Field-induced quantum critical point and nodal superconductivity in the heavy-fermion superconductor ${f Ce_2PdIn_8}$

J. K. Dong^a, H. Zhang^a, X. Qiu^a, B. Y. Pan^a, Y. F. Dai^a, T. Y. Guan^a, S. Y. Zhou^a, D. Gnida^b, D. Kaczorowski^b, and **S. Y. Li**^a

^aDepartment of Physics, State Key Laboratory of Surface Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

^bInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, P. O. Box 1410, 50-950 Wroclaw, Poland

The in-plane resistivity ρ and thermal conductivity κ of the heavy-fermion superconductor Ce₂PdIn₈ single crystals were measured down to 50 mK. A field-induced quantum critical point, occurring at the upper critical field H_{c2} , is demonstrated from the $\rho(T) \sim T$ near H_{c2} and $\rho(T) \sim T^2$ when further increasing field. Large residual linear term κ_0/T at zero field and the rapid increase of $\kappa(H)/T$ at low field give evidences for nodal superconductivity in Ce₂PdIn₈. The jump of $\kappa(H)/T$ near H_{c2} suggests a first-order-like phase transition at low temperature. These results mimic the features of the famous CeCoIn₅ superconductor, implying that Ce₂PdIn₈ may be another interesting compound to investigate the interplay between magnetism and superconductivity.