импульсами) и содержит три уровня. Триггер первого уровня реализован аппаратно и использует сигналы мюонного спектрометра, калориметра или специальных сцинтиляционных счутчиков (Minimum Bias Trigger Scintillator). Триггеры 2-го уровня и 3-го (т.н. Фильтр Событий) реализованы программно и составляют триггер высокого уровня (High Level Trigger). По мере возрастания светимости ускорителя степень отбора событий постоянно увеличивается для сохранения приемлемого для обработки и сохранения уровня потока данных, что требует тщательного контроля триггерных условий и порогов регистрации для коррекции возможного сдвига измеряемых величин.

Рождение J/ψ и Υ

Реконструкцию узких состояний кваркония с хорошо известными массами, $c\bar{c}$ и $b\bar{b}$, распадающихся на два мюона, очень удобно использовать для изучения характеристик детектора (разрешения по массе, взаимной юстировки частей детектора). На Рис.1 показаны распределения по инварианьной массе $\mu^+\mu^-$ пар, полученные при анализе данных 0.24 фб⁻¹ интегральной светимости, набранных в 2011 году. Показаны области масс между 2.6 и 4 ГэВ (область J/ψ и $\psi(2S)$ состояний) и между 8 и 12 ГэВ ($\Upsilon(1S, 2S, 3S)$ мезоны). Мюоны пары должны иметь общую вершину, пройти ряд критериев по качеству восстановленныхо треков и быть зарегистрированными триггером. Реконструированные значениям масс находятся в хорошем согласии со среднемировыми значениями. Детали анализа в [2, 3].

Рис. 4. Димюонные спектры инвариантных масс в области J/ψ и $\psi(2S)$ (слева) и $\Upsilon(1S, 2S, 3S)$ мезонов (справа)

Сечения рождения кваркониев

Состояния кваркония интересны не только с методической точки зрения. Процессы их рождения, особенно в новой области энергий, представляют интерес для теории. Используя значительное количество событий с восстановленными J/ψ и Υ , АТЛАС измерил дваждыдифференциальные сечения рождения этих мезонов в нескольких областях быстроты y и поперечного импульса p_T мезонов. Анализ производился на основе данных 2010 года, когда относительно невысокая светимость ускорителя позволяла использовать наименее строгий триггерный отбор и получить наибольшую статистику при малых поперечных импульсах. Для восстановления истинного числа событий в каждом интервале, для каждого события вычислялся вес, который зависел от кинематического аксептанса (вероятности того, что мюоны с данными характеристиками могут быть зарегистрированы в детекторе), коэффициента, учитывающего размытие измеренного импульса мюона относительно истинного, эффективностей восстановления трека во внутреннем детекторе и в мюонном спектрометре и эффективности триггерной системы для регистрации двух мюонов (с разным знаком заряда). Кинематический аксептанс зависит от спиновой выстроенности рождчных мезонов относительно оси реакции и ориентации плоскости распада. Эти параметры для LHC ещч не измерены, поэтому на основе Монте-Карло моделирования были изучены все возможные варианты выстроенности и наибольшие вариации учитывались как систематические неопределчнности (т.н. spin-alignment envelope). На Рис.2 показано сечение рождения J/ψ в зависимости от *p*_T мезона для одного из 4-х изученных интервалов быстрот из работы [2] (показаны также данные CMS-коллаборации). На Рис.3 аналогичное распределение для Υ из [3] вместе с предсказаниями NLO вычислений. J/ψ могут рождаться через два механизма: прямое рождение в *pp*-соударениях и распадах более тяжчлых состояний чармония, и в распадах b-адронов, рождчнных в столкновении. Распады прямых мезонов происходят очень близко к первичной венршине, тогда, как b-адроны, имея значительное время жизни, распадаются вдали от неч. Измеряя распределение расстояния точки распада J/ψ от первичной вершины, можно определить пропорции мезонов, родившихся через каждый механизм и их характеристики. На Рис.4 и 5 показаны сечения рождения непрямых и прямых J/ψ в зависимости от p_T совместно с теоретическими предсказаниями ряда моделей.

Рис. 5. Сечение рождения J/ψ в зависимости от p_T для |y| < 0.75

Рис. 7. Сечение рождения непрямых J/ψ в зависимости от p_T для |y| < 0.75

Рис. 6. Сечение рождения $\Upsilon(1S)$ в зависимости от p_T для |y|<1.2

Рис. 8. Сечение рождения прямых J/ψ в зависимости от p_T для |y| < 0.75

Рождение очарованных мезонов

В эксперименте АТЛАС также изучалось рождение D-мезонов [4]. D_s^+ реконструировался в канале $D_s^+ \to \phi \pi \to (KK)\pi$ и D^+ в канале

 $D^+ \to K\pi\pi$. Также реконструировался D^{*+} . На Рис.6 показаны дифференциальные сечения рождения $D^{*\pm}$ -мезонов как функция p_T и псевдобыстроты η в сравнении с NLO КХД вычислениями.

Рис. 9. Дифференциальные сечения рождения $D^{*\pm}$ в зависимости от p_T (слева) и псевдобыстроты (справа)

Эксклюзивные каналы распада В-мезонов

Реконструкция отдельных каналов распада В-мезонов также важный этап в понимании методических особенностей установки и необходимая составляющая дальнейших исследований в области изучения СР-нарушений и редких распадов b-адронов. Были реконструированы распады $B^{\pm} \to J\psi(\mu\mu)K^{\pm}$, $B^0 \to J\psi(\mu\mu)K^*(K\pi) B^{\pm} \to J\psi(\mu\mu)\phi(KK)$ (См. пример реконструкции на Рис. 7 и подробно в [5, 6]).

Рис. 10. Сигналы $B^0 \to J\psi(\mu\mu)K^*(K\pi)$ (лев.) и $B^{\pm} \to J\psi(\mu\mu)\phi(KK)$ (прав.)

Заключение

Уже в первый год набора данных эксперимент АТЛАС представил ряд интересных результатов также и в области физики тяжчлых кварков

- дифференциальные сечения рождения состояний кваркония измерены в прежде недоступной области кинематических переменных, определены доли прямых и непрямых J/ψ , рождчнных в pp-соударениях при 7ТэВ. Сечения рождения прямых мезонов демонстрируют некоторое различие с предсказаниями теории. Несклько важных каналов распада D и Вмезонов измерены. В ближайшем будущем будут завершены измерения времчн жизни этих состояний, начато изучение процессов СР-нарушений в их распадах и поиск явлении Новой Физики в редких распадах Вмезонов на основе быстро растущего объчма данных 2011 года.

Список литературы

- [1] ATLAS Collaboration, JINST 3, S08003 (2008)
- [2] ATLAS Collaboration, Nucl. Phys. B 850 (2011) 387.
- [3] ATLAS Collaboration, arXiv:1106.5325v1 [hep-ex], accepted for publication *Phys.Lett.* **B**.
- [4] ATLAS Collaboration, ATLAS-CONF-2011-017, http://cdsweb.cern.ch/record/1336746.
- [5] ATLAS Collaboration, ATLAS-CONF-2011-050, http://cdsweb.cern.ch/record/1341815.
 [6] ATLAS CONF 2010 008
- [6] ATLAS Collaboration, ATLAS-CONF-2010-098, http://cdsweb.cern.ch/record/1307530

6. Струи на Tevatron и LHC

М.В.Токарев, Т.Г.Дедович Объединенный институт ядерных исследований, 141980 Дубна, Московская область, Россия tokarev@jinr.ru

Аннотация

Изучается самоподобие рождения струй в pp и $\bar{p}p$ взаимодействиях в рамках теории z-скейлинга. Анализируются спектры рождения струй, измеренные коллаборациями CDF и D0 на Tevatron и коллаборациями CMS и ATLAS на LHC. Обсуждаются новые результаты, подтверждающие асимптотическое поведение скейлинговой функции $\psi(z)$ и представляющие интерес для изучения фрактальной структуры импульсного пространства на малых масштабах.

Введение

Струи традиционно рассматриваются как наиболее адекватные пробники для изучения взаимодействия адронных конституентов при высоких энергиях. Интерес вызывает как само рождение струй с большими поперечными импульсами, так и рождение новых частиц, идентифицируемых с помощью струй и рассматриваемых в качестве сигнатур новой физики. Новые данные об инклюзивных сечениях рождения струй в *pp* столкновениях при энергии $\sqrt{s} = 7000$ ГэВ на LHC [1, 2] анализируются в рамках теории *z*-скейлинга [3]. Полученные результаты сравниваются с данными по рождению струй в *pp* взаимодействиях при меньших энергиях $\sqrt{s} = 630, 1800, 1960$ ГэВ на Tevatron [4, 5, 6, 7].

z-Скейлинг

Метод феноменологического описания (z-ckeйлинг) инклюзивных спектров рождения частиц с большими поперечными импульсами, развиваемый в работах [3, 8] применен для анализа новых данных [1, 2] по рождению струй в pp столкновениях на LHC. Он базируется на принципах локальности, самоподобия и фрактальности, отражающих свойства структуры частиц, взаимодействия их конституентов и механизма адронизации. Предполагается, что столкновение адронов выглядит как ансамбль самоподобно взаимодействующих конституентов.

Структура сталкивающихся объектов (адронов, ядер) с массами M_1 и M_2 характеризуется параметрами (фрактальными размерностями) δ_1 и

 δ_2 . Взаимодействующие конституенты несут доли x_1, x_2 импульсов сталкивающихся частиц P_1, P_2 . Инклюзивная частица с массой m_1 уносит импульс p. Элементарный подпроцесс рассматривается как бинарное столкновение конституентов (x_1M_1) и (x_2M_2) , приводящее к рождению частицы (m_1) и системы с массой (M_X) в конечном состоянии. Предполагается, что для подпроцесса выполняется закон сохранения импульса

$$(x_1P_1 + x_2P_2 - p)^2 = M_X^2, (13)$$

где $M_X = x_1 M_1 + x_2 M_2 + m_2$ масса системы, балансирующая рождение инклюзивной частицы. Это уравнение выражает локальность взаимодействия адронов на конституентном уровне.

Параметры δ_1, δ_2 связаны с долями x_1, x_2 импульсов степенной функцией

$$\Omega(x_1, x_2) = (1 - x_1)^{\delta_1} (1 - x_2)^{\delta_2}.$$
(14)

Величина Ω пропорциональна относительной доле таких конституентных взаимодействий, которые приводят к рождению данной инклюзивной частицы, и определяется долями x_1 и x_2 . В данном анализе мы используем соотношения $\delta_1 = \delta_2 \equiv \delta$, $M_1 = M_2$, и $m_2 = m_1 \equiv 0$, естественные для рождения струй как в pp, так и в $\bar{p}p$ взаимодействиях. В работе [3] установлено, что параметры δ_1 и δ_2 постоянны (не зависят от кинематических переменных). Они интепретируются как фрактальные размерности сталкивающихся частиц в пространстве долей импульсов $\{x_1, x_2\}$.

Скейлинговая переменная z представима в виде $z = z_0 \Omega^{-1}$. Величина z_0 выражается через поперечную кинетическую энергию подпроцесса $s_{\perp}^{1/2}$, необходимую для рождения частиц (m_1) и (m_2) и плотность множественности $dN/d\eta|_0$ при $\eta = 0$.

Скейлинговая функция, записанная в виде

$$\psi(z) = -\frac{\pi s}{(dN/d\eta)\sigma_{in}} J^{-1} E \frac{d^3\sigma}{dp^3},\tag{15}$$

выражается через инклюзивное сечение $Ed^3\sigma/dp^3$, плотность множественности $dN/d\eta$ и полное неупругое сечение σ_{in} . Величина \sqrt{s} - энергия столкновения в системе центра масс, J - якобиан перехода от переменных $\{p_z, p_T\}$ к переменным $\{z, \eta\}$. Функция $\psi(z)$, нормированная на единицу, имеет физическую интерпретацию плотности вероятности рождения частицы с данным значением величины z.

Самоподобие рождения струй на LHC

Инклюзивное сечение рождения струи определяет вероятность ее наблюдения в адрон-адронном столкновении. Рождение струи рассматривается как прямое указание на взаимодействие адронных конституентов (кварков и глюонов) с большой передачей импульса.

В данной работе новые данные [1, 2], по инклюзивным сечениям рождения струй в pp столкновениях при энергии $\sqrt{s} = 7000$ ГэВ, полученные на LHC, анализируются в рамках теории *z*-скейлинга и сравниваются с аналогичными данными [4, 5, 6, 7], полученными в экспериментах CDF и D0 на $\bar{p}p$ коллайдере Tevatron. Эти данные позволяют изучить энергетическую зависимость скейлинговой функции $\psi(z)$ в широкой области энергий $\sqrt{s} = 630 - 7000$ ГэВ.

Рисунок 1. Сечения рождения инклюзивной струи в pp столкновениях при энергии $\sqrt{s} = 7000$ ГэВ и в $\bar{p}p$ столкновениях при $\sqrt{s} = 630, 1800, 1960$ ГэВ и $\theta \simeq 90^{0}$, измеренные коллаборациями CMS [1], D0 [4, 5] (a) и CDF [6, 7] (b) в *z*-представлении.

На рисунке 1 показано z-представление спектров струй, измеренных коллаборациями CMS на LHC, D0 (a) и CDF (b) на Tevatron. Данные демонстрируют энергетическую независимость скейлинговой функции в центральной области псевдобыстрот. Наблюдается степенной поведение $\psi(z)$ в широкой области z. Из рисунка видно, что функция $\psi(z)$ изменяется больше чем на двенадцать порядков. Пунктирная линия соответствует асимптотическому поведению $\psi(z)$. Отклонение от асимптотического поведения наблюдается при $z < 10^2$. Данные CMS, используемые для определения сечений, соответствуют интегральной светимости 34 пб⁻¹.

Рисунок 2. Спектры рождения инклюзивной струи в pp столкновениях при энергии $\sqrt{s} = 7000$ ГэВ в различных интервалах по псевдобыстроте η в *z*-представлении. Экспериментальные данные, полученные коллаборациями CMS и ATLAS, взяты из [1, 2].

Спектры струй восстановлены до $p_T \simeq 1000 \ \Gamma \Rightarrow B/c$. Отметим, что минимальное значение $\psi(z)$ при $z \simeq 7 \cdot 10^3$ достигнуто на Tevatron при импульсе $p_T \simeq 600 \ \Gamma \Rightarrow B/c$ и энергии $\sqrt{s} = 1960 \ \Gamma \Rightarrow B$.

На рисунке 2 приведены инклюзивные спектры струй [1, 2], рожденных в pp столкновениях при энергии $\sqrt{s} = 7000$ ГэВ и охватывающие область поперечных импульсов $p_T = 20 - 1350$ ГэВ/с и псевдобыстрот $|\eta| < 4.4$ в z-представлении. Из рисунка видно, что данные демонстрируют угловую независимость $\psi(z)$. Скейлинговая функция описывается степенным законом $\psi(z) \sim z^{-\beta}$ с постоянным значением параметра наклона β . Результаты проведенного анализа данных LHC находятся в хорошем согласии с результатами угловой независимости $\psi(z)$, установленной ранее при анализе данных CDF и D0 [9].

Коллаборация ATLAS для анализа спектров струй использовала статистику, соответствующую интегральной светимости 37 пб⁻¹. Спектры измерены в области $p_T = 25 - 1350$ ГэВ/с. Достигнуто максимальное значение величины $z \simeq 10^4$. Полученные результаты подтверждают самоподобие рождения струй до масштабов 10^{-4} Фм.

В работе [9] установлено, что предсказания в следующим за лидирующим порядком КХД инклюзивных спектров струй при больших поперечных импульсах демонстрируют драматическое отклонение от асимптотического поведения $\psi(z)$, найденного в рамках *z*-скейлинга. Это поведение не воспроизводиться КХД эволюцией сечений с используемыми

феноменологическими партонными распределениями [9]. Мы полагаем, что асимптотическое степенное поведение $\psi(z)$ могло бы быть использовано как дополнительное ограничение на глюонную функцию распределения при глобальном КХД анализе, включающем новые данные LHC по рождению струй при энергии $\sqrt{s} = 7000$ ГэВ.

Заключение

Новые данные по спектрам инклюзивных струй, полученные коллаборациями CMS и ATLAS на LHC, вплоть до самых больших поперечных импульсов, достигнутых в настоящее время на ускорителях, подтверждают энергетическую и угловую независимости функции $\psi(z)$, установленную ранее при энергиях Tevatron. Степенное поведение скейлинговой функции интерпретируется как проявление локальности, самоподобия и фрактальности адронных взаимодействий при высоких энергиях на конституентном уровне. Мы полагаем, что проверка асимптотического поведения $\psi(z) \sim z^{-\beta}$ в рождении струй при больших импульсах $p_T > 2000$ ГэВ/с могла бы дать информацию о фрактальной структуре импульсного пространства.

Список литературы

- C. Dragoiu (for CMS Collab.), XIX Int. Workshop DIS2011, April 11-15, 2011, Newport News, VA, USA; http://conferences.jlab.org/DIS2011/; arXiv:1106.0208v1 [hep-ex] 1 Jun 2011.
- J. Zhang (for ATLAS Collab.), XIX Int.Workshop DIS2011, April 11-15, 2011, Newport News, VA, USA; http://conferences.jlab.org/DIS2011/
- [3] M.V. Tokarev, T.G. Dedovich, Int. J. Mod. Phys. A 15, 3495 (2000).
- [4] B. Abbott et al., *Phys.Rev.Lett.* 82, 2451 (1999); *Phys.Rev.* D 64, 032003 (2001).
 D. Elvira, Ph.D Thesis Universodad de Buenos Aires, Argentina (1995).
 V.M. Abazov et al., *Phys.Lett.* B 525, 211 (2002); *Phys.Rev.Lett.* 101, 062001 (2008).
- [5] M. Begel et al. (D0 Collab.), hep-ex/0305072.
 M. Voutilainen (for D0 Collab.) XIV Int.Workshop DIS2006, April 20-24, 2006, Tsukuba, Japan; http://www-conf.kek.jp/dis06/J. Commin (for D0 Collab.) XV Int. Workshop DIS2007, April 16-20, 2007, Munich, Germany; http://www.mppmu.mpg.de/dis2007/

- [6] F. Abe et al., *Phys.Rev.Lett.* 77, 438 (1996).
 T. Affolder et al., *Phys.Rev.* D 64, 032001 (2001).
- [7] A. Abulencia et al., *Phys.Rev.Lett.* 96, 122001 (2006); *Phys.Rev.* D 74, 071103 (2006); *Phys.Rev.* D 75, 092006 (2007).
- [8] I. Zborovský, M.V. Tokarev, *Phys. Rev.* D 75, 094008 (2007).
- [9] M.V. Tokarev, T.G.Dedovich, in *Relativistic Nuclear Physics and Quantum Chromodynamics* (Proceedings of the XIX International Baldin Seminar on High Energy Physics Problems, September 29 October 4, 2008, Dubna, Russia), eds. by A.N.Sissakian, V.V.Burov, A.I.Malakhov, S.G.Bondarenko, E.B.Plekhanov, JINR, Vol.2, pp.187-197, 2008.

7. Ондуляторное излучение в периодическом магнитном поле с постоянной составляющей

К.В. Жуковский

Кафедра оптики и спектроскопии, физический факультет МГУ, 119992 Москва, Воробьевы горы Адрес электронной почты: zhukovsk@phys.msu.ru

Аннотация

Представлено аналитическое исследование влияния постоянного магнитного поля на излучение плоского ондулятора с использованием обобщенных специальных функций. Изучается поведение интенсивности и спектра излучения как на оси ондулятора, так и вне ее в составном магнитном поле. Аналитически вычисляется критическая величина напряженности постоянной составляющей магнитного поля, оказывающая заметное влияние на движение электронов в ондуляторе. Рассмотрены примеры нескольких плоских ондуляторов, проведена оценка влияния земного магнетизма на спектр их излучения, даны практические рекомендации по уменьшению этого влияния.

В течение последних 50 лет свойства синхротронного (СИ), ондуляторного излучения (ОИ) – высокая интенсивность пучка и локализация в узком конусе Ц являлись решающими для многих приложений и для появления и развития лазеров на свободных электронах ЛСЭ [1]. Развитие теории излучения электронов в магнитных полях различных конфигураций [1, 2, 3, 4] и разработка новых конфигураций этих устройств [4, 5], а также источников излучения – лазеров на свободных электронах (ЛСЭ) – определяет повышенный интерес к исследованию излучения ультрарелятивистских зарядов, движущихся во внешних магнитных полях. Повышаются требования к качеству ОИ, которое сильно зависит от присутствия непериодических компонент и искажений магнитного поля в ондуляторе. Они могут быть присущи самому ондулятору ввиду, например, конструкции магнитов, ошибок намагничивания и неидеальности гармонического поля, связанной с условиями выполнения уравнений Максвелла (см., например, [6]). Из-за присутствия магнитного поля Земли, по всей длине ондулятора практически всегда присутствует постоянная компонента магнитного поля *B*_d.

Мы приняли во внимание оба явления – как однородное, так и неоднородное уширение спектральных линий ОИ и представили аналитический

метод расчета излучения электрона, движущегося в ондуляторе, где постоянная компонента магнитного поля $B_d = \kappa B_0$ наложена на периодическое поле ондулятора B_0 (см. также [7]). В этом случае электрон движется по гораздо более сложной траектории, меняется спектр излучения, частоты, ширина и форма спектральных линий. Полученные выражения для резонансных частот на оси включают угол отклонения $heta_H$, который зависит только от суммы квадратов компонент постоянной компоненты магнитного поля, образующими его напряженность. Показано как эффект постоянного поля накапливается вдоль оси ондулятора с каждым периодом и что он зависит от их числа N. Интенсивность излучения на оси при условии слабого постоянного магнитного поля определяется рядом резонансных частот, записанных через обычные функции Бесселя и обобщенные функции Эйри. Метод обобщенных функций позволяет получить аналитические решения с использованием обобщенных функции Бесселя четырех аргументов также и при сравнимых напряженностях постоянного и периодического полей. Постоянная компонента поля *B_d* приводит к появления четных гармоник в спектре и модифицирует нечетные гармоники. Замечателен тот факт, что интенсивность излучения четных гармоник определяется только модулем напряженности постоянного поля, а не ее направлением. Отсюда следует, что исключить их можно, только ориентировав ось ондулятора по направлению постоянного поля, и никаким другим вращением устранить это влияние нельзя. Физическая причина изменения спектра излучения — не в отклонении электронов в каком-то определенном направлении от оси, а в расстройке когерентности осцилляций электронов в ондуляторе при прохождении электронами постоянного магнитного поля. Исследование уширения основной гармоники ондулятора как на оси, так и вне ее, с использованием обобщений функции Эйри $S(\alpha, \beta, \varepsilon)$ иллюстрирует влияние постоянного магнитного поля. Продемонстрирован сдвиг резонансной частоты и уменьшение высоты максимума. Показано, что влияние индуцированного угла изгиба θ_H на интенсивность гармоники сильнее, чем влияние отклонения от оси на такой же угол. С использованием нового выражения для спектра ондулятора с дополнительным постоянным магнитным полем получено условие применимости хорошо известной формулы для основной частоты излучения ω_{R_0} плоского ондулятора при наложении слабого постоянного поля. Анализ ОИ дополнен рассмотрением эффектов неоднородного уширения спектральных линий, эффективно отвечающего за разного рода потери при распространения пучков в ондуляторах и отклонения формы периодического поля от синусоидальной, чтобы удовлетворялись уравнения Максвелла. Учет влияния постоянного магнитного поля через соответствующий параметр κ на форму спектральной линии ондулятора со 100 периодами показывает, что эффект постоянной компоненты магнитного поля в ондуляторе пренебрежимо мал, пока значение $\kappa < 10^{-4}$. Заметное искажение спектральной линии происходит в дипольном поле напряженности $B_d > 1.5 \times 10^{-4} B_0$. Ситуация значительно изменяется с увеличением числа периодов ондулятора N. Так, для ондулятора с 200 периодами в присутствии постоянного магнитного поля $B_d = 1 \times 10^{-4} B_0$ искажения спектральной линии появляются уже при отношении напряженностей постоянного и переменного полей $\kappa \sim 5 \times 10^{-5}$. Более того, максимальная разумная напряженность постоянной компоненты магнитного поля B_d для такого ондулятора составляет $7 \times 10^{-5} B_0$. Тогда очевидно, что искажения спектральной линии ондулятора с 200 периодами при $B_d = 1 \times 10^{-4} B_0$ очень значительны. Так как магнитное поле Земли имеет как раз такой порядок относительно периодического поля в ондуляторе, то в рассмотренном случае нужно принимать все меры по тщательному экранированию постоянной компоненты поля или ее компенсации внешними катушками с током.

Итак, нами проведен анализ излучения плоского ондулятора и влияния постоянного магнитного поля на излучение как на его оси, так и под произвольным углом к ней, с применением техники функций Бесселя многих переменных. Для учета постоянной компоненты магнитного поля развита техника обобщенных функций Эйри. Использование обобщенных форм специальных функций многих переменных позволило получить аналитические выражения для спектра и интенсивности ОИ, а также критической величины постоянного магнитного поля, при которой начинаются значительные искажения спектра, формы спектральной линии и пространственного распределения излучения ондулятора, зависящие только от величины постоянного поля. Разработанный нами подход позволяет получить аналитическое решение задачи с периодическими полями необычных и сложных составных конфигураций. Становится легко доступным физический смысл полученных решений и их анализ. Компактная аналитическая форма решений позволяет провести анализ вклада каждой из компонент поля и учет искажений спектра и уширения спектральных линий, имеющих место в реальных устройствах с заданным числом периодов и другими характеристиками.

Список литературы

[1] I.M. Ternov, V.V.Mikhailin, V.R.Khalilov "Synchrotron Radiation and its Applications" (in Russian), (Moscow University, Moscow), 1980.

- [2] V.A. Bordovitsyn (Ed.) "Synchrotron Radiation theory and its development" (in the memory of I.M.Ternov), (World Scientific. Singapore), 1999.
- [3] E.E. Koch (Ed.) "Handbook of Synchrotron Radiation", (North Holland. Amsterdam), 1983
- [4] A.A.Sokolov, D.V.Galtsov, V.Ch.Zhukovsky Zh. Tekhn. Fiz., N 43, 682 (1973)
- [5] G.Dattoli, V.V.Mikhailin, P.L.Ottaviani, K.Zhukovsky Journal of Applied Physics, 100, 084507 (2006).
- [6] D.F.Alferov, Yu.A.Bashmakov, P.A.Cherenkov Usp. Fiz. Nauk, N3, 389 (1989).
- [7] G.Dattoli, V.V.Mikhailin, K.V.Zhukovsky Journal of Applied Physics, 104, 124507 (2008).

8. Численное исследование решеточной модели Вайнберга - Салама

М.А.Зубков

Институт Теоретической и Экспериментальной Физики, 117218 Россия, Москва ул. Большая Черемушкинская, 25, Адрес электронной почты: zubkov@itep.ru

Аннотация

Решеточная модель Вайнберга - Салама без динамических фермионов исследована численно при значении угла Вайнберга $\theta_W \sim 30^{\circ}$, и затравочной постоянной тонкой структуры $\alpha \sim \frac{1}{150}$. Рассматривается модель при затравочной массе Хиггса в районе 150 ГэВ. Мы исследуем явления, возникающие в окрестности фазового перехода между физической Хиггсовской фазой и нефизической симметричной фазой решеточной модели. Это именно та область фазовой диаграммы, где предполагается искать переход к непрерывной физике. Мы находим указание на то, что при энергиях масштаба 1 ТэВ непертурбативные явления могут быть существенны.

Введение

Физическая шкала фиксируется нами, используя массу Z-бозона $M_Z^{\rm phys} \sim 90$ ГэВ. Тогда длина ребра решетки равна $a \sim [90 \,{\rm GeV}]^{-1}M_Z$, где M_Z - это масса Z бозона в решеточных единицах. Внутри физической фазы теории линии постоянной физики (ЛПФ) определяются как соответствующие постоянным перенормированным физическим постоянным. (постоянная тонкой структуры α , угол Вайнберга θ_W , и отношение массы Хиггса к массе Z-бозона $\eta = M_H/M_Z$). Точки ЛПФ параметризуются длиной ребра решетки. При увеличении ультрафиолетового обрезания при движении вдоль ЛПФ, соответствующей реалистическим значениям α , θ_W , и η происходит приближение к фазовому переходу между физической фазой и нефизической фазой.

Ниже используются следующие решеточные переменные: 1. Калибровочное поле $\mathcal{U} = (U, \theta)$, где $U \in SU(2)$, $e^{i\theta} \in U(1)$, определенное на линках решетки. 2. Скалярный дублет Φ_{α} , $\alpha = 1, 2$. Действие мы рассматриваем в следующем виде

$$S = \beta \sum_{\text{plaquettes}} \left(\left(1 - \frac{1}{2} \operatorname{Tr} U_p\right) + \frac{1}{\operatorname{tg}^2 \theta_W} (1 - \cos \theta_p) \right) + -\gamma \sum_{xy} \operatorname{Re}(\Phi^+ U_{xy} e^{i\theta_{xy}} \Phi) + \sum_x \left(|\Phi_x|^2 + \lambda (|\Phi_x|^2 - 1)^2)\right), \quad (16)$$

Затравочная постоянная тонкой структуры α выражается через β и θ_W как $\alpha = \frac{\mathrm{tg}^2 \theta_W}{\pi \beta (1 + \mathrm{tg}^2 \theta_W)}$. Также имеют место следующие древесные оценки: $v = \sqrt{2 \frac{\gamma - \gamma_c}{\lambda}}; M_H = v \sqrt{\frac{8\lambda}{\gamma}}; M_Z = v \sqrt{\frac{\gamma}{\beta \cos^2 \theta_W}}; \gamma_c = \frac{1 - 2\lambda}{4}; \Lambda = \frac{\pi}{a} = \sqrt{\frac{\pi^2 \lambda \beta}{2\gamma (\gamma - \gamma_c)}} [80 \,\mathrm{GeV}].$ При $\lambda < 1/2$ древесные оценки предсказывают, что ультрафиолетовое

При $\lambda < 1/2$ древесные оценки предсказывают, что ультрафиолетовое обрезание возрастает вдоль ЛПФ с уменьшением γ , причем в точке перехода она становится бесконечной. Тем самым древесное приближение предсказывает существование фазового перехода второго рода. Однако, благодаря непертурбативным эффектам эта картина может модифицироваться. А именно, фазовый переход, может вырождаться в кросовер.

Численные результаты

В нашем исследовании мы фиксируем затравочный угол Вайнберга равным 30°, кроме того мы фиксируем $\beta = 12$, что соответствует значению постоянной тонкой структуры в районе 1/150, затравочное значение $\lambda = 0.0025$ используемое нами соответствует массе Хиггса ~ 150 ГэВ. Таким образом, единственным параметром является γ . При больших значениях этого параметра система находится в физической фазе, где скалярное поле сконденсировано. При уменьшении γ система переходит в симметричную фазу, где конденсат отсутствует. Приближение к непрерывной физике в рамках решеточной модели осуществляется при приближении к фазовому переходу. Симуляции производились на решетках размера $8^3 \times 16$, $12^3 \times 16$, 16^4 . Также производилась проверка ряда результатов на решетке $16^3 \times 32$.

Данные линковой части действия $\frac{1}{4N} \sum_{xy} \Phi_x^+ U_{xy} e^{i\theta_{xy}} \Phi_y$ (часть действия наиболее чувствительная к изучаемому фазовому переходу) демонстрируют отсутствие сигнала двух состояний, что говорит о том, что мы не имеем дело с фазовым переходом первого рода. Также эти данные указывают, что в точке, близкой к $\gamma'_c \sim 0.25775$ имеет место разрыв производной термодинамических потенциалов, что говорит о том, что в этой точке на решетках бесконечного размера может иметь место фазовый переход второго рода.

Наши данные показывают, что $\Lambda = \frac{\pi}{a} = (\pi \times 91 \text{ GeV})/M_Z$ медленно растет с уменьшением γ при любом фиксированном λ . Мы исследовали более подробно окрестность фазового перехода для $\lambda = 0.0025$ и $\beta = 12$. Было обнаружено, что при $\gamma > \gamma'_c$ значение Λ на решетках вплоть до размера 16⁴ не превышает величины в несколько ТэВ. В то же время при $\gamma \leq \gamma'_c$ решеточная масса Z - бозона не может быть вычислена из - за больших статистических ошибок в корреляторе.

Ультрафиолетовый эффективный потенциал меняет свою форму в точке $\gamma_c = 0.26$ [3]. Плотность монополей Намбу как функцию от γ при $\lambda = 0.0025$, $\beta = 12$ растет с уменьшением γ . Значение плотности монополей при $\gamma_c = 0.26$ - около 0.1. В этой точке значение ультрафиолетового обрезания $\Lambda \sim 1.2 \pm 0.2$ ТэВ. В соответствии с классическими представлениями размер монополя Намбу - порядка M_H^{-1} . Тогда для $a^{-1} \sim 400$ ГэВ и $M_H \sim 150$ ГэВ ожидаемый размер монополями, таким образом, меньше, чем длина ребра решетки и невозможно вообще говорить о данных конфигурациях как о представляющих физический монополь Намбу. При $\gamma = \gamma_{c2} \sim 0.262$ плотность монополей Намбу - около 0.03. Среднее расстояние между монополями, таким образом, - примерно две длины ребра решетки или $\sim \frac{1}{160 \text{ Gev}}$. Мы видим, что при этом значении γ среднее расстояние между монополями намбу.

Суммируем указанные наблюдения. Внутри Флуктуационной Области (ФО) при $\gamma'_c < \gamma < \gamma_{c2}$ рассматриваемые конфигурации не представляют отдельно расположенных монополей Намбу. Вместо этого, они должны рассматриваться как представляющие собрание плотно расположенных монополей. С другой стороны, при $\gamma >> \gamma_{c2}$ рассматриваемые конфигурации представляют отдельно расположенные монополи, поскольку их размеры в этой области существенно меньше средних расстояний между ними. Другими словами, вне ФО вакуум представляет собой разреженный газ монополей Намбу, а внутри ФО - жидкость, составленную из монополеподобных объектов.

Внутри Z - струны, соединяющей монополи Намбу, а равно и внутри самих монополей $|\Phi| = 0$. Это означает, что монополь Намбу вместе с Z - струной может рассматриваться как зародыш нефизической фазы внутри физической. Мы видим, что плотность этих зародышей растет при приближении к точке перехода. Внутри ФО две фазы перемешаны, что связано с большим значением монопольной плотности.

Таким образом, мы приходим к выводу, что динамика решеточной модели Вайнберга - Салама внутри ФО не имеет ничего общего с обычной теорией возмущений. Это значит, что разложение вокруг тривиального вакуума (калибровочное поле равно нулю, скалярное поле равно $(\phi_m, 0)^T$) не должно применяться внутри ФО.

Список литературы

[1] W. Langguth, I. Montvay, P. Weisz, Nucl. Phys. B277:11,1986.

- M.A. Zubkov, Phys.Lett.B684:141-146,2010
 M.A. Zubkov, Phys.Rev.D82:093010,2010
- [3] "Effective constraint potential in lattice Weinberg Salam model M.I.Polikarpov, M.A.Zubkov, Physics Letters B 700 (2011) pp. 336-342, [arXiv:1104.1319]
- [4] Y. Nambu, Nucl.Phys. B 130, 505 (1977);
 Ana Achucarro and Tanmay Vachaspati, Phys. Rept. 327, 347 (2000);
 Phys. Rept. 327, 427 (2000).
- [5] M.N. Chernodub, JETP Lett. **66**, 605 (1997)
- [6] M.I. Polikarpov, U.J. Wiese, and M.A. Zubkov, Phys. Lett. B 309, 133 (1993).
- [7] Peter Arnold, Olivier Espinosa, Phys.Rev.D47:3546,1993; Erratumibid.D50:6662,1994
 Z. Fodor, A. Hebecker, Nucl.Phys. B432 (1994) 127-146
- [8] A.I. Veselov, and M.A. Zubkov, JHEP 0812:109 (2008);
- [9] I. Montvay, Nucl. Phys. B **269**, 170 (1986).
- [10] W. Langguth, I. Montvay (DESY) Z.Phys.C36:725,1987