STM imaging of broken symmetry states in cuprate superconductors

Jennifer E. Hoffman^a, Tess L. Williams^a, Elizabeth J. Main^a, Ilija Zeljkovic^a, M. C. Boyer^b, W. D. Wise^b, Kamalesh Chatterjee^b, Takeshi Kondo^c, T. Takeuchi^c, Hiroshi Ikuta^c, and Eric W. Hudson^{a, b}

^aDepartment of Physics, Harvard University, Cambridge, MA, U.S.A. ^bDepartment of Physics, Massachusetts Institute of Technology, Cambridge, MA, U.S.A. ^cDepartment of Crystalline Materials Science, Nagoya University, Nagoya, Japan

We use scanning tunneling microscopy to image the interactions between two broken symmetries, inversion symmetry and rotational symmetry, within the CuO_2 unit cell of the cuprate superconductor $(\text{Bi}_{1-y}\text{Pb}_y)_2\text{Sr}_2\text{CuO}_{6+x}$. In Bi-based cuprates, a bulk structural buckling known as the "supermodulation", breaks these symmetries. We use Pb doping to suppress the supermodulation and therefore address the native electronic symmetry breaking states. We find a dominant inversion symmetry breaking, which leads to the appearance of a nematic order. We define a new nematic order parameter which disentangles the two effects of inversion symmetry breaking and rotational symmetry breaking.