Development of a 3 He-hydraulic actuator for spin pump in superfluid 3 He-A $_{1}$

A. Yamaguchi^a, H. Tanaka^a, M. Wada^a, G. Motoyama^a, A. Sumiyama^a, Y. Aoki^b, Y. Okuda^b, S. Murakawa^c, Y. Karaki^d, M. Kubota^d, and H. Kojima^e

 a Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan b Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan

^cDeparatment of Physics, Keio University, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan ^dInstitute for Solid State Physics(ISSP), University of Tokyo, Kashiwanoha, Chiba 277-8581, Japan ^eSerin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08854, USA

The superfluid ³He A_1 phase contains a spin-polarized condensate. This property allows novel superfluid spin current experiments. In the mechano-spin effect (MSE) of the A_1 phase a mechanically applied pressure gradient and a superleak-spin filter enable to directly boost spin polarization of ³He in a small chamber. Using a flexible membrane as an electrostatically actuated pump, we carried out such MSE experiments and observed 50% enhancement of spin density in a chamber¹. We are currently developing a new ³He -hydraulic actuator for achieving greater enhancement of spin density. The actuator consists of two liquid ³He chambers located at a 4.2 K plate and in the interior of the cell. The pressure in the 4.2 K chamber is heater-controlled and it transmits a force onto a membrane in the cell. The motion of the membrane induces spin-polarized current into an accumulation chamber. The details of the apparatus and the latest results using the new actuator and facilities of ISSP, Univ. Tokyo, are presented.

¹A. Yamaguchi, Y. Aoki, S. Murakawa, H Ishimoto, and H. Kojima, Phys. Rev. B 80, 052507 (2009).