Simultaneous torsional osciallator and NMR study of solid ³He-⁴He mixtures at low temperatures

P. Gumann, I. Taminiau, and D.G. Cory

Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada

We have carried out simultaneous nuclear magnetic resonance (NMR) and torsional oscillator (TO) studies of ³He-⁴He solid mixtures in a cryogen-free dilution refrigerator. Extensive measurements on various samples with one hundred to a few hundred parts per million (ppm) of ³He in solid ⁴He using NMR/TO methods have been performed in the temperature range of from 1 K to 10 mK. Our double frequency torsional oscillator response appeared to be in very good agreement with previously measured data. Multiple frequencies allowed dynamical studies of ³He-impurities thus a good comparison with the relaxation times obtained from the NMR data. Different relaxation times corresponding to various 'states' of ³He within the ⁴He crystal have been found. Capability of long measuring times, due to the use of a cryogen-free cryostat, made it possible to a study very long NMR relaxation times and time dependence of the response of TO.