Superconducting transition under long-range ordered antiferromagnetic state in high- T_c cuprates Ba₂Ca₄Cu₅O₁₀(F,O)₂: Cu- and F-NMR studies

S. Shimizu^{*a*}, H. Mukuda^{*b*}, Y. Kitaoka^{*a*}, P. M. Shirage^{*b*}, H. Kito^{*b*}, and A. Iyo^{*b*}

^aGraduate School of Engineering Science, Osaka University, Osaka, Japan ^bNational Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan

In the phase diagrams of high- T_c superconductivity (SC) with doping and temperature, a long-standing problem is the interplay between SC and antiferromagnetism (AFM).

Recently, from Cu- and F-NMR studies, we have observed a SC transition in the background of AFM state in a five-layered high- T_c cuprate Ba₂Ca₄Cu₅O₁₀(F,O)₂⁻¹. Upon cooling, the internal magnetic field at F sites develops below 175 K, suggesting the long-range AFM ordering with $T_N=175$ K. On the other hand, the Knight shift K for F-NMR spectra is constant upon cooing from room temperature, but it suddenly decreases below $T_c=52$ K; this is the evidence of SC transition in the long-range AFM state. We report systematic Cu- and F-NMR studies on Ba₂Ca₄Cu₅O₁₀(F,O)₂ samples with different values of hole density p. Here, p values are controlled by changing the ratio between F¹⁻ and O²⁻ at apical sites from underdoped to nearly optimally-doped regions ². We will discuss the uniform coexistence of SC and AFM ³, and the layer-number dependence of the AFM-SC phase diagram.

¹S. Shimizu *et al.*, J. Phys. Soc. Jpn. **80**, (No. 4, in press, 2011), arXiv:1102.5282.
²A. Iyo *et al.*, Physica C **392**, 140 (2003): S. Shimizu *et al.*, Phys. Rev. B (in press), arXiv:1103.3407.
³H. Mukuda *et al.*, J. Phys. Soc. Jpn. **77**, 124706 (2008): J. Phys. Soc. Jpn. **78**, 064075 (2009).