Anomalous zero-bias conductivity in superconductor-ferromagnet-insulatorsuperconductor tunnel junctions

I. P. Nevirkovets^{*a,b*}, M. A. Belogolowskii^{*c*}, O. Chernyashevskyy^{*b*}, and J. B. Ketterson^{*d*}

^aISEM University of Wollongong, North Wollongong NSW, Australia

^bDepartment of Physics and Astronomy, Northwestern University, Evanston IL, USA

^cDonetsk Institute for Physics and Engineering NASU, Donetsk, Ukraine

 $^d\mathrm{Department}$ of Electrical Engineering and Computer Science, Northwestern University, Evanston IL, USA

There has been increasing interest in ferromagnet-superconductor heterostructures. One of the not well understood phenomena is the presence of a weak supercurrent at zero voltage bias in S_1/F -I- S_2 junctions (here S, I, and F denote a superconductor, an insulator, and a ferromagnetic metal, respectively) without any sign of the energy gap of the S_1/F electrode in the tunneling conductance.¹ Here we present results of an experimental and theoretical study of the $Nb_{(1)}/Ni/Al$ - AlO_x - $Al/Nb_{(2)}$ heterostructures with increased (comparing to that reported in Ref. 1) thickness of the Ni layer. At low temperatures, their electrical characteristics reveal the presence of a zero-bias anomaly that can be associated with the Josephson current. This anomaly, as well as the absence of a gap feature of the $Nb_{(1)}/Ni$ bilayer, is explained in terms of phase-coherent charge transport through a disordered ferromagnetic film with an elastic mean free path being less than its thickness, d_F , whereas the phase breaking length exceeds d_F .

¹A. A. Bannykh, J. Pfeiffer, V. S. Stolyarov, *et al.* Phys. Rev. B **79**, 054501 (2009).