Metal Clusters in a Helium Matrix

S. Janecek^a, **E. Krotscheck^{b, c}**, M. Liebrecht^b, and R. Zillich^b

^aInstitut de Ciéncia de Materials de Barcelona (ICMAB–CSIC), Campus de Bellaterra, 08193 Barcelona, Spain

^bInstitut für Theoretische Physik, Johannes Kepler Universität, A 4040 Linz, Austria ^cDepartment of Physics, University at Buffalo, SUNY Buffalo NY 14260

Capturing atoms in ⁴He nanodroplets allows to assemble cold nanoclusters in a well controlled step-bystep way. A challenge for the theorist is the multi-scale description of all degrees of freedom of such a system: the electrons of the cluster, the motion of the ions of the cluster and the motion of the ⁴He atoms surrounding the cluster. We present calculations of small Mg_N clusters within ⁴He droplets. We employ density functional theory in the local density approximation (LDA) for the electronic structure of Mg_N and Path Integral Monte Carlo simulations for the superfluid ⁴He droplet. The interaction between the cluster and the surrounding ⁴He is modeled in a such a way that the known He-Mg interaction is reproduced for the dimer, and the polarization of the Mg valence electrons is treated, consistently with the rest of the system, in the LDA. The Mg_N clusters are annealed including the response of the ⁴He environment. We discuss the effect of the ⁴He matrix on the structure and the response of the Mg_N cluster.