Suppression of KT transition in ⁴He film under high pressure ³He

S. Murakawa, M. Wasai, K. Akiyama, R. Nomura, and Y. Okuda

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan

We observed a superfluid transition of ⁴He films under high pressure liquid ³He by the transverse acoustic measurements of AC-cut quartz transducers. ⁴He was first adsorbed on the transducer and thereafter ³He was introduced to pressurize the ⁴He film. Superfluidity was detected as an enhancement of surface specularity which is calculated from the transverse acoustic impedance.

The specularity is not constant but has a large temperature dependence: the specularity is zero at high temperature and begins to increase below an onset temperature T_0 . The frequency dependence of T_0 is well explained by the dynamic KT model. Specularity in the low temperature limit has a linear dependence on ⁴He thickness as the superfluid density has the linear dependence in KT transition of the pure ⁴He film¹. From these frequency and thickness dependences, we can conclude that the enhanced specularity is due to the KT transition of the ⁴He film.

 T_0 is strongly suppressed at higher pressures although ⁴He film is thick enough. Because transition temperature was much higher in ⁴He-³He mixture film experiments² than T_0 , the observed suppression is caused not only by the ³He impurity effect but also by the strong particle correlation at high pressures.

¹D. J. Bishop and J. D. Reppy, Phys. Rev. B **22**, 5171 (1980).

²D. McQueeney and G. Agnolet and J. D. Reppy, Phys. Rev. Lett. **52**, 1325 (1984).