³He-⁴He liquid mixtures investigated by neutron imaging technique at low temperatures

I. Taminiau^a, J. Scherschligt^b, D. Hussey^b, D.L. Jacobson^b, D.G. Cory^{ab}, and P. Gumann^a

 a Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada b National Institute of Standards and Technology, Gaithersburg, MD, USA

Helium is a unique element which exhibits a variety of different phases and unusual behaviors. It can be found in nature in two stable isotopic forms: ³He and ⁴He. One of the most profound quantum mechanical effects, superfluidity, occurs below 2.17 K in liquid helium ⁴He and 0.003 K in liquid ³He. There are also interesting phenomena occurring in mixtures of the two isotopes. One demonstrative example is the finite solubility of liquid ³He (a Fermi system) in superfluid ⁴He (a Bose system) even at T = 0 K. This is the basic principle in the operation of a ³He-⁴He dilution refrigerator capable of continuously producing 2 mK. While much has been done in studies of the thermodynamical, quantum properties of liquid helium mixtures, there has not been any attempt to visualise the dynamics of ³He in liquid ⁴He.

Presented results of neutron imaging experiments on 0.3 bar liquid ${}^{3}\text{He}{}^{4}\text{He}$ mixtures, at 1.5 K have shown a clear diffuion of ${}^{3}\text{He}$ driven by the difference in chemical potential. The data were taken for over 12 hours using a high resolution CCD camera.