Vortex penetration into type-II superconductors with pinning centers

I.V. Boylo^a, I.B. Krasnyuk^a, and R.M. Taranets^b

^aDonetsk Institute for Physics and Engineering NASU, Donetsk, Ukraine ^bSchool of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom

In the vortex-glass regime at the temperature T close to the melting curve $T_m(B)$, the superconductor response becomes substantially nonlinear because the parameter $\alpha \sim U(j)/T \to \infty$ as $j \to 0$. In this case, we have the continuity equation ${}^1 b_t = -[vb]_x$. The activation barrier has the form $U(j) = U_0 \ln (j_c/j)$ and the vortex velocity can be represented as $v = v_0 \exp(-U(j)/T) = v_0 J |J|^{\sigma}$, $(J = j/j_c)$. Then the equation can be reduced to $b_t = \nabla(\nabla b |\nabla b|^{\sigma})$. Here, $\sigma = U_0/T, x \mapsto x/d_p, t \mapsto tv_o/d_p, d_p = cB_0/4\pi j_c$, and j_c is the critical current density. Let us solve equation with the boundary conditions b(0,t) = $b_0(1-t)^m, 0 < t < 1, m < 0$. In the case $m = -1/\sigma$, the problem has the solution ${}^{2, 3} b_A(x,t) =$ $b_0(1-t)^{-1/\sigma}(1-x/x_0)_+^{(\sigma+2)/\sigma}$, where $x_0 = ((\sigma+2)/\sigma) [2\sigma(\sigma+1)/(\sigma+2)]^{1/(\sigma+2)} b_0^{\sigma/(\sigma+2)}$. The solution is a magnetic wave with an immobile point at the front localization within $0 < x < x_0$. An analysis of the structure of the self-similar solutions shows that the blow-up regime is not localized for $m < -1/\sigma$ 2 , that is $x_f \sim (1-t)^{(1+m\sigma)/(\sigma+2)} \to \infty$ for $t \to 1^-$, where x_f is the coordinate of the magnetic wave front.

¹G. Blatter, M.V. Feigel'man, V.B. Geshkenbein et al., Rev. Mod. Phys. 66, 1125 (1994).
²I.B. Krasnyuk, Yu.V. Medvedev, Technical Physics Letters. 31, 423 (2005).
³I.B.Krasnyuk, R.M.Taranets, Technical Physics. 53, 1041 (2008)