Metamagnetism, superconducting properties, and intrinsic vortex pinning in 1111 Fe arsenide single crystals probed by torque magnetometry

G. Li^{*a*}, G. Grissonanche^{*a*}, B. S. Conner^{*a*}, A. Gurevich^{*a*}, S. Weyeneth^{*b*}, P. Moll^{*c*}, N. D. Zhigadlo^{*c*}, S. Katrych^{*c*}, Z. Bukowski^{*c*}, J. Karpinski^{*c*}, and L. Balicas^{*a*}

^aNational High Magnetic Field Laboratory, FSU, Tallahassee, Florida 32310, USA ^bPhysik-Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland ^cLaboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland

Torque magnetometry in the SmFeAsO_{1-x}F_x system, for x = 0 and 0.1, reveals a sharp and anisotropic metamagnetic transition which is clearly associated with the re-orientation of the Sm moments. Although the Neel temperature is ~ 5 K, one needs fields in the order of 35 to 40 T to re-orient the associated moments, indicating very anisotropic exchange constants. The transport is affected by the transition, indicating a coupling between the FeAs and SmO layers. We also developed a method to separate the magnetic and the superconducting components which are superimposed onto the reversible component of the angular dependent torque $\tau_{rev}(\theta, H, T)$ in underdoped LaFeAsO_{1-x}F_x. By using the Kogan formalism we extract a strong T- and H- dependence for the superconducting anisotropy γ , and a power law dependence, for the penetration depth. At lower Ts, one observes the emergence of sharp peaks in $\tau_{rev}(\theta, H, T)$ for H oriented along an angle θ_c close to the superconducting planes and which are consistent with predictions for the intrinsic pinning of vortices by a layered crystallographic structure as well as a series of smaller structures at higher angles suggesting transitions among kinked vortex structures.