Phase diagram of superfluid ${ }^{3} \mathrm{He}$ in uniaxially compressed aerogel

R. G. Bennett ${ }^{a}$, N. Zhelev a, E. Smith ${ }^{a}$, J. Pollanen ${ }^{b}$, W. Halperin ${ }^{b}$, and J. Parpia ${ }^{a}$
${ }^{a}$ Department of Physics, Cornell University, Ithaca NY 14853, USA
${ }^{b}$ Department of Physics and Astronomy, Northwestern University, Evanston, Il 60208, USA

A torsion pendulum was used to measure the dissipation $\left(Q^{-1}\right)$ and period shift for ${ }^{3} \mathrm{He}$ confined in a 98% open aerogel that was axially compressed by 10% along the axis of the torsion pendulum. We map out the phase diagram by examining the superfluid fraction at pressures between 0 and 34 bar, taking data whilst warming and cooling. The cooling traces show evidence of the metastable A phase existing over a wider region in temperature than what is seen in other, uncompressed aerogel, as well as a much smaller reduction of T_{c}^{a}, relative to bulk T_{c}. On warming, we observe a narrow region of A phase before the normal liquid behavior is recovered. A study of "turn arounds", in which the cell was repeatedly warmed to temperatures approaching T_{c}^{a} and then cooled, reveals the transition from $\mathrm{B} \rightarrow \mathrm{A}$ to be quite broad $(\approx 70 \mu \mathrm{~K})$, similar to that observed for the $\mathrm{A} \rightarrow \mathrm{B}$ transition while cooling. The dissipation in the A phase shows a rapid rise at a temperature just above the $\mathrm{A} \rightarrow \mathrm{B}$ transition. While we expect that the A phase would be stabilized by the compression (which provides an axial direction similar to the application of a magnetic field), textural alignment of the order parameter consistent with $\rho_{s \perp}$ is not seen. Our observations show that the "so-called" poly critical point is removed from the superfluid phase diagram, resulting in an equilibrium A phase sliver interceding between the normal and B phases in the zero field phase diagram of disordered ${ }^{3} \mathrm{He}$.

