NMR Studies on Iron Pnictide Superconductors of $LaFeAsO_{0.89}F_{0.11}$ and Ca-Fe-Pt-As

Y. Kobayashi^{a, c}, T. Iida^a, K. Suzuki^a, E. Satomi^a, T. Kawamata^{*, a, c}, M. Itoh^{b, c}, and M. Sato^{†, b, a, c}

^aDept. of Phys., Division of Material Science, Nagoya University, Nagoya 464-8602 Japan ^bToyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan ^cJST TRIP, Nagoya University, Nagoya 464-8602, Japan

Results of NMR studies on Fe pnictide superconductors of LaFeAsO_{0.89-x}F_{0.11+x} and Ca-Fe-Pt-As are presented. (1) The nonexistence of the coherence peak in NMR-1/ T_1 vs T curves of Fe-pnicites is well known and has been considered in many reports as the evidence for the s_{\pm} -symmetry with the sign reversing of the order parameters between the Fermi surfaces around Γ and M points. One might think that it contradicts the fact that the T_c -suppression by nonmagnetic impurities is too small, as we pointed out by detail studies on LaFe_{1-y}M_yAsO_{0.89}F_{0.11} (M=Ru, Co, Ni) system. On this point, arguments are given that if effects of the energy-broadening of quasi-particles are taken into account, the nonexistence of the coherence peak can be well understood using the s_{++} -symmetry with no sign reversing. (2)Samples of Ca-Fe-Pt-As system first found by Nohara's group was prepared ($T_c \sim 30$ K) and characterized. Here, results of our ⁷⁵As-NMR studies on this system are given in addition to various other physical properties.

*present address: Dept. of Appl. Phys., Gradu. School of Engi., Tohoku Univ., Sendai 980-8578, Japan. †present address: Research Center for Neutron Science and Technology, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.