A New Aspect of Single Layered Cuprate Superconductors - 90 K Superconductors for Ca-Doped $Bi_2Sr_2CuO_{6+\delta}$ Single Crystals

R. Yoshizaki, T. Yamamoto, H. Ikeda, and K. Kadowaki

Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

We have succeeded in synthesizing single crystals of $\operatorname{Bi}_{2+x}\operatorname{Sr}_{2-x-y}\operatorname{Ca}_y\operatorname{CuO}_{6+\delta}$ which exhibits 90 K-class superconductivity. Crystals are prepared for various values of (x, y) in the range of x=0.1-0.22 and y=0.4-0.6 by a floating-zone method. The X-ray diffraction pattern of a single crystal ensures the *c*-axis length of 2.4 nm, which indicates that the crystal belongs to the Bi-2201 phase. This crystal with the nominal value of (x, y)=(0.15, 0.4) shows the onset temperature of superconducting transition at 91.6 K in low-field dc-magnetic measurement.

The Ca substitution for Sr in Bi₂Sr₂CuO_{6+ δ} will not affect the carrier density because of the isovalency of the elements. The crystal symmetry and the modulation structure along the *b*-axis have also been influenced little by the Ca doping. However, the T_c has changed almost doubled value compared to the maximum T_c for the La and Pb co-doped Bi₂Sr₂CuO_{6+ δ} crystals $(T_c=43 \text{ K})^1$. Thus this implies that the present system may be a good candidate to study the origin of the high- T_c superconductivity. A tentative analysis suggests the important role of the apical oxygen.

¹Arao et al., Physica C **445-448**, 440 (2006).