Nuclear Spin Relaxation of Very Dilute ³He in Solid ⁴He

S. S. Kim^a, C. Huan^a, L. Yin^a, J. S. Xia^a, N. S. Sullivan^a, and D. Candela^b

^aDepartment of Physics, University of Florida, USA

^bDepartment of Physics, University of Massachusetts, Amherst, MA, USA

We report measurements of the nuclear spin-lattice and nuclear spin-spin relaxation times of very dilute ³He in solid ⁴He in the temperature range 0.01 < T < 0.5 K, and for densities where anomalies have been observed in torsional oscillator and shear modulus measurements. We compare the results with the values of the relaxation times reported by other observers for higher concentrations and compare the results with the theory of Landesman¹ that takes into account the elastic properties of the ⁴He lattice. For high concentrations, x>50 ppm, the ³He impurities are in a constant interaction regime because of the relatively long range of the elastic deformation surrounding each ³He impurity. For very dilute concentrations the ³He atoms are in a gas-like regime and the relaxation times are determined by the cross-section for their mutual scattering. A sharp increase in the magnitude of the nuclear spin-lattice relaxation times compared to the classical Landesman theory are observed close to the temperatures where the torsional and shear modulus anomalies are observed. The NMR results imply that an additional relaxation process occurs in series with the usual processes that is related to the observed change in the dissipation of the elastic modulus of the lattice.

¹A. Landesman, Physics Letters, **A54**, 137 (1975).