Characteristics of T_c and $\rho(T)$ of polycrystalline (In₂O₃)-(ZnO) films with low carrier density

B. Shinozaki^{*a*}, S. Takada^{*a*}, N. Kokubo^{*b*}, K. Makise^{*c*}, T. Asano^{*a*}, K. Yamada^{*a*}, K. Yano^{*d*}, and H. Nakamura^{*d*}

^aDepartment of Physics, Kyushu University, Fukuoka, Japan

^bCenter for Research and Advancement in Higher Education, Kyushu University, Fukuoka, Japan

^cNational Institute of Information and Communication Technology, Kobe ,Japan

^dAdvanced Technology Research Laboratories, Idemitsu Kosan Co. Ltd., Chiba, Japan

For the polycrystalline $(In_2O_3)_{1-x}$ - $(ZnO)_x$ prepared by annealing in air, we have investigated the relation among superconductivity, $\rho(T)$ characteristics and preparation conditions. To study the distribution of elements, we have investigated the micro-structure by scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). It has been found that 1) the films annealed at restricted region of annealing temperature T_a and for time t_a show the superconductivity. Superconducting transition temperature T_c and the carrier density n are $T_c < 3.3$ K and $n \approx 10^{25}/m^3 \sim 10^{26}/m^3$, respectively. 2) Although data in the T_c - T_a relation are scattered depending on t_a , the T_c shows relatively good correlation with n and ρ , taking a convex form. 3) The data on EELS spectra mapping of indium plasmon indicate that droplets of the pure indium phase exist on grain boundaries and near the interface between the film and the glass substrate. However, it seems that these droplets do not form an electrical conducting path from the dispersed distribution of droplets in STEM-EELS spectra mapping.