The relationship between the normal state Fermi liquid scattering rate and the superconducting state

M. Núñez-Regueiro^{*a*}, G. Garbarino^{*a*}, and M.-D. Núñez-Regueiro^{*b*}

^aInstitute Néel, CNRS et UJF, 25 rue des Martyrs, BP 166, F-38042 Grenoble cedex 9, France ^bLaboratoire de Physique des Solides, Bât. 510, Université de Paris-Sud, F-91405 Orsay cedex, France

Fermi liquids (FL) are ubiquitous in physics: helium, neutron matter, cold atoms, metals. In several bad metal superconductors, e.g. A-15, borocarbides, heavy fermions, the FL scattering time τ quadratic temperature dependence, i.e. $\rho = AT^2$, dominates the low temperature electrical resistivity ρ above the superconducting transition temperature T_c . In the first place, we show empirically that there exists a relationship between A and T_c when both vary under an external parameter, such as pressure. The more resistive the compound the higher the T_c . Through the analysis of Landau theory of FL, we find that it is a general feature of FL, due to the fact that the scattering that is the main cause of τ is the same one that bounds the pairs that condensed at T_c . We devise a method that allows the determination of the coupling constant λ , which is validated through application to ³He-'s superfluid transitions and τ 's extracted from different properties. This method works for conventional superconductors, but fails with heavy fermions.

*Present address: European Synchrotron Radiation Facility (ESRF), 6 rue Jules Horowitz, BP 220, F-38043 Grenoble, France

[†]deceased