Superconductivity and structure transition in Fe-based superconductors: analysis based on the orbital fluctuation theory

H Kontani^{*a*}, T. Saito^{*a*}, and S. Onari^{*b*}

^aDepartment of Physics, Nagoya University, Nagoya, Japan
^bDepartment of Applied Physics, Nagoya University, Nagoya, Japan

The main features in Fe-based superconductors are summarized as (i) orthorhombic transition accompanied by remarkable softening of the shear modulus C_{66} , (ii) high- T_c superconductivity close to the orthorhombic phase, and (iii) stripe-type magnetic order induced by orthorhombicity. To understand them, we analyze the multiorbital Hubbard-Holstein model with Fe-ion optical phonons. In the randomphase-approximation (RPA), a small electron-phonon coupling constant ($\lambda \sim 0.2$) is enough to produce large orbital (=charge quadrupole) fluctuations. The most divergent susceptibility is the O_{xz} -antiferroquadrupole (AFQ) susceptibility, which causes the s-wave superconductivity without sign reversal (s_{++} wave state). ¹ The $_{s++}$ -wave state is robust against impurities, ² consistently with experimental observations. At the same time, divergent development of $O_{x^2-y^2}$ -ferro-quadrupole (FQ) susceptibility is brought by the "two-orbiton process" with respect to the AFQ fluctuations. The derived FQ order not only triggers the orthorhombic structure transition, but also induces the instability of stripe-type magnetic order. Therefore, abovementioned features (i)-(iii) are well explained based on the orbital fluctuation theory.

¹H. Kontani and S. Onari, Phys. Rev. Lett. **104**, 157001 (2010). ²S. Onari and H. Kontani, Phys. Rev. Lett. **103**, 177001 (2009).

INVITED PAPER