Superconductivity and Magnetism of Annealed FeSe_{1-x}Te_x ($0.6 \le x \le 1$) Single Crystals Seen from Specific Heat and μ SR

M. Imaizumi^a, T. Noji^a, T. Adachi^a, K. Ohishi^b, I. Watanabe^b, and Y. Koike^a

^aDepartment of Applied Physics, Tohoku University, Sendai, Japan

^bAdvanced Meson Science Laboratory, RIKEN Nishina Center, Wako, Japan

We have investigated annealing effects on the superconductivity and magnetism of FeSe_{1-x}Tex ($0.6 \le x \le 1$) single crystals annealed at 300 - 500 °C for 100 - 200 h in vacuum. A clear jump of the specific heat at T_c has been observed for $0.6 \le x \le 0.9$, indicating that bulk superconductivity is realized. It has been found that the electronic specific-heat coefficient in the normal state, γ_n , is much larger than the value estimated from the band calculation and increases with increasing x and suddenly decreases above x = 0.9. The large value of γ_n is guessed to be due to the enhancement of the effective mass related to spin fluctuation and/or orbital fluctuation. The decrease in γ_n above x = 0.9 is due to the antiferromagnetic ordering around x = 1. It has been found that there remains a finite value of the electronic specific-heat coefficient at 0 K even in the superconducting state at x = 0.8 and 0.9, meaning that there remains normal-state carriers at 0 K. Moreover, μ SR measurement have revealed that magnetic ordering is observed in the magnetic susceptibility measurements. Therefore, there is a possibility that the superconductivity coexists with fluctuating antiferromagnetism at x = 0.8 and 0.9.