Electronic properties across the first-order phase transition in $Fe_{1.05}$ Te

S. Rößler^{*a*}, Dona Cherian^{*b*}, Harikrishnan S. Nair^{*b*}, Handady L. Bhat^{*b*}, Suja Elizabeth^{*b*}, Frank Steglich^{*a*}, and Steffen Wirth^{*a*}

 $^a{\rm Max}$ Planck Institute for Chemical Physics of Solids, Nöthnizer Straße 40, 01187, Dresden, Germany $^b{\rm Department}$ of Physics, Indian Institute of Science, Bangalore 560012, India

We present here resistivity, magnetization, specific heat, scanning tunneling microscopy, and spectroscopy (STM/S) studies on Fe_{1.05}Te single crystals grown by a horizontal Bridgman method. In this compound, the superconductivity appears upon Se substitution and the physical properties are found to be extremely sensitive to non-stoichiometry and disorder [1]. In our crystals, a first-order phase transition is observed around 57 K in the resistivity, magnetization and the specific heat measurements. This transition is associated with a structural change from the tetragonal P4/nmm to the monoclinic P 2_1 /m space group. At this temperature, the compound becomes antiferromagnetic and the temperature dependence of the resistivity changes from log (-T) to T². This observation suggests that the material becomes a Fermiliquid metal at low temperatures. Metallic behavior is also confirmed in the I-V characteristics of the STM measurements taken on an atomically resolved surface.

[1] S. Rößler et al., Phys. Rev. B, 82 144523(2010).