Nucleation of 1/3-vortices in a rotating and rapid quenched F = 2 spinor Bose-Einstein condensate in the cyclic state

S.-W. \mathbf{Su}^a , I.-K. Liu^b, and S.-C. Gou^a

^aDepartment of Physics, National Tsing Hua University, Hsinchu 30047, Taiwan ^bDepartment of Physics, National ChangHua University of Education, Changhua 50085, Taiwan

By solving the stochastic projected Gross-Pitaevskii equation, we theoretically study the formation of the fractional votices of F = 2 spinor Bose-Einstein condensates in the cyclic state during the rotating evaporative cooling. Our numerical calculations show that stable 1/3-vortices of the spinor BEC in the cyclic state can be created in the resultant spin textures. The core structures and modulational instabilities of the single 1/3-vortices are investigated.By solving the stochastic projected Gross-Pitaevskii equation, we theoretically study the formation of the fractional votices of F = 2 spinor Bose-Einstein condensates in the cyclic state during the rotating evaporative cooling. Our numerical calculations show that stable 1/3-vortices of the spinor BEC in the cyclic state can be created in the resultant spin textures. The core structures and modulational instabilities of the single 1/3-vortices are investigated.