Superclimbing dislocations in solid ⁴He

A.B. Kuklov and D. Aleinikava

The College of Staten Island and The Graduate Center, City University of New York, USA

Superclimbing dislocations ¹ are shown to exhibit stress induced and temperature assisted roughening proceeding as a first-order phase transition at finite temperature ². The transition develops at a macroscopic scale L_h growing with temperature T. For a dislocation size L smaller than L_h , speed of first sound along the superfluid core experiences a drastic suppression in a narrow temperature interval. We suggest that this feature is behind the recently observed suppression of the superflow rate ³. Such a suppression is a consequence of the resonant-type creation of the jog-antijog pairs by the imposed chemical potential μ which induces a mechanical stress on the core. We have also found that the suppression is characterized by the quasi-periodicity with respect to μ and suggest that it should be searched for in the Umass-Sandwich setup ³. For $L > L_h$, the hysteretic behavior with respect to the applied μ develops. We also argue that contributions of a network of superclimbing dislocations, stressed by mechanical and thermal forces, to specific heat of a ⁴He crystal are essentially independent of the dislocation density – in a full analogy to the dislocation contribution to elastic moduli ⁴.

¹S.G. Söyler, et. al., Phys. Rev. Lett. 103, 175301 (2009).

²D. Aleinikava, A.B. Kuklov, Phy.Rev. Lett. to be published; arXiv:1102.5522.

³M. Ray and R. Hallock, Phys.Rev. Lett. **105**, 145301 (2010).

⁴A. Granato, K. Lucke, J. Appl. Phys. **27**, 583 (1956); ibid. 789(1956).