Efimov and Non-Efimov Three-Body Bound States for 2+1 Particles

Shimpei Endo^a, Pascal Naidon^b, and Masahito Ueda^a

^aDepartment of Physics, University of Tokyo, Japan b RIKEN, Japan

For a three-body system interacting via resonant two-body interaction, there exist three-body bound states called Efimov states. Efimov states have attracted a lot of interest since their recent experimental realizations with ultracold atoms¹. One of the intriguing features of the Efimov states is their universal property: they can be characterized completely by two parameters, the s-wave scattering length and a short-range three-body parameter, and are unaffected by all other details of the potential. Recently, however, novel three-body bound states have been predicted theoretically², which depend only on the s-wave scattering length. Although the origin of these trimers is closely related to the Efimov effect, they have a distinct nature. We will discuss on the relationship between these two kinds of three-body bound states.

¹F. Ferlaino, and R. Grimm, Physics, 3, 9 (2010)
²O. I. Kartavtsev, and A. V. Malykh, J. Phys. B, 40, 1429 (2007)