Quantum Criticality and Superconductivity in $SmFe_{(1-x)}Co_xAsO$

H. Kaneko^a, Y. Yun^a, N. Shumsun^a, A. Savinkov^a, H. Suzuki^a, Y.K. Li^b, Q. Tao^b, G.H. Cao^b, and Z.A. Xu^b

^aDepartment of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 Japan ^bDepartment of Physics, Zhejiang University, Hangzhou 310027, China

One of the iron pnictide superconductors, $SmFe_{(1-x)}Co_x AsO$ shows a domelike T_C curve against Co concentration x. The parent compound SmFeAsO shows the crystal structure transition and an antiferromagnetic (AFM) ordering. With increasing x, the structural transition temperature T_D and AFM T_N decrease and reach 0 K at the critical concentration x_C . It is not so clear that the critical concentrations for T_D and for T_N coincident to each other or not. In our present report we investigated the structural transition by the low temperature x-ray diffraction and the AFM ordering and the superconductive transition by measuring magnetization using the SQUID magnetometer, MPMS. We determined the phase diagram of T_D , T_N and the superconductive transition temperature T_C against the Co concentration xnear the critical concentration x_C precisely. We found that the maximum of T_C in domelike shape locates near the critical concentration x_C , suggesting the QCP. We will also discuss the quantum fluctuation of the structure change.