In-plane resistivity and superconductivity of iron-pnictide superconductors

S. Ishida^{*a,b,d*}, M. Nakajima^{*a,b,d*}, T. Saito^{*b,c,d*}, K. Kihou^{*b,d*}, C. H. Lee^{*b,d*}, H. Fukazawa^{*c,d*}, Y. Kohori^{*c,d*} A. Iyo^{*b,d*}, H. Eisaki^{*b,d*}, T. Kakeshita^{*a,d*}, Y. Tomioka^{*b,d*}, T. Ito^{*b,d*}, and S. Uchida^{*a,d*}

^aDepartment of Physics, University of Tokyo, Tokyo, Japan

^bNational Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

^cDepartment of Physics, Chiba University, Chiba, Japan

^dJST, Transformative Research-Project on Iron Pnictides, Tokyo, Japan

Revealing the relationship between the normal-state charge transport and superconductivity is one of the important issue in order to understand the mechanism of unconventional superconductivity. We previously demonstrated that the exponent n of the low temperature resistivity $\rho(T) \sim T^n$ is correlated with superconducting transition temperature T_c for polycrystalline samples of various iron pnictides.¹ We performed in-plane resistivity measurement on single crystals of iron-pnictide superconductors, mainly BaFe₂As₂ system. As is well known, the temperature dependence of resistivity is nearly T-linear in Codoped and P-doped cases, while it is S-shaped in K-doped case. We attempted to fit them in terms of three-component model derived from the decomposition of optical conductivity spectrum; a Drude term($\sigma_D \sim T^{-2}$), an incoherent term ($\sigma_{in} \sim const.$), and a residual resistivity component (ρ_0). We investigate how those components vary among different materials and different doping, and explore their correlation with T_c .

¹S. Ishida, et al., Phys. Rev. B **81**, 094515 (2010).