75 As-NQR study of Superconductivity in LaFeAsO $_{1-x}$ F $_x$

T. Oka^a , Z. Li^b , S. Kawasaki^a, G. F. Chen^b, N. L. Wang^b, and G. -q. Zheng^{a,b}

 a Department of Physics, Okayama University, Okayama, Japan

^bInstitute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, China

The discovery of superconductivity in LaFeAsO_{1-x}F_x at T_c =26K¹, followed by that in ReFeAsO_{1-x}F_x (Re: Ce, Pr, Nd, Sm) with T_c as high as 55K², has attracted much attention. We have performed Asnuclear quadrupole resonance (NQR) measurements on LaFeAsO_{1-x}F_x to elucidate its superconducting gap structure and mechanism of the cooper pair forming.

Here, we report a systematic study by ⁷⁵As nuclear quadrupole resonance in LaFeAsO_{1-x}F_x. The highest $T_c = 27$ K is realized for x = 0.06 with the strongest antiferromagnetic spin fluctuation (ASF) among the family. Upon increasing doping level from x = 0.06, the ASF decreases, and so does T_c . In the optimally doped compound, the spin-lattice relaxation rate $(1/T_1)$ below T_c decreases exponentially down to 0.13 T_c , which unambiguously indicates that the superconducting gaps are fully-opened. The temperature variation of $1/T_1$ below T_c is rendered gradually with increasing x to show a seemingly T^3 behavior for x = 0.10 and 0.15, which can be accounted for by the impurity scattering.

¹Y. Kamihara *et al.*, J. Am. Chem. Soc. **130**, 3296 (2008).

²Z. A. Ren *et al.*, Chin. Phys. Lett. **25**, 2215 (2008).