Quest for Randomly Networked Superfluidity of ³He in Porous Glass

J. Hitomi^a, R. Ito^a, T. Kakuda^a, M. Kanemoto^a, and **Y. Sasaki**^{a,b}

^aDepartment of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan ^bResearch Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto, Japan

There have been numerous studies on ⁴He in nanoporous material such as Vycor glass or Gelsil glass. The effect of confinement in nanometer channels changed the properties of liquid and solid ⁴He. These system are very interesting because the characteristic length scale of ⁴He system such as superfluidity is in the atomic scale and the size of pores are several times larger than the length scale so that the system under interest exist in a little influenced manner. For the case of ³He the coherence length of superfluid wave function is in the order of 10nm so that the pores in Vycor Glass is too narrow to form successful Cooper pairs of ³He inside. Although the structure is very different form that of the Vycor glass, aerogel has been attracting interests of many researchers on Superfluid ³He because it was found to be the first successful porous material to affect the superfluidity of ³He. After a long struggle to understand the nature of superfluid ³He in aerogel. In this work we report on our experimental search for another system of confined superfluid ³He in a porous material which has similar geometric shape to the Vycor glass with its diameter several times larger than the coherence length of the bulk superfluid ³He.