Superconductivity and pseudo-gap behavior in organic Mott systems, κ -(BEDT-TTF)₂X with triangular lattice

K. Miyagawa^a, Y. Shimizu^a, F. Kagawa^a, H. Ooike^a, H. Taniguchi^b, and K. Kanoda^a

^aDepartment of Applied Physics, University of Tokyo, Tokyo, Japan ^bDepartment of Physics, Saitama University, Saitama, Japan

The κ -(BEDT-TTF)₂X salts are recognized as model systems for Mott physics. X=Cu[N(CN)₂]Cl compound, which has an anisotropic triangular lattice, is a Mott insulator with an antiferromagnetic transition at 25 K. Superconductivity appears under pressure or the substitution of X by (Cu[N(CN)₂]Br and Cu(NCS)₂). X=Cu₂(CN)₃ is also a Mott insulator and a more isotropic triangular-lattice system. It does not show a long range magnetic order down to low temperatures due to strong spin frustrations. It undergoes a superconducting phase transition at 4 K under pressure. The κ -(BEDT-TTF)₄Hg_{3- δ}Br₈ is a doped Mott insulator with a triangular lattice system due to non-stoichiometry of Hg. We have performed ¹³C NMR measurements in superconducting states of the four organic superconductors above. For all of the superconducting phases, $1/T_1$ was found to show the T^3 temperature dependence and no Hebel-Slicher peak. The pseudo-gap behavior is only observed in deuterated-Cu[N(CN)₂]Br and Cu[N(CN)₂]Cl, which locates just on Mott boundary. This fact suggests that the peseudo-gap behavior is related to not only Mott transition but also the spin frustrations.