High Pressure Studies of $(Sr,Ca)_3Ir_4Sn_{13}$ Single Crystals

Swee K. Goh^{*a*}, L. E. Klintberg^{*a*}, P. L. Alireza^{*a*, *b*}, J. Yang^{*c*}, B. Chen^{*c*}, K. Yoshimura^{*c*}, and F. M. Grosche^{*a*}

^aCavendish Laboratory, University of Cambridge, Cambridge, United Kingdom ^bDepartment of Physics and Astronomy, University College London, London, United Kingdom ^cDepartment of Chemistry, Kyoto University, Kyoto, Japan

The $(Sr,Ca)_3Ir_4Sn_{13}$ system exhibits a rich phase diagram which was reported to display non Fermiliquid physics and to host a coexistence of superconductivity and ferromagnetic spin-fluctuations.¹ We have conducted magnetic susceptibility and electrical resistivity measurements on $(Sr,Ca)_3Ir_4Sn_{13}$ single crystals up to 60 kbar. These measurements allow us to follow the evolution of the superconducting critical temperature T_c , the resistivity anomaly temperature T^* , the superconducting coherence length and the Fermi velocity under pressure. The pressure phase diagram constructed for $Ca_3Ir_4Sn_{13}$ shows a dome-shaped dependence of T_c . The initial rise in T_c , which is accompanied by a decrease in T^* , is consistent with the pressure dependence of material parameters extracted from the resistivity data. ¹J. Yang *et al.*, J. Phys. Soc. Jpn. **79**, 113705 (2010).