
ОБЛАСТЬ СУЩЕСТВОВАНИЯ МЕТАСТАБИЛЬНОЙ ФАЗЫ Fe₁₃Ga₉ В СПЛАВАХ Fe-хGa

Вершинина Т.Н.¹, Самойлова Н.Ю.¹, Сумников С.В.¹, Балагуров А.М.¹, Палачева В.В.², Головин И.С.²

¹Объединенный институт ядерных исследований, г. Дубна, Россия,
²Национальный исследовательский технологический университет "МИСиС", г. Москва, Россия vershinina@nf.jinr.ru

Методом *in situ* дифракции нейтронов проведено исследование возможностей и условий образования метастабильной фазы $Fe_{13}Ga_9$ в $Fe_{-}Ga$ сплавах в широком интервале концентраций галлия (31–38 ат.%). Кроме того, определены основные закономерности фазовых превращений в сплавах, содержащих этот интерметаллид.

В процессе нагрева и последующего охлаждения прослеживается четкая стадийность в реализации фазовых превращений. Результаты исследований последовательности фазообразования графически отображены на рис. 1.

Рис. 1. Температурные диапазоны существования фаз при нагреве до 850 °C (*a*) и охлаждении от 850 °C (δ)

Полученные результаты показывают, что фаза $Fe_{13}Ga_9$ в сплавах с большими концентрациями галлия 32.9–38.4 ат.% имеется в исходном as-cast состоянии и область ее существования ограничивается максимальной температурой ~570 °C. При дальнейшем нагреве и последующем охлаждении $Fe_{13}Ga_9$ не обнаруживается. При уменьшении содержания галлия до 31.1 ат.% в as-cast состоянии $Fe_{13}Ga_9$ отсутствует, но выделяется в процессе нагрева при ~ 425 °C и присутствует, как и в других сплавах, вплоть до 570 °C. В отличие от сплавов с большей концентрацией галлия в сплаве $Fe_{-31.1}Ga$ интерметаллид $Fe_{13}Ga_9$ выделяется в процессе охлаждения при ~510 °C, предотвращая выделение другого моноклинного интерметаллида α - Fe_6Ga_5 .

Работа выполнена в рамках проекта № 22-42-04404 РНФ