Doping dependence of the Nernst effect in $Eu(Fe_{1-x}Co_x)_2As_2$ - departure from Dirac fermions physics

M. Matusiak^{*a*}, Z. Bukowski^{*b*}, and J. Karpinski^{*b*}

^aInstitute of Low Temperature and Structural Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw, Poland

^bLaboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland

We report a systematic study of the transport properties in the series of $\operatorname{Eu}(\operatorname{Fe}_{1-x}\operatorname{Co}_x)_2\operatorname{As}_2$ single crystals with x = 0, 0.15, 0.20 and 0.30. Spin-density-wave order is observed in the undoped and the least doped samples (x = 0, 0.15), while for x = 0.15 and 0.20 $\operatorname{Eu}(\operatorname{Fe}_{1-x}\operatorname{Co}_x)_2\operatorname{As}_2$ becomes a superconductor. We found the properties of the parent $\operatorname{EuFe}_2\operatorname{As}_2$ compound well described by the Dirac fermions model, whereas cobalt doping caused an evolution of the system toward a regular metallic state. The antiferromagnetic ordering of the Eu^{2+} ions at $T_N \approx 20$ K has only minor influence on the measured quantities.