Phase diagram of superfluid ³He in uniaxially compressed aerogel

R. G. Bennett^a, N. Zhelev^a, E. Smith^a, J. Pollanen^b, W. Halperin^b, and J. Parpia^a

^aDepartment of Physics, Cornell University, Ithaca NY 14853, USA

^bDepartment of Physics and Astronomy, Northwestern University, Evanston, Il 60208, USA

A torsion pendulum was used to measure the dissipation (Q^{-1}) and period shift for ³He confined in a 98% open aerogel that was axially compressed by 10% along the axis of the torsion pendulum. We map out the phase diagram by examining the superfluid fraction at pressures between 0 and 34 bar, taking data whilst warming and cooling. The cooling traces show evidence of the metastable A phase existing over a wider region in temperature than what is seen in other, uncompressed aerogel, as well as a much smaller reduction of T_c^a , relative to bulk T_c . On warming, we observe a narrow region of A phase before the normal liquid behavior is recovered. A study of "turn arounds", in which the cell was repeatedly warmed to temperatures approaching T_c^a and then cooled, reveals the transition from $B \rightarrow A$ to be quite broad ($\approx 70 \ \mu K$), similar to that observed for the A $\rightarrow B$ transition. While we expect that the A phase shows a rapid rise at a temperature just above the A $\rightarrow B$ transition. While we expect that the A phase would be stabilized by the compression (which provides an axial direction similar to the application of a magnetic field), textural alignment of the order parameter consistent with $\rho_{s\perp}$ is not seen. Our observations show that the "so-called" poly critical point is removed from the superfluid phase diagram, resulting in an equilibrium A phase sliver interceding between the normal and B phases in the zero field phase diagram of disordered ³He.