Rovibrational Excitation and Relaxation of Molecules in ⁴He Nanodroplets

R. E. Zillich^a, G. Guillon^b, and A. Viel^b

^aInstitute for Theoretical Physics, Johannes Kepler University, Linz, Austria ^bInstitut de Physique de Rennes, UMR 6251, CNRS & Université de Rennes I, F-35042 Rennes, France

We have performed quantum Monte Carlo simulations of N_2^+ ions in ⁴He clusters and of Rb₂ in the triplet ground state, ${}^{3}\Sigma_{u}^+$, adsorbed on a ⁴He surface. For that purpose we have obtained the potential energy surface for the N_2^+ -He interaction and for the Rb₂-He interaction by ab initio coupled cluster calculations. Due to the weak attraction between Rb₂ and He, the ground state is an Andreev state, with the Rb₂ axis oriented parallel to the surface. The anisotropic dimple formed in the ⁴He surface by Rb₂ is shallow, which explains why we found almost free Rb₂ rotation parallel to the surface. Out-of-plane rotation is hindered by the surface. We furthermore used correlated basis function theory to calculate damping of Rb₂ vibrations due to coupling to the ⁴He surface. N₂⁺ is solvated inside ⁴He due to the strong attraction between the ionic molecule and ⁴He. We calculated binding energies, the structure of the ⁴He "shell" around N₂⁺, and the rotational dynamics of N₂⁺-⁴He_N clusters. We discuss the effect of the additional He-He repulsion due to the dipole moments induced by N₂⁺ on the chemical potential and on the ⁴He density around N₂⁺. Regarding rotational dynamics, N₂⁺ is an interesting case of a light rotor (favoring weak rotational coupling with ⁴He) with a strong interaction with ⁴He (favoring strong strong strong coupling). We present our results of rotational excitations of N₂⁺⁻⁴He_N.