МАГНИТО-ТРАНСПОРТНЫЕ ИССЛЕДОВАНИЯ $(Cd_{1-x}Zn_x)_3As_2$ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ

Сайпулаева Л.А.¹, Захвалинский В.С.², Алибеков А.Г.¹, Пирмагомедов З.Ш.¹, Гаджиалиев М.М.¹, Маренкин С.Ф.³, Риль А.И.³

 1 Институт физики им. Х.И. Амирханова Д Φ ИЦ РАН, Махачкала, Россия 2

²Белгородский государственный национальный исследовательский университет, Белгород, Россия

³Институт общей и неорганической химии им. Н.С. Курнакова РАН, Москва. <u>l.saypulaeva@gmail.com</u>

Целью настоящей работы является исследование воздействия внешних факторов: температуры, давления и поля на магнитотранспортные свойства $(Cd_{1-x}Zn_x)_3As_2$ (x=0.5) и x=0.5. Объект исследования: $(Cd_{1-x}Zn_x)_3As_2$ (x=0.5).

Для создания высокого давления использовалась камера типа «Тороид» создающая высокое гидростатическое давление до 9 $\Gamma\Pi a$.

Зависимое от температуры удельное сопротивление $(Cd_{1-x}Zn_x)_3As_2$ демонстрирует изменение полупроводникового характера. Сложное поведение удельного электросопротивления от температуры $\rho(T)$ указывает на то, что $Cd_{1-x}Zn_x)_3As_2$, вероятно, является полупроводником с очень узкой запрещенной зоной.

На барических зависимостях $\rho(P)$ в области давлений $P\approx 2.8$ ГПа наблюдается резкий скачок удельного сопротивления $\rho(P)$. После снятия давления образцы не восстанавливаются. При давлении P>6 ГПа сопротивление образцов почти не зависит от давления.

Чтобы лучше понять температурные и барические зависимости удельного сопротивления, мы измерили коэффициент Холла в ($\mathrm{Cd}_{1-x}\mathrm{Zn}_x$)₃ As_2) в интервале температур 77–400 К и давления 0-9 ГПа. В интервале температур, 190–200 К в образце ($\mathrm{Cd}_{1-x}\mathrm{Zn}_x$)₃ As_2) для x=0.5 происходит смена типа носителей – переход от материала p-типа к материалу n-типа. Образцы ($\mathrm{C}_{1-x}\mathrm{Zn}_x$)₃ As_2 относятся к p-типу, но коэффициент Холла отрицателен при комнатной температуре из-за высокой подвижности электронов.

Коэффициент Холла достигает максимума при магнитном поле 1 к9. Изменение знака коэффициента Холла ($Zn_{1-x}Cd_x$) $_3As_2$ (x=0.5) наблюдаем при давлении (4.6–5.0) $\Gamma\Pi a$.

Магнитосопротивление (MC) ($Zn_{1-x}Cd_x$) $_3As_2$ с ростом давления с учетом анализа полевых зависимостей имеет тенденцию с смене знака. Величина положительного MC в ($Zn_{1-x}Cd_x$) $_3As_2$ (x=0.55) постепенно понижается и при давлении P=2 ГПа приводит к ОМС.

При фиксированном давлении с ростом магнитного поля сопротивления уменьшается — наблюдается эффект ОМС. При давлении P = 5.4 для образца $\mathrm{Cd}_{1-x}\mathrm{Zn}_x)_3\mathrm{As}_2$ (x = 0.5) и давлении P = 2.4 для образца $\mathrm{Cd}_{1-x}\mathrm{Zn}_x)_3\mathrm{As}_2$ (x = 0.55) происходит фазовый переход. Увеличение процентного содержания цинка приводит к смещению фазового перехода в область низких давлений.