π -phase and Spontaneous Supercurrent induced by Pseudo-ferromagnetic Junction in a Spin-polarized Superfluid Fermi Gas

T. Kashimura^a, S. Tsuchiya^{b,c}, and Y. Ohashi^{a,c}

^aDepartment of Physics, Keio University, Yokohama, Japan ^bDepartment of Physics, Tokyo University of Science, Tokyo, Japan ^cCREST(JST), Saitama, Japan

We theoretically propose a novel superfluid state with spontaneous current in a superfluid Fermi gas. When a weak non-magnetic potential barrier is embedded in a superfluid Fermi gas with population imbalance $(N_{\uparrow} > N_{\downarrow})$, where N_{σ} is the number of atoms with pseudospin $\sigma =\uparrow, \downarrow$), the barrier is known to be "magnetized" in the sense that some excess \uparrow -spin atoms are localized around it^{1,2}. This "ferromagnetic" junction naturally leads to the so-called π -phase, where the superfluid order parameter changes its sign across the junction. Using this phenomenon, we show that, when a non-magnetic potential barrier is set in a ring-shaped torus trap, the induced ferromagnetic junction twists the phase of the superfluid order parameter by π along the ring, leading to finite circulating Jpsephson current. In contrast to the ordinary metastable supercurrent state, this phase-twisted state with spontaneous current is shown to appear as the stable ground state at T = 0.

¹T. Kashimura, S. Tsuchiya, and Y. Ohaeshi, Phys. Rev. A **82**, 033617 (2010). ²This work is supported by the Global COE Program "High-Level Global Cooperation for Leading-Edge Platform on Access Space (C12)."