Spin-spin Relaxation Time Measurements of 2D ³He on Graphite

D. Sato, K. Naruse, T. Matsui, and Hiroshi Fukuyama

Department of Physics, The University of Tokyo, Tokyo, Japan

Monolayer ³He adsorbed on Grafoil (exfoliated graphite) preplated with monolayer ⁴He is an ideal twodimensional (2D) fermion system. Some years ago, we measured spin-spin relaxation time (T_2) of 2D ³He in the second layer by the spin echo technique of pulsed-NMR near localization and found unusual behavior not explained by a simple first-order transition between liquid and solid phases. We now extended our measurements to the pure fluid density region $(0.7 \le \rho_2 \le 5.3 \text{ nm}^{-2})$ where the magnetization shows an expected temperature dependence for Fermi degeneracy with $150 \le T_F \le 300 \text{ mK}$. The T_2 value measured at T = 100 mK and f = 5.5 MHz shows a broad maximum of 5.7 ms around $\rho_2 = 2 \text{ nm}^{-2}$. This can be related to the fact that the effective Fermi velocity becomes maximum near that density. On the other hand, we observed an unexpected measuring frequency (f) dependence of T_2 , i.e., the inverse T_2 varies in proportion to f at least in the range of $1.16 \le f \le 5.5 \text{ MHz}$. This is curious since basically T_2 should be independent of f as long as $f \ll k_B T_F/h$ (\approx several GHz). This could be explained by spin diffusion in a microscopic magnetic field inhomogeneity caused by the huge diamagnetism and mosaic angle spread of Grafoil substrate. A similar frequency dependence of T_2 was also reported in the earlier pulsed-NMR study of submonolayer solid ³He.¹ We are now preparing new measurements at much lower frequencies where the intrinsic T_2 can be determined with good precision by extrapolating to zero frequency.

¹B. Cowan, L.A. El-Nasr, and M. Fardis, Jpn. J. App. Phys. **26**, 309 (1987).