3 He adsorption processes on aerogel surface and their influence on 3 He spin kinetics

M.S. Tagirov^a, E.M. Alakshin^a, R.R. Gazizulin^a, A.V. Klochkov^a, V.V. Kuzmin^a, D.A. Tayurskii^a, and N. Mulders^b

^{*a*}Kazan (Volga region) Federal University, Kazan, Russia ^{*b*}University of Delaware, Newark, DE, USA

Supreme role of adsorbed ³He layer on aerogel surface in processes of nuclear magnetic relaxation was studied earlier ¹. In present work significant influence of surface heterogeneity on the processes of ³He nuclear magnetic relaxation at temperatures 1.5-4.2 K in two types of silica aerogel (aerogel with filamentary structure and powder aerogel with particle size 1-10 mkm) is discovered. This influence appears, for instance, in differences of ³He T₁ relaxation times for small portion of ³He adsorbed at different temperatures. Binding energy data of ³He on both silica aerogels was obtained experimentally. Distributions of binding energy do not differ significantly for both aerogel samples and lies in wide range up to 250 K. Adsorbed ³He molecules with binding energies 60-250 K play supreme role in processes of nuclear magnetic relaxation of gaseous and liquid ³He in aerogel.

This work is partially supported by Russian Fund for Basic Research (grant N 09-02-01253) and Ministry of Education and Science of the Russian Federation (project no. 13.G25.31.0025).

¹A. V. Klochkov, V. V. Kuzmin, K. R. Safiullin et al., JETP Lett. 88, 823 (2008).