³He Effect on 2D Superfluidity in ³He-⁴He Mixture Films on Planar Gold

T. Oda, H. Yamaguchi, T. Matsushita, N. Wada, and M. Hieda

Department of Physics, Nagoya University, Nagoya, Japan

There have been a number of studies exploring the nature of 2D superfluidity and configuration of ³He-⁴He mixture films on various substrates. At T = 0, ³He tends to float on top of underlying ⁴He due to the different zero point energies, and the overlayer ³He strongly affects the 2D superfluidity. A previous torsional oscillator study¹, in a thick ³He overlayer ($n_3 \sim 136 \ \mu \text{mol/m}^2$), reports an extra depletion of the superfluid density at low temperatures and a suppression of the superfluid transition temperature, yet mechanism of ³He effect on the 2D superfluidity has not been settled. We present here a result of QCM (quartz crystal microbalance) measurements on planar gold substrate. Our measurements are done by keeping a constant ³He coverage (0, 1.7, or 19.0 $\mu \text{mol/m}^2$) and then adding ⁴He. For the mixture films with $n_3 \sim 1.7 \ \mu \text{mol/m}^2$, no effect of ³He on the superfluidity is observed. However, for $n_3 \sim 19.0 \ \mu \text{mol/m}^2$, we observe a strong effect of ³He on the superfluidity as well as the previous study¹. It is suggested, as one of possible scenarios, that ³He in the mixture films reduces the vortex core energy above a critical value of ³He between 1.7 and 19.0 $\mu \text{mol/m}^2$.

¹D. McQueeney, G. Agnolet and J. D. Reppy, Phys. Rev. Lett. **52**, 1325 (1984).