Giant Proximity Effect in Superfluid ⁴He

Justin K. Perron and Francis M. Gasparini Department of Physics, University at Buffalo, the State University of New York, Buffalo, NY 14260

(Dated: April 4, 2011)

Abstract

Recently it was shown that two confined regions of liquid ⁴He exhibit proximity effects over distances much larger than the correlation length $\xi[1]$. Here we report measurements of the superfluid fraction ρ_s/ρ and specific heat C_p for a 33.6 \pm 0.93 nm film of ⁴He. We compare these new data to those of a 31.7 \pm 0.1 nm film linking an array of 34 $\times 10^6 (2\mu m)^3$ boxes of ⁴He. This comparison allows us to show quantitatively, the enhancement in ρ_s/ρ due to the presence of the boxes in the temperature region where the film orders. The enhancement is observed at distances *over 600 times the bulk correlation length*. This anomalously large length scale is analogous to a giant proximity effect observed in High-T_c superconductors (HTSC)[2]. A mechanism has been proposed[3] involving flow fields of vortex pairs to explain the effect in the HTSC. This explanation may also be applicable to the ⁴He system.

 J. K. Perron, M. O. Kimball, K. P. Mooney, and F. M. Gasparini, Nat. Phys. 6, 499 (2010). P. Caputo, E. Goldobin, and M. R. Beasley,Phys. Rev. Lett. **93**, 157002 (2004).

- [3] D. Marchand, L. Covaci, M. Berciu, and M. Franz, Phys. Rev. Lett. **101**, 097004 (2008).
- [2] I. Bozovic, G. Logvenov, M. A. Verhoeven,