Universal behavior of the heat transport properties of molecular glassy crystals

A.I. Krivchikov^{*a*}, O.A. Korolyuk^{*a*}, I.V. Sharapova^{*a*}, L.C. Pardo^{*b*}, M.D. Ruiz-Martin^{*b*}, J.Ll. Tamarit^{*b*}, and F.J. Bermejo^{*c*}

^aB. Verkin Institute for Low Temperature Physics and Engineering of NAS Ukraine, Kharkov, Ukraine ^bGrop de Chracteritzation oferials, Departament de Fisica i Enginyieria Nuclear, ETSEIB, Universitat Politecnica de Catalunya, Barcelona, Spain

^cCSIC, Department of Electricity and Electronics, University of the Basque Country, Bilbao, Spain

A comparative analysis of experimental data on the thermal conductivity has been made for two types of molecular glassy crystals: orientational glasses (ethanol, freon112, cyanocyclohexane, cyclohexanol) and clathrate gas hydrates (CH₄(5.75H₂O), Xe6.2(H₂O) and THF(16H₂O)) in the temperature region from 2 K to the glass transition temperature Tg. The temperature dependence of the thermal conductivity $\kappa(T)$ of these substances is similar to that of amorphous atomic solids. The temperature dependence of the thermal conductivity is well described by a sum of two contributions: $\kappa(T) = \kappa_I(T) + \kappa_{II}(T)$, where $\kappa_I(T)$ accounts for the heat transport by long living acoustic excitations and $\kappa_{II}(T)$ is for the heat transfer by delocalized vibrational excitations (diffusons). It is shown that the contribution of $\kappa_I(T)$ is well described by the universal curve in the soft potential model and $\kappa_{II}(T)$ corresponds to short wavelength acoustic phonons with the minimum allowed value of the phonon relaxation time $\tau_{min}(\omega) = \pi/\omega$ according to Cahill-Pohl model.