Coexistence of Superconductivity and Magnetism in Intermetallic NiBi₃

aInstituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. A. Postal 70-360. México, D.F. 04510 MÉXICO. bInstituto de Fisica, Universidad Nacional Autónoma de México. México, D.F. 04510 MÉX-ICO.

aR.Escudero aE.Martinez aB.Ruiz bL. Bucio

NiBi₃ polycrystals were synthesized via a solid state method. X-ray diffraction analysis shows that the main phase present in the sample corresponds to NiBi₃ in a weight fraction of 96.82 % according to the refinement of the crystalline structure. SEM - EDS and XPS analysis reveal a homogeneous composition of NiBi₃, without Ni traces. The powder superconducting samples were studied by performing magnetic measurements. The superconducting transition temperature and critical magnetic fields were determinated as $T_C = 4.05$ K, H_{C1} = 110 Oe and $H_{C2} = 3,620$ Oe. The superconducting parameters were ξ_{GL} = 301.5 Å, λ_{GL} = 1549 Å, and κ = 5.136. Isothermal measurements below the transition temperature show an anomalous behavior. Above the superconducting transition the compound presents ferromagnetic characteristics up to 750 K, well above the Ni Curie temperature.