Multiple Spin Echoes and Instabilities in Hyperpolarized ³He-⁴He Solutions

E. Baudin^{*a*}, S.W. Morgan^{*a*,*b*}, H. Desvaux^{*b*}, P.-J. Nacher^{*a*}, and G. Tastevin^{*a*}

^aLaboratoire Kastler Brossel, ENS; CNRS; UPMC; Paris, France ^bIRAMIS- CEA Saclay, Gif sur Yvette, France

Hyperpolarized He mixtures, obtained by dissolution of laser polarized ³He gas into liquid ⁴He, offer a rich playground to investigate non-linear spin dynamics induced by long-range magnetic interactions. Such residual interactions, not averaged out by Brownian motion, are met in other systems (B-E condensates, sf ³He, 2-D ¹H gas, and quantum entangled spin systems) but play a leading role in highly magnetized liquids where the so-called distant dipolar field, DDF, leads to spectacular effects: spectral clustering, precession instabilities, spin turbulence, etc. Our investigations combine low-field NMR (2.5 mT) on bulk polarized solutions (1 cm³, 1 – 5% ³He, 0 – 30% polarizations) at 1–4 K and numerical 3D simulations on spin lattices. Instabilities triggered by single 90° pulses are now studied at DDFs up to a few mG with negligible radiation damping.¹ Transverse magnetization is stabilized by frequent rf-driven 'time reversal' to measure its residual damping rate and ultimately characterize the DDF-induced spatially inhomogeneous patterns. Following a 90° – 90° excitation DDF-induced multiple spin echoes (MSE) exhibit major differences with those observed in solid ³He (mostly due to nearest neighbors).² Attenuation rates are compared to numerical predictions and to MSE data obtained in hyperpolarized ¹²⁹Xe at 300 K.

¹Thanks to an active feedback scheme described in our companion report to LT26. ²G. Deville et al, Phys. Rev. B. **19**, 5666 (1979)