Heat Capacity of Solid ⁴He in Aerogel

Zhigang Cheng^a, Norbert Mulders^b, and Moses H. W. Chan^a

^aDepartment of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA ^bDepartment of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA

Non-classical rotational inertia (NCRI) for solid ⁴He has been observed both in bulk samples and samples confined in porous media like Vycor, porous gold and silica aerogel. Meanwhile, heat capacity measurements of bulk solid helium show a peak in addition to the T^3 term at similar temperatures as the NCRI onset. Our current understanding of the origin of NCRI involves the interconnection of dislocation network. However, it is not easy to understand that this model is applicable to NCRI observed inside ⁴He confined in porous media where the pore size is as small as 7nm. Therefore, solid helium confined in porous media plays a very important role for further investigation. We have carried out heat capacity measurements of ⁴He inside aerogel and Vycor. Our experiments show the existence of a heat capacity peak of ⁴He in aerogel. Experiments of heat capacity as well as thermal conductivity measurements of solid ⁴He in Vycor are in process. This work is supported by NSF under grant DMR-0706339.