INVESTIGATION OF THE BCS GAP EQUATION FOR d +i d CUPRATE SUPERCONDUCTORS

PARTHA GOSWAMI

Deshbandhu College, University of Delhi, Kalkaji, New Delhi-110019, India

E-mail: physics_goswami@yahoo.co.in;Tel:0091-129-243-9099.

ABSTRACT We consider a $(d_{x2-y2} + i d_{xy})$ cuprate superconductor and model the functional dependence of the corresponding pairing interaction $V(\mathbf{k},\mathbf{k'}) = (V_{x2-y2}(\mathbf{k},\mathbf{k'})+V_{xy}(\mathbf{k},\mathbf{k'}))$ of purely electronic (or a combination of electron-electron(e-e) and electron-phonon(e-ph)) origin by a function of the form $V_{\text{trial}} = [(V_{x2-y2} (k_F, k_F) + V_{xy}(k_F, k_F)) F(\phi, \phi')]$, where $V_{x2-y2}(\mathbf{k}, \mathbf{k}') = V_1$ (cos $k_xa - \cos k_ya$) (cos k'_xa - cosk'_ya), $V_{xy}(\mathbf{k}, \mathbf{k'}) = 4V_2 \sin(k_xa) \sin(k_ya) \sin(k_ya) \sin(k_ya)$, V_1 and V_2 are the coupling strengths, k_F is the Fermi momentum, $\varphi = arc(tan(k_v/k_x))$, and (k_x,k_v) belong to the first Brillouin zone (BZ). Within the BCS framework, the interactions lead to superconducting gap $\Delta_{d+id}(\mathbf{k})$ with nodes and anti-nodes in the singlet pairing channel. The gap may be thought of as the development of a small d_{xy} superconducting order parameter(OP) phased by $\pi/2$ with respect to the principal d_{x2} -y₂ one leading to the violation of both parity and time-reversal symmetry. We show that the zero-temperature superconducting gap, in the anti-nodal/nodal regions, is non-zero/zero provided the dimensionless coupling strength $g(k_F) \sim (D/2) (V_{x2-y2})$ $(k_F,k_F) + V_{xv}(k_F,k_F) > 0$, where the quantity D is the density of energy states. This inequality is found to be satisfied if the Fermi momentum components do not get perched anywhere in the regions around $[(0,\pm\pi),(\pm\pi,0)]$ in the first BZ for $V_1 < 0$ and $V_2 < 0$, or $V_1 < 0$ and $V_2 > 0$. For $V_1 > 0$ and $V_2 > 0$ or $V_1 > 0$ and $V_2 < 0$, the requirement is just the opposite. The restrictions could be realized by manouvreing the doping level in a hole-doped system. We find that the OP amplitude ($\Delta_0/\hbar\omega_c$) is an increasing function of g(k_F).