Phase Diagram of 4He Adsorbed in 1D 2.4 nm Nanopores of FSM

Y. Nakashima, T. Matsushita, M. Hieda, and N. Wada

Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan

Superfluidity of 4He adsorbed in one-dimensional (1D) nano-channels of FSM has been observed by the torsional oscillator experiment1. The superfluid properties depend on the pore diameter as well as the coverage (the amount adsorbed). Here, we studied the state of 4He adsorbed in 2.4 nm diameter 1D pores as a function of the coverage by measuring the pressure for adsorption and heat capacity. In the 2.4 nm pores, uniform 4He layers are formed up to about 1.7 atomic layers. At the lower coverages than about 1.1 layers, the 4He atoms are localized below a temperature T_L which lowers with increasing the coverage. The heat capacity isotherms have maxima n_B about 1.4 layers. The decrease of heat capacities above n_B indicates Bose quantum fluid layers on inert layers, where qualitatively different low-temperature heat capacities between 4He and 3He isotopes were adsorbed in other pore diameter FSM. The 4He superfluid is observed above about 1.5 layers. Since the inert-layer thickness is estimated to be about 0.55 nm, the tubes (or column) of the 4He fluid about 1.3 nm in diameter shows the superfluidity. The fluid tubes are likely to be in a 1D state at low temperatures where the thermal phonon wavelength is longer than the tube diameter.