Commensurate-Incommensurate Transition in ${}^4{ m He~Monolayer~Adsorbed}$ on a ${ m C}_{60}$ Fullerene

Hyeondeok Shin and Yongkyung Kwon

Department of Physics, Konkuk University, Seoul, Korea

Path-integral Monte Carlo calculations have been performed to study adsorption of 4 He on a single C_{60} fullerene molecule. In order to account for helium corrugations on the molecular surface, the sum of all interatomic pair potentials between a carbon atom and a 4 He atom is used for the 4 He- C_{60} interaction. The radial density distributions reveal a layer-by-layer growth of 4 He with the first adlayer being located at a distance of ~ 6.2 Å from the center of a C_{60} molecule. This first layer is found to exhibit various quantum states as the number of adsorbed 4 He atoms N varies. For $N{=}32$ the helium layer shows a commensurate solid structure with twenty helium atoms being localized on the tops of the hexagon centers of the C_{60} surface and the other twelve atoms above the pentagon centers. As more 4 He atoms are added, a commensurate-incommensurate transition is observed. After going through various domain wall states the first layer is crystallized into an incommensurate solid for $N \sim 52$. We find that solid states observed for $N{=}32,44$, and 48 do not show any superfluid response even below 0.2 K while domain-wall fluids formed with 45 to 47 4 He atoms show significant superfluid fractions below 0.6 K. Finally different quantum states observed in the first 4 He layer around a C_{60} are compared with phase diagrams determined for the helium monolayer on a graphite surface.